
Algorithms in Bioinformatics: A 
Practical Introduction

Phylogenetic Trees Reconstruction



Evolution
 DNA encodes the information of life.
 Living things pass the DNA information to 

their children.
 Due to mutation, the DNA is changed by a 

little bit.
 After a long time, different species evolved.
 Phylogenetics studies the genetic relationship 

among different species!



Definition of Phylogeny
 Phylogeny (or Phylogenetic tree): 

reconstruction of the evolutionary history of a 
set of species. 

 Usually, it is a leaf-labeled tree where the 
internal nodes refer the hypothetical 
ancestors and the leaves are labeled by the 
species

 The edges of the tree represent the 
evolutionary relationships



Example of phylogeny

 Phylogeny for lizards

C. tigris D. dorsalis C. draconoides U. scoparia P. platyrhinos



Rooted and Unrooted Tree
 A phylogeny is rooted.
 However, since estimating the root is 

scientifically difficult, the reconstructed tree 
may be unrooted.

C. tigris D. dorsalis C. draconoides U. scoparia P. platyrhinos

C. tigris D. dorsalis

C. draconoides U. scoparia P. platyrhinos

Rooted Unrooted



Rooted  a phylogeny by outgroup

 Rooted tree can be reconstructed by 
systematic biologists based on using outgroup.
 Outgroup is a species which is clearly less related 

with all other species in the phylogeny
 E.g. build the phylogenetic tree for human and all 

bacteria. Then, most probably, human is the 
outgroup.



Human evolution

 As an example, we can understand the 
human evolution through phylogenetic 
study.

 Below, we illustrate the phylogenetic 
study of
 mitochondrial Eve
 Y chromosome Adam



About mitochondrial Eve
 Human mitochondrial DNA (mtDNA)

 Circular double-stranded consisting of 16,500 base pairs
 Everyone inherits the mtDNA from his/her mother (because 

mitochondria exists in egg, not in sperm)
 The pointwise mutation substitution rates of mtDNA is 

roughly 10 times faster than nuclear DNA
 Every cell has many mtDNAs.
 Apparently lack of recombination.

 Therefore, we all inherit the mtDNA from the mother 
of human (Eve)!



Genetics helps finding the 
origin of human
 By carrying out a statistical analysis of 

mtDNAs extracted from the placental tissue 
of 147 women of different races and from 
different countries
 Alan Wilson’s group and others construct a 

phylogenetic tree under the assumption of a 
constant molecular clock.

 Such phylogenetic tree implies that the common 
ancestor of modern human appear roughly 
100,000-200,000 years ago. (about 143,000 years 
ago)

 Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. &Wilson, A. C. African populations and the 
evolution of human mitochondrial DNA. Science 253, 1503-1507 (1991).

 Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31-36 
(1987).



Eve tree
 Tree constructed using 

neighbour-joining for 
53 humans and 1 
chimp.
 chimp is outgroup!

 Complete mtDNA 
excluding the D-loop.

 M. Ingman, H. Kaessmann, S. Paabo, 
and U. Gyllensten. Mitochondrial 
genome variation and the origin of 
modern humans. Nature, 2000.

Earliest point 
contains both 
African and 
non-African



About Y chromosome Adam (I)

 Y chromosome is unique to males and it 
can help to find the father of human.

 However, since the mutation rate of Y 
chromosome is not as fast as mtDNA, 
 we need more samples to study the 

evolution of Y chromosome



About Y chromosome Adam (II)
 In Science 1997, at least 93 polymorphic sites 

have been identified in Y chromosomes of 
900 men scanned.

 For one of the site,
 15% Khoisan people have A
 5-10% of Ethiopians and Sudanese have A
 Most africans and people outside Africa have T

 This suggested that
 Khoisan, Ethiopians, and Sudanese (in Africa)

may be the closest living relatives to the 
Y chromosome Adam



About Y chromosome Adam (III)

 In Nature genetic 2000, by studying Y 
chromosome of 1062 males from 22 
different geographic areas,
 They identify 167 haplotypes.
 The common ancestor of the 167 

haplotypes is estimated to appear around 
59,000 years old.

 Underhill et al. Y chromosome sequence variation and the history of human 
populations. Nature Genetic, 26:358-361, 2000.



Adam tree

Minority of 
Africans—mainly 
Sudanese, 
Ethiopians and 
Khoisans



 In around 143,000 years ago,
 Among different mitochondrial 

DNA sequences in human 
population, the Eve mitochondrial 
DNA had advantages and started 
to dominate.

 All other versions of mitochondrial 
DNA eventually disappear.

 In parallel, different versions of 
Y chromosomes appear in 
human population.
 It took another 84,000 years 

before the Adam Y chromosome 
started to take over in the human 
population.

Explanation why Adam and Eve 
appear in different time

Eve mitochondrial 
DNA dominate at 
143000 years ago

Adam Y chromosome dominate 
at 84000 years ago



Applications of Phylogeny
 Apart from understanding the history of life, 

there are many other applications
 Understanding rapidly mutating viruses (like HIV)
 Help to predict protein/RNA structure
 Help to do multiple sequence alignment
 Explaining and predicting gene expression
 Explaining and predicting ligands
 Help to design enhanced organisms (like rice, 

wheat)
 Help to design drug



Computational problem:
Phylogeny reconstruction
 Depending on the input, there are two 

computational problems for 
reconstructing the phylogeny:
 Character based
 Distance Based

 Below, we first describe character 
based method.



Character Based Phylogenetic 
Tree Reconstruction



Character Based
 Input: each species is described by a set of 

characters
 A character can be a base in a specific position in its DNA 

sequence, the number of eyes of the species, etc

 Output: a tree which best explain the input

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

W
ACGT

X
ACCT

Y
ACCG

Z
CCGT





Outline for Character based 
methods

 Parsimony
 Compatibility
 Maximum Likelihood



Parsimony
 Most popular method in the systematic biology 

literature!
 Idea: Build a phylogeny with the fewest point 

mutations
 Formal Definition:

 Let S be a set of (DNA or Protein) sequences
 Denote H(x, y) be the hamming distance between two 

sequences x and y
 The most parsimonious tree is a tree T leaf-labeled by S and 

each internal node is assigned a sequence such that H(T) = 
Σ(x, y)∈E(T) H(x, y) is minimized. Note that H(T) is called the 
parsimony length of T



Example (4 species, each is 
represented by a sequence of 4 
characters)

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T W

ACGT
Z

CCGT
Y

ACCG
X

ACCT

ACGT ACCT

ACGT
1

1 0

0

0 1

This is the most parsimonious tree
Its parsimony length is 3



Example (4 species, each is 
represented by a sequence of 4 
characters)

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

This is another most parsimonious tree
Its parsimony length is 3

Y
ACCG

X
ACCT

ACCT

ACCG
0

0

1

1

ACGT

W
ACGT

Z
CCGT

01



Computational Problems
 Small Parsimony problem is to find the 

parsimony length of a given tree topology
 Large Parsimony problem is to find the most 

parsimonious tree.



Small Parsimony Problem

 Input: Given a set S of sequences and 
the topology of a rooted phylogeny T 
with leave labeled by S

 Goal: Find parsimony length of T

 This problem can be solved in 
polynomial time using Fitch’s algorithm



Simple case: each sequence 
only has one character
 Input: a leaf-labeled tree T where each leaf 

v is labeled by a single character vc

 Output: a fully-labeled tree which is also the 
most parsimonious tree of T

1. For every leaf v, let Sv = {vc}.
2. For every internal node v with children u, w, 

let 

3. For every node v in preorder,
 Let u be its parent. If uc∈Sv, set vc←uc; 

otherwise, assign any character in Sv to vc.



 Φ≠

=
       otherwise  

 if  

wu

wuwu
v SS

SSSS
S







An example

 Each asterisk(*) requires a change in one of the edges to its 
children

 Time complexity: O(nk) where k is the size of the alphabet 
(which is 4 for DNA and 20 for protein)

{CG}

{ACG}* {CG}*

{AC}*

CA G C G

G

G* G*

C*

CA G C G



Each sequence has m 
characters

 Note that the ith character and the jth
character are independent for any i and 
j.

 Thus, this problem can be solved using 
m instance of the simple case problem.

 Time complexity is O(mnk).



Large Parsimony Problem

 Input: a set S of sequences
 Output: the most parsimonious tree

 Large Parsimony Problem is NP-hard
 Large Parsimony Problem can be 2-

approximated in polynomial time



Approximation algorithm
 Given a set S of sequences, define G(S) be a weight 

complete graph whose nodes are labeled by S and 
each edge (i, j) has weight H(i, j).

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

W
ACGT

Z
CCGT

Y
ACCG

X
ACCT

1

2

1

2

3

1

G(S)S



Approximation algorithm (II)
 Let T be a minimum spanning tree of G(S).

W
ACGT

Z
CCGT

Y
ACCG

X
ACCT

1

2

1

2

3

1

G(S)

Y
ACCG

X
ACCT

ACCT

ACCG
0

0

1

1

ACGT

W
ACGT

Z
CCGT

01

T



Approximation algorithm (III)
 Theorem: Let T be a minimum spanning tree 

of G(S). Then, the parsimony length of T is at 
most twice that of the most parsimonious 
tree.
 Proof: Let T* be the most parsimonious tree.
 Let C be an Euler cycle of T*.
 Let P contains only the nodes of G(S) ordered in 

the way in which they appear in C.
 w(T) ≤ w(P) ≤ w(C) = 2 w(T*)



Final remark for maximum 
parsimony

 Maximum parsimony is statistically 
inconsistent.

 This means that given long enough 
sequences, maximum parsimony may 
not be able to recover the true tree 
with arbitrarily high probability.



Application of Maximum Parsimony:
Predicting evolution of influenza
 Influenza is a fast evolving virus.
 Bush and Fitch et al. show that phylogenetic analyses 

of the human influenza A (subtype H3) virus can be 
used to make predictions about the evolutionary 
course of future human influenza strains. 

 The predicted strains of flu virus is included in the 
vaccine prepared each year to protect against the 
upcoming influenza season.
 Bush, R. M., C. A. Bender, et al. (1999) "Predicting the 

evolution of human influenza A." Science 286: 1921-1925.



How to build the influenza tree?

 The HA1 domain of the hemagglutinin gene 
of human influenza A subtype H3 

 The HA1 domains are aligned using multiple 
sequence alignment algorithm. Then, we get 
the input matrix.

 By maximum parsimony, we build the tree.



Observation from the influenza 
tree

 The tree shows the evolution of 
HA1 domain of the hemagglutinin 
gene of human influenza A subtype 
H3 
 Build by Maximum Parsimony using 

isolates from 1983-1994

 There is a selection stress. (The 
tree is skew.)
 The bold path shows the single 

evolutionarily successful linkage.

 At least 18 of the 329 H3 HA1 
codons have been under positive 
selection.



Question: What is the trend of 
the evolution lineage?

 Hypothesis:
 If the selective pressure were to 

evade the host immune 
response, then viruses sustaining 
mutations at these 18 codons in 
the past should have been more 
fit than other coexisting viruses.

 Based on this idea, the 
authors predict the future 
influenza  looks similar to 
A/Shangdong/5/94.



Is the prediction accurate?

 The right tree is reconstructed 
from the influenza in 
1985-1997.

 A/Shangdong/5/94 is relative 
more fit to isolates in the future 
influenza seasons. 



Compatibility
 Compatibility is a simplification of parsimony.
 Definition:

 A binary character c is compatible to a leaf-labeled tree T if 
and only if there exist an assignment of states to the 
internal nodes of T such that a change of status exists in 
exactly one edge

0 0 1 1

0 1

0

0 1 1 0

0 0

0One status 
change!
c is compatible 
to T

Two status 
changes!
c is not 
compatible to 
T



More on compatibility
 In fact, if character c is compatible to a tree T, 

we can identify an edge (u, v) in T so that
 The leaves in the subtree of v have state s for 

character c
 The other leaves have state (1-s) for character c

u

v



Example
 Characters 1, 2, and 3 are all compatible!

M X1 X2 X3

Species 1 1 1 0
Species 2 0 0 1
Species 3 0 0 0
Species 4 0 0 1
Species 5 1 0 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 0, 0)

(0, 0, 1)
(0, 0, 0)

(1, 0, 0)



Perfect phylogeny
 Input: n species, each is characterized 

by m binary characters.
 This input can be represented using a 

binary matrix M with n rows and m 
columns.

 M admits a perfect  phylogeny if 
 there exists a rooted tree T for the n 

species such that all m characters are 
compatible.



Computational Problems
 Input: Given n species, each characterized by 

m binary characters. (Represented using a 
binary matrix M.)

 Compatibility Problem
 Check whether this set of species admits a perfect 

phylogeny.
 Perfect Phylogeny Problem (Large 

Compatibility Problem)
 Find a maximum set of characters which admits a 

perfect phylogeny



Compatibility problem

 Divide the discussion into two parts:
1. Check whether M admits a perfect 

phylogeny
2. If M admits a perfect phylogeny, recover 

the tree



Observation
 If M admits a perfect 

phylogeny T, after 
exchanging 0 and 1 
in any column,  the 
resulting matrix M’
still admits the same 
perfect phylogeny T.

M X1 X2 X3

Species 1 1 0 1

Species 2 0 1 0

Species 3 0 0 0

Species 4 0 1 0

Species 5 1 0 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 0, 0)

(0, 1, 0)
(0, 0, 0)

(1, 0, 0)

M’ X1 X2 X3

Species 1 1 1 1

Species 2 0 0 0

Species 3 0 1 0

Species 4 0 0 0

Species 5 1 1 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 1, 0)

(0, 0, 0)
(0, 1, 0)

(1, 1, 0)



Assumption on the input matrix M

 Based on the previous slide, we assume 
for every column of M,
 The number of state 1 > the number of 

state 0.

 Otherwise, we exchange 0 and 1 and 
such transformation has no effect on 
compatibility!



Main lemma
 For every character i, let Oi be the set of 

species with state 1. 
 Characters i and j are pairwise compatible if

 Oi and Oj are disjoint or one of them contains the 
other.

 (Note: pairwise compatible ≠ compatible!)

 Lemma: M admits a perfect phylogeny if and 
only if for every characters i and j, they are 
pairwise compatible.



Proof()
 Given that M admits a perfect phylogeny
 Note that, for every character i, |Oi|≤n/2.
 Assume that character i and j are not pairwise compatible.
 That is, there exists three species X,Y,Z such that Y,Z∈Oi, X∉Oi

and X,Z∈Oj, Y∉Oj.
 Since Oi∩Oj is non-empty, |Oi∪Oj|= |Oi|+|Oj|-|Oi∩Oj|<n.

 Thus, there exists a species W ∉Oi, Oj.
 By character i, Y and Z are in the same partition in T, while X 

and W are in another partition
 By character j, X and Z are in the same partition in T and W and 

Y are in the same partition in T.
 Impossible! We arrived at contradiction!

Oi Oj

X
Y

Z



Proof ()

 Exercise!



Simple solution for compatibility
 Based on the previous lemma, we get the 

following algorithm.

Algorithm
 For every characters i and j,

 Check whether i and j are pairwise compatible.
 If no, return “cannot admit a perfect phylogeny”!

 Return “admits a perfect phylogeny”!

 Time complexity: O(m2 n)



Can we get a better algorithm?
 Yes! We can have an O(mn) time algorithm
 Idea:

 Below, an algorithm is described to check, for all i, 
j, whether Oi and Oj are disjoint or one of them 
contains the other

 If the condition is satisfied, M admits a perfect 
phylogeny; Otherwise, M does not admit a perfect 
phylogeny



Step 1
 Relabel the characters so that |Oi|≥|Oj| 

if i<j

M X1 X2 X3

Species 1 1 0 1
Species 2 0 1 0
Species 3 0 0 0
Species 4 0 1 0
Species 5 1 0 0

|O1|=2,
|O2|=2,
|O3|=1



Step 2
 For every species i and character j, 

 If Mij=1, let Lij be the biggest k<j such that Mik=1. 
If such k does not exist, Lij = -1

 If Mij=0, let Lij=0.

L X1 X2 X3

Species 1 -1 0 1
Species 2 0 -1 0
Species 3 0 0 0
Species 4 0 -1 0
Species 5 -1 0 0

M X1 X2 X3

Species 1 1 0 1
Species 2 0 1 0
Species 3 0 0 0
Species 4 0 1 0
Species 5 1 0 0



Technical Lemma
 Lemma: For some character j, if there 

exist two 
nonzero entries Lij and Lkj such that Lij≠Lkj,
 then M does not admit a perfect 

phylogeny

 Proof:
 Suppose Lij=x and Lkj=x’. WLOG, x>x’.
 By definition, Mij=Mkj=1, Mix=1, Mkx=0
 Thus, Oj contains species i and species k 

and Ox contains species i, but not species 
k. It means that (1) Oj∩Ox≠Φ, (2) Oj is 
not subset of Ox

 Note that j>x. Thus, |Ox|≥|Oj|
 As k∉Ox, Ox should contain some species 

which does not appear in Oj. So, (3) Ox is 
not subset of Oj.

 So, by the previous lemma, M does not 
admit a perfect phylogeny.

M x’ x … j
… … … …

i … … 1 … 1 …
… … … …

k … … 0 … 1 …
… … … …

L x’ x … j
… … … …

i … … … x …
… … … …

k … … … x’ …
… … … …



Step 3
 For every character j, check if there exist i and k such that 

Lij≠Lkj and both Lij and Lkj are nonzero.
 If yes, return “does not admit a perfect phylogeny”.
 Otherwise, “admits a perfect phylogeny”.

For every character j 
(column j), we can’t find 
two nonzero positive entries 
which are different. So, for 
all i, j, Oi and Oj are disjoint 
or one of them contains the 
other

L X1 X2 X3

Species 1 -1 0 1
Species 2 0 -1 0
Species 3 0 0 0
Species 4 0 -1 0
Species 5 -1 0 0



Time complexity

 Step 1 takes O(mn) time (by radix sort)
 Steps 2 and 3 can be computed in 

O(mn) time!
 Thus, we can decides whether M admits 

a perfect phylogeny or not in O(mn) 
time.



Tree reconstruction
Algorithm
Input: A character-state matrix M with Oi≥Oj for 1≤i<j≤n
 Let T be a tree containing the single root node r. N(r)={1,…,n}
 For every character j where j=1 to m

 Find a leaf v∈T such that 
 N(v) can be partitioned into two non-empty sets N0 and N1

where Ns={ x∈N(v) | character j of species x is of state s} for 
s=0,1

 /* Note: we can only split one leaf v */
 Create two children v0 and v1 for v
 Set N(v0) = N0, N(v1) = N1

 Set N(v) = Φ
 For every leaf v s.t. N(v) is nonempty,

 If |N(v)|>1, let the species in N(v) be the children of v
 If |N(v)|=1, leaf v represents the species in N(v)



Example

1,2,3,4,5

Initial case

2,3,4

character 1

1,5

character 2

51

2,4

1,5

character 3
2

final

4

M X1 X2 X3

Species 1 1 0 1

Species 2 0 1 0

Species 3 0 0 0

Species 4 0 1 0

Species 5 1 0 0

3

2,43

51 3



Time analysis

 For every character j, it takes O(n) time 
to identify a node and to split the node

 Thus, the total time is O(nm)



Large Compatibility Problem

 Find the maximum set of characters 
which admits a perfect phylogeny!

 This problem is NP-hard!

 We discuss how to solve Large 
Compatibility Problem by transforming it 
to CLIQUE Problem.



CLIQUE Problem
 Given a graph G, the problem tries to find the 

maximum size subgraph H such that H is a 
complete graph.

 Note: this is an NP-complete problem
G H



Large Compatibility Problem 
vs CLIQUE Problem
 Given an instance of M, define a graph G where

 Each vertex i in G corresponds to a character in M
 (i, j) is an edge in G if i and j are pairwise compatible.

 Note that
 G can be constructed in polynomial time
 Note that G contains a clique of size B if and only if M 

contains a subset of compatible characters whose size is B.

 Thus, we transforms the large compatibility problem 
to a CLIQUE problem.



Algorithm for solving large 
compatibility problem
Input: M
1. Obtain G based on M
2. Find the maximum clique in G
3. Then, recover the maximum subset of 

compatible characters
4. Based on the tree construction algorithm in 

slide 49, recover the phylogeny

 The bottleneck is step 2. So, the time 
complexity is exponential.



Compatibility for characters 
with k possible states
 We can generalize the problem when the characters 

are not binary
 Definition:

 A character c with k possible states is compatible to a leaf-
labeled tree T if and only if there exist an assignment of 
states to the internal nodes of T such that the total number 
of state changes is exactly k-1

 Result:
 Compatibility Problem

 When the number of states is constant, polynomial time 
algorithm is still feasible

 When the number of states is variable, NP-complete
 Large Compatibility Problem

 NP-complete



Maximum Likelihood

 Given a set of data D, Maximum 
likelihood tries to find a model M such 
that
 Pr(D|M) is maximized!



What is a model?
 A model consists of

 A rooted tree which models the evolution relationship
 Every edge is associated with a stochastic model of 

evolution
 Usually, it is assume that 

 the characters evolve identically and independently
 Also, the tree has the markov property. That is, the 

evolution occurs at one subtree is independent to the other 
parts of the tree.

 Example of models:
 Cavender-Felsenstein model (also called Cavender-Farris 

model)
 Jukes-Cantor model



Cavender-Felsenstein Model (I)
 Simplest possible markov model of evolution
 Assume each character has only two states
 The model consist of

 the topology T
 a mutation probability p(e) for each edge e in T

 Assumption:
 For every e=(u,v) in T, 0<pi(e)<0.5

 Pr(u|v) = Pr(v|u)
 For the root r, Pr(r=0)=Pr(r=1)=0.5

u=0 u=1

v=0 Pr(u=0|v=0)=1-pi(e) Pr(u=1|v=0)=pi(e)

v=1 Pr(u=0|v=1)=pi(e) Pr(u=1|v=1)=1-pi(e)



Cavender-Felsenstein Model 
(II)
 Consider 3 species a, b, and c
 For a particular character i, assume the model says that the tree 

topology is T and the mutation probability for every edge e is pi(e)
 Suppose the data Di says: ai=1, bi=1, ci=0
 Then, probability that the data is Di given that the model is (T, pi), 

Pr(Di|T,pi), equals

r

a u

b c

∑
=
=

=========

1,0
1,0

)|0Pr()|1Pr()|Pr()|1Pr()Pr(
j
k

iiiiiiiii jucjubkrjukrakr

T



Cavender-Felsenstein Model 
(III)
 Consider m species each is 

characterized by n characters
 Let the data be D=D1∪…∪ Dn

 The model consists of the tree topology 
T and the mutation probability pi for 
character i

 Pr(D|T,pe e∈T)=Πi=1..n Pr(Di|T,pe e∈T)



Computational Problems

 Likelihood of a model
 Given the model M, for any data D, try to 

compute Pr(D|M)

 Find model with maximum likelihood
 Given data D, try to find a model M which 

maximizes Pr(D|M)!



Likelihood of a model
 Input:

 Data D: m species where each species is characterized by n 
character

 Model M=(T, pe e∈T)
 Aim: Compute Pr(D|M)

 Pr(D|M) can be computed using the formula we 
stated before.
 However, it takes exponential time.

 Can we do it better?
 Yes! By defining the likelihood recursively and compute the 

value using dynamic programming.



Recursive Definition
 For a particular character i, let Li(v,s) be the 

likelihood of the subtree rooted at v, given 
that character i has state s.

 For every leaf v and state s,
 Li(v,s)=1 if vi=s; 0,otherwise.

 Traverse the tree in postorder, for every 
internal node v with children, says, u and w,
 








==








=== ∑∑

== 1,01,0
)|Pr(),()|Pr(),(),(

y
iii

y
iiii svywywLsvyuyuLsvL



Time complexity
 Finally, for the root, we have

 Time Complexity:
 For every node v and every state s,

 Li(v,s) can be computed in O(1) time according to the 
recurrence.

 Since there are n nodes and m characters, all Li(v,s) can be 
computed in O(mn) time. 

 For L, it can be computed in O(m) time.
 In total, Likelihood of a tree can be computed in O(mn) time.
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Find model using maximum 
likelihood
 Input:

 Data D: m species where each species is 
characterized by n character

 Aim: Find M=(T, pe e∈T) which maximizes 
Pr(D|M)

 This problem is NP-hard.
 Solution: uses heuristic to get close to 

optima (like DNAml)



Estimating the weight of an edge
 Let L(u=s,U) and L(v=s,V) be the maximum 

likelihood score of U and V with the state of the root 
equals s.

 We would like to find p(u,v) of the edge (u,v) which 
maximize the likelihood of the combined tree.

 Note that the likelihood of the combined tree is

 We would like to find p(u,v) which maximizes L.
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Find p(u,v) which maximizes L (I)
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Find p(u,v) which maximizes L (II)
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By iterating the following equation, we can approximate p(u,v).
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DNAml
Algorithm DNAml
 Let S = {s1, s2, …, sn} be the set of taxa.
 Build the tree T for species {s1, s2}
 For k = 3 to n

 Among all (2k-5) ways to insert sk into T, 
 we choose the way with the best likelihood.

 If k>= 4,
 While there exists nearest neighbor interchange (NNI) 

which can improve the likelihood of T,
 We perform such NNI



Final remark for Maximum 
Likelihood

 For the Cavender-Felsenstein model, 
maximum likelihood is statistically 
consistent.



Distance Based Phylogenetic Tree 
Reconstruction



Distance between species
 In character based methods, we try to 

minimize the number of mutations.
 Intuitively, species which look similar should 

be evolutionary more related. 
 This motivates us to define the distance

between two species to be the number of 
mutations need to change one species to 
another.

 In this lecture, we try to construct a 
phylogeny using the distance information 
among species.



Distance Based
 Input: a distance matrix M satisfying some 

constraints
 Output: a tree of degree 3 which is consistent with 

the distance matrix



a b c d e
a 0 11 10 9 15
b 11 0 3 12 18
c 10 3 0 11 17
d 9 12 11 0 8
e 15 18 17 8 0

1

b c

d

e

a

4

4

5

2 1

7



Constraints for the distance 
matrix M

 There are three assumptions for M
1. M should satisfy the metric space
2. M is an additive metric
3. M is ultrametric (optional)



Metric space

 In the following discussion, we assume 
that the distance between species 
satisfy the metric space. That is,
 a distance metric M which satisfies

 Mij = Mji ≥ 0, Mii =0
 Mij+ Mjk ≥ Mik [triangle inequality]



Additive metric
 Let S be a set of species
 Let M be the distance matrix for S
 If there exists a rooted tree T where

 every edge has a positive weight and every leaf is 
labeled by a distinct species in S; and

 for every i, j ∈ S, Mij = the sum of the edge 
weights along the path from i to j.

 Then, M is called an additive metric
 The corresponding tree T is called additive 

tree



Additive Metric Example

 Don’t know the root! We can only build an unrooted 
phylogeny.

a b c d e
a 0 11 10 9 15

b 11 0 3 12 18
c 10 3 0 11 17
d 9 12 11 0 8
e 15 18 17 8 0
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Properties of additive metric
 Buneman’s 4-point condition

 M is additive if and only if
 for any four species in S, we can label them i, j, 

k, l such that Mik+Mjl = Mil+Mjk ≥ Mij+Mkl



Proof for the 4-point condition
 Proof of forward direction: If M is additive, there 

exists an additive tree T for S.
 Consider the subtree for the 4 species i, j, k, l. WLOG, 

the subtree is as follows.

 It can be easily verify that
 Mik+Mjl = Mil+Mjk ≥ Mij+Mkl

 We will not present the proof for the backward 
direction.

i

j

k

l
x y



Criteria for checking if M is 
additive or not

 Based on the 4-point condition, we can 
check whether a matrix M is additive or 
not.



Why additive metric?
 Recall that distance captures the actual 

number of mutations between a pair of 
species.

 If (1) the correct tree for a set of species is 
known and (2) we get the exact number of 
mutations for each edge,
 The distance (the number of mutations) between 

two species i and j should be the sum of the edge 
weights along the path from i to j.

 Additive metric seems reasonable!



Hamming distance is additive?
 For any two species i and j, can we define Mij to be 

the hamming distance between species i and j?
 Example: assume number of characters m=5

 Species i: (A, C, G, C, T)
 Species j: (C, C, A, C, T)
 Hamming distance hij = 2

 No! Hamming distance fails to capture the “multiple”
mutations on the same site. It is not an additive metric

 Solution:
 Use possion correction
 corrected distance Mij = -ln(1- hij/m)
 As the number of characters increase, M converges to an 

additive metric



Ultrametric
 Assume M is additive. That is, there exists a tree T 

such that 
 the distance between any two species i and j 

equals the sum of the edge weights along the 
path from i to j.

 If we can further identify a root such that the path 
length from the root of T to every leaf is identical, 
then M is called an ultrametric

 A tree T which satisfies ultrametric is an ultrametric 
tree



Ultrametric Example

 Every path from root to leaf has the same 
length!

a b c d e
a 0 8 8 14 14

b 8 0 2 14 14
c 8 2 0 14 14
d 14 14 14 0 10
e 14 14 14 10 0 b c d ea

4

3

3

1 1 5

2

5



Properties of ultrametric
 Ultrametric is an additive metric. Thus, it 

satisfies 4-point condition.
 Additional property: 3-point condition

 M is ultrametric if and only if
 for any three species in S, we can label them i, j, k such 

that Mik= Mjk ≥ Mij

 Proof of forward direction:

Mik= Mjk ≥ Mij

i j k



Criteria for checking if M is 
ultrametric or not

 Based on the 3-point condition, we can 
check whether a matrix M is ultrametric 
or not.



Constant molecular clock 
assumption
 Constant molecular clock is an assumption in biology.

 It states that the number of accepted mutations occurring in 
any time interval is proportional to the length of that interval. 

 Thus, all species evolved at equal rate from a common 
ancestor.

 Recall that Alan Wilson found the origin of human based on 
this clock.

 Ultrametric tree states that the distance from the root 
to all species are the same. Thus, its correctness is 
based the constant molecular clock assumption, 
which is rarely correct!



Computational Problems
 Let M be a distance matrix for a set of 

species S.
1. If M is ultrametric, can we reconstruct the 

corresponding ultrametric tree T in polynomial 
time?

2. If M is additive, can we have an polynomial time 
algorithm to recover the corresponding additive 
tree T?

3. If M is not exactly additive, can we find the 
nearest additive tree T?



Ultrametric Tree 
Reconstruction

 Input: Given an ultrametric matrix M for 
a set of species S

 Problem: Can we reconstruct the 
phylogenetic tree T for S?



UPGMA (Unweighted Pair Group 
Method with Arithmetic mean)

 Build an ultrametric tree using a clustering 
procedure.

 Consider an ultrametric tree T. If a subset of 
species S form a subtree of T, we call it a 
cluster.

 Idea:
 Every species forms a cluster.
 Iteratively connect two nearest clusters, until one 

cluster is left.



Definition - height
 For a node u, define height(u) be the path length 

from u to any of its descendent leaf. (Since T is 
ultrametric, every path should have the same length!)

 Let i and j be the descendent leaves of u in two 
different subtrees. To ensure that the distance from 
the root to both i and j are the same, height(u) = 
Mij/2

ji

u



Distance between two clusters
 For any two clusters C1 and C2 of T

 Define 

 Note that dist(C1, C2) = Mij for all i ∈ C1 and j ∈ C2

 Let u be the lowest common ancestor of i and j. 
dist(C1, C2) = 2 height(u)!
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Idea of the algorithm

 Consider a set Z of clusters
 Let A, B be two clusters such that 

dist(A, B) is minimum.
 Let C be a tree formed by joining A 

and B with a root.
 Lemma: C is a cluster (subtree) of the 

ultrametric tree T



Observation

 For any clusters C1,C2, and D,
 dist(C1∪C2,D)=

(|C1|dist(C1,D)+|C2|dist(C2,D))/(|C1∪C2|)

 Try to prove this!



Algorithm
 Input: n x n ultrametric distance matrix M
1. Initialize set Z to consist of n initial singleton 

clusters {1}, {2}, …, {n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij

3. Repeat n-1 times
1. Determine cluster A, B ∈ Z such that dist(A, B) is 

minimum.
2. Define a new cluster C = A ∪ B
3. Z = Z – {A, B} ∪ {C}
4. Define a new node c and let c be the parent of a and b. 

Also, define height(c) = dist(A, B)/2
5. For all D ∈ Z – {C}, define dist(D, C) = dist(C, D) =

(|A|dist(A, D) + |B|dist(B, D)) / (|A|+|B|)



Example
M a b c d e

a 0 8 8 14 14

b 8 0 2 14 14

c 8 2 0 14 14

d 14 14 14 0 10

e 14 14 14 10 0

a b c ed 


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Height=1

Height=4Height=5Height=7



a b c ed a b c ed a b c ed

a b c ed
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Time complexity
 Initialization can be done in O(n2) time
 There are n-1 iterations, 

 The bottleneck of each iteration is to find the cluster A, B 
∈ Z such that dist(A, B) is minimized, which takes O(n2) 
time.

 The total time complexity is O(n3).

 Next slide shows that O(n) time is sufficient to find 
the cluster A, B ∈ Z such that dist(A, B) is 
minimized.

 Hence, the time complexity is O(n2).



Algorithm
 Input: n x n ultrametric distance matrix M
1. Initialize set Z to consist of n initial singleton clusters {1}, {2}, …, 

{n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij
3. For every P ∈ Z, set minP = argminQ∈Zdist(P,Q)
4. Repeat n-1 times

1. Determine cluster A ∈ Z such that dist(A, minA) is minimized.
2. Let B = minA. Define a new cluster C = A ∪ B
3. Z = Z – {A, B} ∪ {C}
4. Set minC = argminQ∈Zdist(C,Q)
5. For every cluster A ∈ Z, if dist(A, C)<dist(A, minA), set minA = Z.
6. Define a new node c and let c be the parent of a and b. Also, define 

height(c) = dist(A, B)/2
7. For all D ∈ Z – {C}, define dist(D, C) = dist(C, D) =

(|A|dist(A, D) + |B|dist(B, D)) / (|A|+|B|)



Additive tree reconstruction

 Suppose M is an additive metric. We 
show an algorithm which reconstructs 
the additive tree in O(n2) time.

 For any two species i and j, the additive 
tree is just an edge with weight Mij

i j
Mij



Recovering additive tree for 3 
species
 For any three species i, j, k, we can find their 

center c as follows. [call it 3-star method!]
 Let dxy be the length of the path from x to y
 (1) Mik = dic + dck, (2) Mjk = djc + dck, and (3) Mij

= dic + dcj 

 By solving the three equations, we have
 dic=(Mij + Mik – Mjk)/2
 djc = (Mij + Mjk – Mik)/2
 dkc = (Mik + Mjk – Mij)/2

 Note: this tree is unique!

i

k

j
c



Recovering additive tree for 4 
species (I)
 Given four species h, i, j, k, we want to recover the 

additive tree.
 For species i, j, k, we get the additive tree using the 

3-star method
 To include h into the tree, we need to introduce one 

more internal node c’.
 c’ will split either (i, c), (j, c) or (k, c).

i

k

j
c



Recovering additive tree for 4 
species (II)
 To check whether c’ splits (k, c), we apply 3-star 

method for species i, k, h.
 If dkc’<dkc, c’ splits (k, c).

 Otherwise, using the same approach to check 
whether c’ splits (i, c) or (j, c).

 Note: c’ can only split exactly one edge. Thus, the 
additive tree for 4 species is unique.

i

k

j
c

c’ h



Recovering additive tree for k 
species
 Inductively, assume we know how to recover 

the additive tree for k-1 species.
 To recover the additive tree for k species, 

 We first build the additive tree T’ for the first k-1 
species. Then, insert the last species to T’

 The last species will split one of the edge in T’.
 For every edge in T’, we check whether the last 

species will split it using 3-star method. 
 Note:

 The time required is O(k-1).
 Also, the tree is unique!



Time complexity

 In summary, to recover an additive tree 
with n species, the time is 
O(1 + 2 + … + n) = O(n2).

 Note: the additive tree for M is unique!



Example
M a b c d e

a 0 11 10 9 15

b 11 0 3 12 18

c 10 3 0 11 17

d 9 12 11 0 8

e 15 18 17 8 0
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Reconstruct nearly additive 
tree

 If M is not an additive metric, we can 
find the nearly additive tree using the 
following methods
 Least Squares Method
 Fitch-Margoliash method
 Neighbor-Joining Method
 L∞-metric



Least Squares Method
 Input: a metric M for a set of species S
 Definition: For any tree T for the set of 

species S, let D be its corresponding distance 
matrix. We define

 Aim: Find a tree T which minimizes SSQ(T). 
Such tree is known as Least Squares Tree.

 This problem is NP-hard!
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Neighbor joining (NJ)

 Attempts to approximate the additive 
tree

 Idea: join clusters A and B that are
1. close together [small dist(A,B)]
2. far away from the rest [big uA and uB

where uA = (ΣD∈Z dist(D, A))/(n-2)]
 In other word, minimize dist(A,B)-uA-uB



Algorithm
 Input: n x n distance matrix M
1. Initialize set Z to consist of n initial singleton clusters {1}, 

{2}, …, {n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij

3. Repeat n-1 times
1. For every cluster A ∈ Z, let uA = (ΣD∈Z dist(D, A))/(n-2)
2. Determine cluster A, B ∈ Z such that dist(A, B)-uA-uB is 

minimized.
3. Connect A and B by a new internal node r. The resulting cluster 

is called C.
4. Calculate branch length: dAr = dist(A,B)/2 + (uA-uB)/2, dBr = 

dist(A,B)/2 + (uB-uA)/2
5. Z = Z – {A, B} ∪ {C}
6. Update dist(): For all D ∈ Z – {C}, define dist(D, C) = dist(C, D) 

= (dist(A,D)+dist(B,D) – dist(A,B))/2



Time complexity

 Initialization takes O(n2) time
 There are n iterations

 Each iteration takes O(n2) time, due to 
step 3.2.

 In total, the time complexity is O(n3).



L∞-metric
 Given two distance matrices M and E for a set 

of species S,
 L∞(M, E) = maxi,j |Mij – Eij|

 Input: a metric M for a set of species S
 Aim: Find an additive metric E such that

 L∞(M, E) is minimized
 This problem is NP-hard!
 Agarwala et al. give a 3-approximation 

algorithm with respect to the L∞-metric.



More on neighbor joining
 Let M be any distance matrix and MT be an 

additive matrix.
 Suppose L∞(M, MT)<µ(T)/2 

 where µ(T) is the minimum edge length in T.
 In this case, M is said be be nearly additive.

 Atteson showed that, given a nearly additive 
matrix M, 
 NJ always return the correct tree T.



Can we apply distance based 
methods on character based data?

 Yes! For any two species i and j, we can compute the 
distance Mij.

 However, as stated before, we cannot compute the 
distance Mij as the hamming distance hij between 
species i and j.

 Instead, we use a corrected distance.
 E.g. Assuming the CF model, 

 the corrected distance Mij = -ln(1- hij/m).

 As the number of characters increase, M converges to an 
additive metric.



Can we improving the tree generated 
by distance based methods?
 The tree generated by a distance-based method is 

usually unstable.
 Bootstrapping helps to identify those stable edges in 

the tree.

Algorithm Bootstrapping
Input: n species, each is described by m characters
 Repeat x times,

 Randomly select m characters (with replacement)
 Build the distance matrix for the n species
 Build the distance-based tree

 Report the consensus tree



Example: bootstrapping
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Can tree reconstruction methods 
infer the correct tree?



Can tree reconstruction methods 
infer the correct tree? (I)
 Experimentally, bacteriophage T7 was propagated 

and split sequentially in the presence of a mutagen, 
where each lineage was tracked. 

 Out of 135,135 possible phylogenetic trees, the true 
tree was correctly determined by phylogenetic 
methods in a blind analysis. Five different 
phylogenetic methods were used independently, and 
each one chose the correct tree. 
 DM Hillis, JJ Bull, ME White, MR Badgett, and IJ Molineux. 

Experimental phylogenetics: generation of a known 
phylogeny. Science 255(5044):589-592, 1992.



Can tree reconstruction methods 
infer the correct tree? (II)
 In 1998, researchers used 111 modern HIV-1 (AIDS 

virus) sequences in a phylogenetic analysis to predict 
the nucleotide sequence of the viral ancestor of 
which they were all descendants. 

 The predicted ancestor sequence closely matched, 
with high statistical probability, an actual ancestral 
HIV sequence found in an HIV-1 seropositive African 
plasma sample collected and archived in the Belgian 
Congo in 1959
 Zhu, T., B. Korber, et al. (1998) "An African HIV-1 sequence 

from 1959 and implications for the origin of the epidemic." 
Nature 391: 594-597.



HIV evolution
 HIV evolves approximately one million times 

faster than the nucleic genomes of higher 
organisms

 Leitner et al. studied the real evolution tree of 
11 HIV-1 samples in a period of 13 years 
(1981-1994).

 They also collect the sample sequences.

 T Leitner, D Escanilla, C Franzén, M Uhlén, and J Albert. Accurate 
reconstruction of a known HIV-1 transmission history by phylogenetic 
tree analysis. PNAS, 93(20):10864–10869, 1996.



Population history of HIV-1 in a 
Swedish transmission cluster
 HIV-1 transmission time 

are also known (within a 
few months)

 Square: male; circle: 
female

 Solid:HIV-infected; 
Open: uninfected

 Small symbols: children



The true phylogenetic tree
 The env V3 and p17 gag 

regions of the HIV-1 
genome were directly 
sequenced from uncultured 
peripheral blood 
mononuclear cells of p1 to 
p11 at different time

 Combining virus 
transmission time and 
sample collection time, we 
get the true phylogenetic 
tree for 13 HIV-1 genomes.



Phylogenetic tree reconstruction 
methods
 7 tree reconstruction methods:

 Fitch-Margoliash (FM)
 Neighbor-joining (NJ)
 Minimum-evolution (ME)
 Maximum-likelihood (ML)
 Maximum-parsimony (MP)
 Unweighted pair group method using arithmetic averages 

(UPGMA) 
 A FM method assuming a molecular clock (KITSCH)

 They are applied to 13 samples on regions
 Env V3
 p17 gag
 Env V3 + p17 gag



Results
 FM, NJ, ML perform the best

 MP in the middle

 UPGMA and KITSCH, which assume constant 
molecular clock perform the worst

 All methods tended to overestimate the 
length of short branches and underestimate 
long branches.





Dissimilarity with the true tree

 Dissimilarity is based on 
comparing quartets 
between the true tree 
and the constructed tree.

 p17+V3 > V3 > p17
 ML,NJ,FM > MP



Software for constructing 
phylogenetic tree

 Felsenstein's PHYLIP
 It offers a large array of methods, including ML, 

MP and NJ.
 Command line mode only
 The most widely used program suite
 Source code is available
 Free of charge
 http://evolution.genetics.washington.edu/phylip.ht

ml

http://evolution.genetics.washington.edu/phylip.html�
http://evolution.genetics.washington.edu/phylip.html�


Methodology for constructing 
phylogeny

 Multiple alignment
 Bootstrapping (says, 100 times)
 Apply phylogeny reconstruction 

methods
 Build consensus tree
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