
Algorithms in Bioinformatics: A
Practical Introduction

Phylogenetic Trees Reconstruction

Evolution
 DNA encodes the information of life.
 Living things pass the DNA information to

their children.
 Due to mutation, the DNA is changed by a

little bit.
 After a long time, different species evolved.
 Phylogenetics studies the genetic relationship

among different species!

Definition of Phylogeny
 Phylogeny (or Phylogenetic tree):

reconstruction of the evolutionary history of a
set of species.

 Usually, it is a leaf-labeled tree where the
internal nodes refer the hypothetical
ancestors and the leaves are labeled by the
species

 The edges of the tree represent the
evolutionary relationships

Example of phylogeny

 Phylogeny for lizards

C. tigris D. dorsalis C. draconoides U. scoparia P. platyrhinos

Rooted and Unrooted Tree
 A phylogeny is rooted.
 However, since estimating the root is

scientifically difficult, the reconstructed tree
may be unrooted.

C. tigris D. dorsalis C. draconoides U. scoparia P. platyrhinos

C. tigris D. dorsalis

C. draconoides U. scoparia P. platyrhinos

Rooted Unrooted

Rooted a phylogeny by outgroup

 Rooted tree can be reconstructed by
systematic biologists based on using outgroup.
 Outgroup is a species which is clearly less related

with all other species in the phylogeny
 E.g. build the phylogenetic tree for human and all

bacteria. Then, most probably, human is the
outgroup.

Human evolution

 As an example, we can understand the
human evolution through phylogenetic
study.

 Below, we illustrate the phylogenetic
study of
 mitochondrial Eve
 Y chromosome Adam

About mitochondrial Eve
 Human mitochondrial DNA (mtDNA)

 Circular double-stranded consisting of 16,500 base pairs
 Everyone inherits the mtDNA from his/her mother (because

mitochondria exists in egg, not in sperm)
 The pointwise mutation substitution rates of mtDNA is

roughly 10 times faster than nuclear DNA
 Every cell has many mtDNAs.
 Apparently lack of recombination.

 Therefore, we all inherit the mtDNA from the mother
of human (Eve)!

Genetics helps finding the
origin of human
 By carrying out a statistical analysis of

mtDNAs extracted from the placental tissue
of 147 women of different races and from
different countries
 Alan Wilson’s group and others construct a

phylogenetic tree under the assumption of a
constant molecular clock.

 Such phylogenetic tree implies that the common
ancestor of modern human appear roughly
100,000-200,000 years ago. (about 143,000 years
ago)

 Vigilant, L., Stoneking, M., Harpending, H., Hawkes, K. &Wilson, A. C. African populations and the
evolution of human mitochondrial DNA. Science 253, 1503-1507 (1991).

 Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31-36
(1987).

Eve tree
 Tree constructed using

neighbour-joining for
53 humans and 1
chimp.
 chimp is outgroup!

 Complete mtDNA
excluding the D-loop.

 M. Ingman, H. Kaessmann, S. Paabo,
and U. Gyllensten. Mitochondrial
genome variation and the origin of
modern humans. Nature, 2000.

Earliest point
contains both
African and
non-African

About Y chromosome Adam (I)

 Y chromosome is unique to males and it
can help to find the father of human.

 However, since the mutation rate of Y
chromosome is not as fast as mtDNA,
 we need more samples to study the

evolution of Y chromosome

About Y chromosome Adam (II)
 In Science 1997, at least 93 polymorphic sites

have been identified in Y chromosomes of
900 men scanned.

 For one of the site,
 15% Khoisan people have A
 5-10% of Ethiopians and Sudanese have A
 Most africans and people outside Africa have T

 This suggested that
 Khoisan, Ethiopians, and Sudanese (in Africa)

may be the closest living relatives to the
Y chromosome Adam

About Y chromosome Adam (III)

 In Nature genetic 2000, by studying Y
chromosome of 1062 males from 22
different geographic areas,
 They identify 167 haplotypes.
 The common ancestor of the 167

haplotypes is estimated to appear around
59,000 years old.

 Underhill et al. Y chromosome sequence variation and the history of human
populations. Nature Genetic, 26:358-361, 2000.

Adam tree

Minority of
Africans—mainly
Sudanese,
Ethiopians and
Khoisans

 In around 143,000 years ago,
 Among different mitochondrial

DNA sequences in human
population, the Eve mitochondrial
DNA had advantages and started
to dominate.

 All other versions of mitochondrial
DNA eventually disappear.

 In parallel, different versions of
Y chromosomes appear in
human population.
 It took another 84,000 years

before the Adam Y chromosome
started to take over in the human
population.

Explanation why Adam and Eve
appear in different time

Eve mitochondrial
DNA dominate at
143000 years ago

Adam Y chromosome dominate
at 84000 years ago

Applications of Phylogeny
 Apart from understanding the history of life,

there are many other applications
 Understanding rapidly mutating viruses (like HIV)
 Help to predict protein/RNA structure
 Help to do multiple sequence alignment
 Explaining and predicting gene expression
 Explaining and predicting ligands
 Help to design enhanced organisms (like rice,

wheat)
 Help to design drug

Computational problem:
Phylogeny reconstruction
 Depending on the input, there are two

computational problems for
reconstructing the phylogeny:
 Character based
 Distance Based

 Below, we first describe character
based method.

Character Based Phylogenetic
Tree Reconstruction

Character Based
 Input: each species is described by a set of

characters
 A character can be a base in a specific position in its DNA

sequence, the number of eyes of the species, etc

 Output: a tree which best explain the input

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

W
ACGT

X
ACCT

Y
ACCG

Z
CCGT

Outline for Character based
methods

 Parsimony
 Compatibility
 Maximum Likelihood

Parsimony
 Most popular method in the systematic biology

literature!
 Idea: Build a phylogeny with the fewest point

mutations
 Formal Definition:

 Let S be a set of (DNA or Protein) sequences
 Denote H(x, y) be the hamming distance between two

sequences x and y
 The most parsimonious tree is a tree T leaf-labeled by S and

each internal node is assigned a sequence such that H(T) =
Σ(x, y)∈E(T) H(x, y) is minimized. Note that H(T) is called the
parsimony length of T

Example (4 species, each is
represented by a sequence of 4
characters)

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T W

ACGT
Z

CCGT
Y

ACCG
X

ACCT

ACGT ACCT

ACGT
1

1 0

0

0 1

This is the most parsimonious tree
Its parsimony length is 3

Example (4 species, each is
represented by a sequence of 4
characters)

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

This is another most parsimonious tree
Its parsimony length is 3

Y
ACCG

X
ACCT

ACCT

ACCG
0

0

1

1

ACGT

W
ACGT

Z
CCGT

01

Computational Problems
 Small Parsimony problem is to find the

parsimony length of a given tree topology
 Large Parsimony problem is to find the most

parsimonious tree.

Small Parsimony Problem

 Input: Given a set S of sequences and
the topology of a rooted phylogeny T
with leave labeled by S

 Goal: Find parsimony length of T

 This problem can be solved in
polynomial time using Fitch’s algorithm

Simple case: each sequence
only has one character
 Input: a leaf-labeled tree T where each leaf

v is labeled by a single character vc

 Output: a fully-labeled tree which is also the
most parsimonious tree of T

1. For every leaf v, let Sv = {vc}.
2. For every internal node v with children u, w,

let

3. For every node v in preorder,
 Let u be its parent. If uc∈Sv, set vc←uc;

otherwise, assign any character in Sv to vc.

 Φ≠

=
 otherwise

 if

wu

wuwu
v SS

SSSS
S

An example

 Each asterisk(*) requires a change in one of the edges to its
children

 Time complexity: O(nk) where k is the size of the alphabet
(which is 4 for DNA and 20 for protein)

{CG}

{ACG}* {CG}*

{AC}*

CA G C G

G

G* G*

C*

CA G C G

Each sequence has m
characters

 Note that the ith character and the jth
character are independent for any i and
j.

 Thus, this problem can be solved using
m instance of the simple case problem.

 Time complexity is O(mnk).

Large Parsimony Problem

 Input: a set S of sequences
 Output: the most parsimonious tree

 Large Parsimony Problem is NP-hard
 Large Parsimony Problem can be 2-

approximated in polynomial time

Approximation algorithm
 Given a set S of sequences, define G(S) be a weight

complete graph whose nodes are labeled by S and
each edge (i, j) has weight H(i, j).

1 2 3 4
W A C G T
X A C C T
Y A C C G
Z C C G T

W
ACGT

Z
CCGT

Y
ACCG

X
ACCT

1

2

1

2

3

1

G(S)S

Approximation algorithm (II)
 Let T be a minimum spanning tree of G(S).

W
ACGT

Z
CCGT

Y
ACCG

X
ACCT

1

2

1

2

3

1

G(S)

Y
ACCG

X
ACCT

ACCT

ACCG
0

0

1

1

ACGT

W
ACGT

Z
CCGT

01

T

Approximation algorithm (III)
 Theorem: Let T be a minimum spanning tree

of G(S). Then, the parsimony length of T is at
most twice that of the most parsimonious
tree.
 Proof: Let T* be the most parsimonious tree.
 Let C be an Euler cycle of T*.
 Let P contains only the nodes of G(S) ordered in

the way in which they appear in C.
 w(T) ≤ w(P) ≤ w(C) = 2 w(T*)

Final remark for maximum
parsimony

 Maximum parsimony is statistically
inconsistent.

 This means that given long enough
sequences, maximum parsimony may
not be able to recover the true tree
with arbitrarily high probability.

Application of Maximum Parsimony:
Predicting evolution of influenza
 Influenza is a fast evolving virus.
 Bush and Fitch et al. show that phylogenetic analyses

of the human influenza A (subtype H3) virus can be
used to make predictions about the evolutionary
course of future human influenza strains.

 The predicted strains of flu virus is included in the
vaccine prepared each year to protect against the
upcoming influenza season.
 Bush, R. M., C. A. Bender, et al. (1999) "Predicting the

evolution of human influenza A." Science 286: 1921-1925.

How to build the influenza tree?

 The HA1 domain of the hemagglutinin gene
of human influenza A subtype H3

 The HA1 domains are aligned using multiple
sequence alignment algorithm. Then, we get
the input matrix.

 By maximum parsimony, we build the tree.

Observation from the influenza
tree

 The tree shows the evolution of
HA1 domain of the hemagglutinin
gene of human influenza A subtype
H3
 Build by Maximum Parsimony using

isolates from 1983-1994

 There is a selection stress. (The
tree is skew.)
 The bold path shows the single

evolutionarily successful linkage.

 At least 18 of the 329 H3 HA1
codons have been under positive
selection.

Question: What is the trend of
the evolution lineage?

 Hypothesis:
 If the selective pressure were to

evade the host immune
response, then viruses sustaining
mutations at these 18 codons in
the past should have been more
fit than other coexisting viruses.

 Based on this idea, the
authors predict the future
influenza looks similar to
A/Shangdong/5/94.

Is the prediction accurate?

 The right tree is reconstructed
from the influenza in
1985-1997.

 A/Shangdong/5/94 is relative
more fit to isolates in the future
influenza seasons.

Compatibility
 Compatibility is a simplification of parsimony.
 Definition:

 A binary character c is compatible to a leaf-labeled tree T if
and only if there exist an assignment of states to the
internal nodes of T such that a change of status exists in
exactly one edge

0 0 1 1

0 1

0

0 1 1 0

0 0

0One status
change!
c is compatible
to T

Two status
changes!
c is not
compatible to
T

More on compatibility
 In fact, if character c is compatible to a tree T,

we can identify an edge (u, v) in T so that
 The leaves in the subtree of v have state s for

character c
 The other leaves have state (1-s) for character c

u

v

Example
 Characters 1, 2, and 3 are all compatible!

M X1 X2 X3

Species 1 1 1 0
Species 2 0 0 1
Species 3 0 0 0
Species 4 0 0 1
Species 5 1 0 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 0, 0)

(0, 0, 1)
(0, 0, 0)

(1, 0, 0)

Perfect phylogeny
 Input: n species, each is characterized

by m binary characters.
 This input can be represented using a

binary matrix M with n rows and m
columns.

 M admits a perfect phylogeny if
 there exists a rooted tree T for the n

species such that all m characters are
compatible.

Computational Problems
 Input: Given n species, each characterized by

m binary characters. (Represented using a
binary matrix M.)

 Compatibility Problem
 Check whether this set of species admits a perfect

phylogeny.
 Perfect Phylogeny Problem (Large

Compatibility Problem)
 Find a maximum set of characters which admits a

perfect phylogeny

Compatibility problem

 Divide the discussion into two parts:
1. Check whether M admits a perfect

phylogeny
2. If M admits a perfect phylogeny, recover

the tree

Observation
 If M admits a perfect

phylogeny T, after
exchanging 0 and 1
in any column, the
resulting matrix M’
still admits the same
perfect phylogeny T.

M X1 X2 X3

Species 1 1 0 1

Species 2 0 1 0

Species 3 0 0 0

Species 4 0 1 0

Species 5 1 0 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 0, 0)

(0, 1, 0)
(0, 0, 0)

(1, 0, 0)

M’ X1 X2 X3

Species 1 1 1 1

Species 2 0 0 0

Species 3 0 1 0

Species 4 0 0 0

Species 5 1 1 0

Species 2 Species 4

Species 5Species 1

Species 3

(0, 1, 0)

(0, 0, 0)
(0, 1, 0)

(1, 1, 0)

Assumption on the input matrix M

 Based on the previous slide, we assume
for every column of M,
 The number of state 1 > the number of

state 0.

 Otherwise, we exchange 0 and 1 and
such transformation has no effect on
compatibility!

Main lemma
 For every character i, let Oi be the set of

species with state 1.
 Characters i and j are pairwise compatible if

 Oi and Oj are disjoint or one of them contains the
other.

 (Note: pairwise compatible ≠ compatible!)

 Lemma: M admits a perfect phylogeny if and
only if for every characters i and j, they are
pairwise compatible.

Proof()
 Given that M admits a perfect phylogeny
 Note that, for every character i, |Oi|≤n/2.
 Assume that character i and j are not pairwise compatible.
 That is, there exists three species X,Y,Z such that Y,Z∈Oi, X∉Oi

and X,Z∈Oj, Y∉Oj.
 Since Oi∩Oj is non-empty, |Oi∪Oj|= |Oi|+|Oj|-|Oi∩Oj|<n.

 Thus, there exists a species W ∉Oi, Oj.
 By character i, Y and Z are in the same partition in T, while X

and W are in another partition
 By character j, X and Z are in the same partition in T and W and

Y are in the same partition in T.
 Impossible! We arrived at contradiction!

Oi Oj

X
Y

Z

Proof ()

 Exercise!

Simple solution for compatibility
 Based on the previous lemma, we get the

following algorithm.

Algorithm
 For every characters i and j,

 Check whether i and j are pairwise compatible.
 If no, return “cannot admit a perfect phylogeny”!

 Return “admits a perfect phylogeny”!

 Time complexity: O(m2 n)

Can we get a better algorithm?
 Yes! We can have an O(mn) time algorithm
 Idea:

 Below, an algorithm is described to check, for all i,
j, whether Oi and Oj are disjoint or one of them
contains the other

 If the condition is satisfied, M admits a perfect
phylogeny; Otherwise, M does not admit a perfect
phylogeny

Step 1
 Relabel the characters so that |Oi|≥|Oj|

if i<j

M X1 X2 X3

Species 1 1 0 1
Species 2 0 1 0
Species 3 0 0 0
Species 4 0 1 0
Species 5 1 0 0

|O1|=2,
|O2|=2,
|O3|=1

Step 2
 For every species i and character j,

 If Mij=1, let Lij be the biggest k<j such that Mik=1.
If such k does not exist, Lij = -1

 If Mij=0, let Lij=0.

L X1 X2 X3

Species 1 -1 0 1
Species 2 0 -1 0
Species 3 0 0 0
Species 4 0 -1 0
Species 5 -1 0 0

M X1 X2 X3

Species 1 1 0 1
Species 2 0 1 0
Species 3 0 0 0
Species 4 0 1 0
Species 5 1 0 0

Technical Lemma
 Lemma: For some character j, if there

exist two
nonzero entries Lij and Lkj such that Lij≠Lkj,
 then M does not admit a perfect

phylogeny

 Proof:
 Suppose Lij=x and Lkj=x’. WLOG, x>x’.
 By definition, Mij=Mkj=1, Mix=1, Mkx=0
 Thus, Oj contains species i and species k

and Ox contains species i, but not species
k. It means that (1) Oj∩Ox≠Φ, (2) Oj is
not subset of Ox

 Note that j>x. Thus, |Ox|≥|Oj|
 As k∉Ox, Ox should contain some species

which does not appear in Oj. So, (3) Ox is
not subset of Oj.

 So, by the previous lemma, M does not
admit a perfect phylogeny.

M x’ x … j
… … … …

i … … 1 … 1 …
… … … …

k … … 0 … 1 …
… … … …

L x’ x … j
… … … …

i … … … x …
… … … …

k … … … x’ …
… … … …

Step 3
 For every character j, check if there exist i and k such that

Lij≠Lkj and both Lij and Lkj are nonzero.
 If yes, return “does not admit a perfect phylogeny”.
 Otherwise, “admits a perfect phylogeny”.

For every character j
(column j), we can’t find
two nonzero positive entries
which are different. So, for
all i, j, Oi and Oj are disjoint
or one of them contains the
other

L X1 X2 X3

Species 1 -1 0 1
Species 2 0 -1 0
Species 3 0 0 0
Species 4 0 -1 0
Species 5 -1 0 0

Time complexity

 Step 1 takes O(mn) time (by radix sort)
 Steps 2 and 3 can be computed in

O(mn) time!
 Thus, we can decides whether M admits

a perfect phylogeny or not in O(mn)
time.

Tree reconstruction
Algorithm
Input: A character-state matrix M with Oi≥Oj for 1≤i<j≤n
 Let T be a tree containing the single root node r. N(r)={1,…,n}
 For every character j where j=1 to m

 Find a leaf v∈T such that
 N(v) can be partitioned into two non-empty sets N0 and N1

where Ns={ x∈N(v) | character j of species x is of state s} for
s=0,1

 /* Note: we can only split one leaf v */
 Create two children v0 and v1 for v
 Set N(v0) = N0, N(v1) = N1

 Set N(v) = Φ
 For every leaf v s.t. N(v) is nonempty,

 If |N(v)|>1, let the species in N(v) be the children of v
 If |N(v)|=1, leaf v represents the species in N(v)

Example

1,2,3,4,5

Initial case

2,3,4

character 1

1,5

character 2

51

2,4

1,5

character 3
2

final

4

M X1 X2 X3

Species 1 1 0 1

Species 2 0 1 0

Species 3 0 0 0

Species 4 0 1 0

Species 5 1 0 0

3

2,43

51 3

Time analysis

 For every character j, it takes O(n) time
to identify a node and to split the node

 Thus, the total time is O(nm)

Large Compatibility Problem

 Find the maximum set of characters
which admits a perfect phylogeny!

 This problem is NP-hard!

 We discuss how to solve Large
Compatibility Problem by transforming it
to CLIQUE Problem.

CLIQUE Problem
 Given a graph G, the problem tries to find the

maximum size subgraph H such that H is a
complete graph.

 Note: this is an NP-complete problem
G H

Large Compatibility Problem
vs CLIQUE Problem
 Given an instance of M, define a graph G where

 Each vertex i in G corresponds to a character in M
 (i, j) is an edge in G if i and j are pairwise compatible.

 Note that
 G can be constructed in polynomial time
 Note that G contains a clique of size B if and only if M

contains a subset of compatible characters whose size is B.

 Thus, we transforms the large compatibility problem
to a CLIQUE problem.

Algorithm for solving large
compatibility problem
Input: M
1. Obtain G based on M
2. Find the maximum clique in G
3. Then, recover the maximum subset of

compatible characters
4. Based on the tree construction algorithm in

slide 49, recover the phylogeny

 The bottleneck is step 2. So, the time
complexity is exponential.

Compatibility for characters
with k possible states
 We can generalize the problem when the characters

are not binary
 Definition:

 A character c with k possible states is compatible to a leaf-
labeled tree T if and only if there exist an assignment of
states to the internal nodes of T such that the total number
of state changes is exactly k-1

 Result:
 Compatibility Problem

 When the number of states is constant, polynomial time
algorithm is still feasible

 When the number of states is variable, NP-complete
 Large Compatibility Problem

 NP-complete

Maximum Likelihood

 Given a set of data D, Maximum
likelihood tries to find a model M such
that
 Pr(D|M) is maximized!

What is a model?
 A model consists of

 A rooted tree which models the evolution relationship
 Every edge is associated with a stochastic model of

evolution
 Usually, it is assume that

 the characters evolve identically and independently
 Also, the tree has the markov property. That is, the

evolution occurs at one subtree is independent to the other
parts of the tree.

 Example of models:
 Cavender-Felsenstein model (also called Cavender-Farris

model)
 Jukes-Cantor model

Cavender-Felsenstein Model (I)
 Simplest possible markov model of evolution
 Assume each character has only two states
 The model consist of

 the topology T
 a mutation probability p(e) for each edge e in T

 Assumption:
 For every e=(u,v) in T, 0<pi(e)<0.5

 Pr(u|v) = Pr(v|u)
 For the root r, Pr(r=0)=Pr(r=1)=0.5

u=0 u=1

v=0 Pr(u=0|v=0)=1-pi(e) Pr(u=1|v=0)=pi(e)

v=1 Pr(u=0|v=1)=pi(e) Pr(u=1|v=1)=1-pi(e)

Cavender-Felsenstein Model
(II)
 Consider 3 species a, b, and c
 For a particular character i, assume the model says that the tree

topology is T and the mutation probability for every edge e is pi(e)
 Suppose the data Di says: ai=1, bi=1, ci=0
 Then, probability that the data is Di given that the model is (T, pi),

Pr(Di|T,pi), equals

r

a u

b c

∑
=
=

=========

1,0
1,0

)|0Pr()|1Pr()|Pr()|1Pr()Pr(
j
k

iiiiiiiii jucjubkrjukrakr

T

Cavender-Felsenstein Model
(III)
 Consider m species each is

characterized by n characters
 Let the data be D=D1∪…∪ Dn

 The model consists of the tree topology
T and the mutation probability pi for
character i

 Pr(D|T,pe e∈T)=Πi=1..n Pr(Di|T,pe e∈T)

Computational Problems

 Likelihood of a model
 Given the model M, for any data D, try to

compute Pr(D|M)

 Find model with maximum likelihood
 Given data D, try to find a model M which

maximizes Pr(D|M)!

Likelihood of a model
 Input:

 Data D: m species where each species is characterized by n
character

 Model M=(T, pe e∈T)
 Aim: Compute Pr(D|M)

 Pr(D|M) can be computed using the formula we
stated before.
 However, it takes exponential time.

 Can we do it better?
 Yes! By defining the likelihood recursively and compute the

value using dynamic programming.

Recursive Definition
 For a particular character i, let Li(v,s) be the

likelihood of the subtree rooted at v, given
that character i has state s.

 For every leaf v and state s,
 Li(v,s)=1 if vi=s; 0,otherwise.

 Traverse the tree in postorder, for every
internal node v with children, says, u and w,

==

=== ∑∑

== 1,01,0
)|Pr(),()|Pr(),(),(

y
iii

y
iiii svywywLsvyuyuLsvL

Time complexity
 Finally, for the root, we have

 Time Complexity:
 For every node v and every state s,

 Li(v,s) can be computed in O(1) time according to the
recurrence.

 Since there are n nodes and m characters, all Li(v,s) can be
computed in O(mn) time.

 For L, it can be computed in O(m) time.
 In total, Likelihood of a tree can be computed in O(mn) time.

∏ ∑
= =

=

mi s
i srootLL

..1 2,1
),(

2
1

Find model using maximum
likelihood
 Input:

 Data D: m species where each species is
characterized by n character

 Aim: Find M=(T, pe e∈T) which maximizes
Pr(D|M)

 This problem is NP-hard.
 Solution: uses heuristic to get close to

optima (like DNAml)

Estimating the weight of an edge
 Let L(u=s,U) and L(v=s,V) be the maximum

likelihood score of U and V with the state of the root
equals s.

 We would like to find p(u,v) of the edge (u,v) which
maximize the likelihood of the combined tree.

 Note that the likelihood of the combined tree is

 We would like to find p(u,v) which maximizes L.

u v
VU

∏ ∑
∈

===
i hh

iiii hvhuhVLhULL
}1,0{',

)'|Pr()',(),(

p(u,v)

Find p(u,v) which maximizes L (I)

∏

∑∑∏

∏ ∑

−+=

−−+

=

===

∈∈

∈

i
ivuivu

h
iivu

h
ii

i
vu

i hh
iiii

BpAp

hVLhULphVLhULp

hvhuhVLhULL

)1(

)1,(),()1(),(),(

)'|Pr()',(),(

),(),(

}1,0{
),(

}1,0{
),(

}1,0{',

0
)1(

ln

)1(ln

=
−+
−

=

−+=

∑

∑

i ii

ii

i
ii

BppA
BA

pd
Ld

BppAL

Find p(u,v) which maximizes L (II)

∑

∑∑

−+
=

−+
=

−+
−+

=

i ii

i

i ii

i

i ii

iii

BppA
pB

m
p

BppA
B

BppA
BApBm

)1(
1

)1()1(
)(

By iterating the following equation, we can approximate p(u,v).

∑ −+
=+

i i
k

i
k

k
ik

BpAp
pB

m
p

)1(
1

)()(

)(
)1(

DNAml
Algorithm DNAml
 Let S = {s1, s2, …, sn} be the set of taxa.
 Build the tree T for species {s1, s2}
 For k = 3 to n

 Among all (2k-5) ways to insert sk into T,
 we choose the way with the best likelihood.

 If k>= 4,
 While there exists nearest neighbor interchange (NNI)

which can improve the likelihood of T,
 We perform such NNI

Final remark for Maximum
Likelihood

 For the Cavender-Felsenstein model,
maximum likelihood is statistically
consistent.

Distance Based Phylogenetic Tree
Reconstruction

Distance between species
 In character based methods, we try to

minimize the number of mutations.
 Intuitively, species which look similar should

be evolutionary more related.
 This motivates us to define the distance

between two species to be the number of
mutations need to change one species to
another.

 In this lecture, we try to construct a
phylogeny using the distance information
among species.

Distance Based
 Input: a distance matrix M satisfying some

constraints
 Output: a tree of degree 3 which is consistent with

the distance matrix

a b c d e
a 0 11 10 9 15
b 11 0 3 12 18
c 10 3 0 11 17
d 9 12 11 0 8
e 15 18 17 8 0

1

b c

d

e

a

4

4

5

2 1

7

Constraints for the distance
matrix M

 There are three assumptions for M
1. M should satisfy the metric space
2. M is an additive metric
3. M is ultrametric (optional)

Metric space

 In the following discussion, we assume
that the distance between species
satisfy the metric space. That is,
 a distance metric M which satisfies

 Mij = Mji ≥ 0, Mii =0
 Mij+ Mjk ≥ Mik [triangle inequality]

Additive metric
 Let S be a set of species
 Let M be the distance matrix for S
 If there exists a rooted tree T where

 every edge has a positive weight and every leaf is
labeled by a distinct species in S; and

 for every i, j ∈ S, Mij = the sum of the edge
weights along the path from i to j.

 Then, M is called an additive metric
 The corresponding tree T is called additive

tree

Additive Metric Example

 Don’t know the root! We can only build an unrooted
phylogeny.

a b c d e
a 0 11 10 9 15

b 11 0 3 12 18
c 10 3 0 11 17
d 9 12 11 0 8
e 15 18 17 8 0

1

b c

d

e

a

4

4

5

2 1

7

Properties of additive metric
 Buneman’s 4-point condition

 M is additive if and only if
 for any four species in S, we can label them i, j,

k, l such that Mik+Mjl = Mil+Mjk ≥ Mij+Mkl

Proof for the 4-point condition
 Proof of forward direction: If M is additive, there

exists an additive tree T for S.
 Consider the subtree for the 4 species i, j, k, l. WLOG,

the subtree is as follows.

 It can be easily verify that
 Mik+Mjl = Mil+Mjk ≥ Mij+Mkl

 We will not present the proof for the backward
direction.

i

j

k

l
x y

Criteria for checking if M is
additive or not

 Based on the 4-point condition, we can
check whether a matrix M is additive or
not.

Why additive metric?
 Recall that distance captures the actual

number of mutations between a pair of
species.

 If (1) the correct tree for a set of species is
known and (2) we get the exact number of
mutations for each edge,
 The distance (the number of mutations) between

two species i and j should be the sum of the edge
weights along the path from i to j.

 Additive metric seems reasonable!

Hamming distance is additive?
 For any two species i and j, can we define Mij to be

the hamming distance between species i and j?
 Example: assume number of characters m=5

 Species i: (A, C, G, C, T)
 Species j: (C, C, A, C, T)
 Hamming distance hij = 2

 No! Hamming distance fails to capture the “multiple”
mutations on the same site. It is not an additive metric

 Solution:
 Use possion correction
 corrected distance Mij = -ln(1- hij/m)
 As the number of characters increase, M converges to an

additive metric

Ultrametric
 Assume M is additive. That is, there exists a tree T

such that
 the distance between any two species i and j

equals the sum of the edge weights along the
path from i to j.

 If we can further identify a root such that the path
length from the root of T to every leaf is identical,
then M is called an ultrametric

 A tree T which satisfies ultrametric is an ultrametric
tree

Ultrametric Example

 Every path from root to leaf has the same
length!

a b c d e
a 0 8 8 14 14

b 8 0 2 14 14
c 8 2 0 14 14
d 14 14 14 0 10
e 14 14 14 10 0 b c d ea

4

3

3

1 1 5

2

5

Properties of ultrametric
 Ultrametric is an additive metric. Thus, it

satisfies 4-point condition.
 Additional property: 3-point condition

 M is ultrametric if and only if
 for any three species in S, we can label them i, j, k such

that Mik= Mjk ≥ Mij

 Proof of forward direction:

Mik= Mjk ≥ Mij

i j k

Criteria for checking if M is
ultrametric or not

 Based on the 3-point condition, we can
check whether a matrix M is ultrametric
or not.

Constant molecular clock
assumption
 Constant molecular clock is an assumption in biology.

 It states that the number of accepted mutations occurring in
any time interval is proportional to the length of that interval.

 Thus, all species evolved at equal rate from a common
ancestor.

 Recall that Alan Wilson found the origin of human based on
this clock.

 Ultrametric tree states that the distance from the root
to all species are the same. Thus, its correctness is
based the constant molecular clock assumption,
which is rarely correct!

Computational Problems
 Let M be a distance matrix for a set of

species S.
1. If M is ultrametric, can we reconstruct the

corresponding ultrametric tree T in polynomial
time?

2. If M is additive, can we have an polynomial time
algorithm to recover the corresponding additive
tree T?

3. If M is not exactly additive, can we find the
nearest additive tree T?

Ultrametric Tree
Reconstruction

 Input: Given an ultrametric matrix M for
a set of species S

 Problem: Can we reconstruct the
phylogenetic tree T for S?

UPGMA (Unweighted Pair Group
Method with Arithmetic mean)

 Build an ultrametric tree using a clustering
procedure.

 Consider an ultrametric tree T. If a subset of
species S form a subtree of T, we call it a
cluster.

 Idea:
 Every species forms a cluster.
 Iteratively connect two nearest clusters, until one

cluster is left.

Definition - height
 For a node u, define height(u) be the path length

from u to any of its descendent leaf. (Since T is
ultrametric, every path should have the same length!)

 Let i and j be the descendent leaves of u in two
different subtrees. To ensure that the distance from
the root to both i and j are the same, height(u) =
Mij/2

ji

u

Distance between two clusters
 For any two clusters C1 and C2 of T

 Define

 Note that dist(C1, C2) = Mij for all i ∈ C1 and j ∈ C2

 Let u be the lowest common ancestor of i and j.
dist(C1, C2) = 2 height(u)!

||||
),(

21

,
21

21

CC

M
CCdist CjCi ij

⋅
=
∑ ∈∈

C1 C2

u

Idea of the algorithm

 Consider a set Z of clusters
 Let A, B be two clusters such that

dist(A, B) is minimum.
 Let C be a tree formed by joining A

and B with a root.
 Lemma: C is a cluster (subtree) of the

ultrametric tree T

Observation

 For any clusters C1,C2, and D,
 dist(C1∪C2,D)=

(|C1|dist(C1,D)+|C2|dist(C2,D))/(|C1∪C2|)

 Try to prove this!

Algorithm
 Input: n x n ultrametric distance matrix M
1. Initialize set Z to consist of n initial singleton

clusters {1}, {2}, …, {n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij

3. Repeat n-1 times
1. Determine cluster A, B ∈ Z such that dist(A, B) is

minimum.
2. Define a new cluster C = A ∪ B
3. Z = Z – {A, B} ∪ {C}
4. Define a new node c and let c be the parent of a and b.

Also, define height(c) = dist(A, B)/2
5. For all D ∈ Z – {C}, define dist(D, C) = dist(C, D) =

(|A|dist(A, D) + |B|dist(B, D)) / (|A|+|B|)

Example
M a b c d e

a 0 8 8 14 14

b 8 0 2 14 14

c 8 2 0 14 14

d 14 14 14 0 10

e 14 14 14 10 0

a b c ed

↓

Height=1

Height=4Height=5Height=7

a b c ed a b c ed a b c ed

a b c ed

2

1 1

1 1

3
4 55

3

1 1

3
4

1 1

3
4 55

Time complexity
 Initialization can be done in O(n2) time
 There are n-1 iterations,

 The bottleneck of each iteration is to find the cluster A, B
∈ Z such that dist(A, B) is minimized, which takes O(n2)
time.

 The total time complexity is O(n3).

 Next slide shows that O(n) time is sufficient to find
the cluster A, B ∈ Z such that dist(A, B) is
minimized.

 Hence, the time complexity is O(n2).

Algorithm
 Input: n x n ultrametric distance matrix M
1. Initialize set Z to consist of n initial singleton clusters {1}, {2}, …,

{n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij
3. For every P ∈ Z, set minP = argminQ∈Zdist(P,Q)
4. Repeat n-1 times

1. Determine cluster A ∈ Z such that dist(A, minA) is minimized.
2. Let B = minA. Define a new cluster C = A ∪ B
3. Z = Z – {A, B} ∪ {C}
4. Set minC = argminQ∈Zdist(C,Q)
5. For every cluster A ∈ Z, if dist(A, C)<dist(A, minA), set minA = Z.
6. Define a new node c and let c be the parent of a and b. Also, define

height(c) = dist(A, B)/2
7. For all D ∈ Z – {C}, define dist(D, C) = dist(C, D) =

(|A|dist(A, D) + |B|dist(B, D)) / (|A|+|B|)

Additive tree reconstruction

 Suppose M is an additive metric. We
show an algorithm which reconstructs
the additive tree in O(n2) time.

 For any two species i and j, the additive
tree is just an edge with weight Mij

i j
Mij

Recovering additive tree for 3
species
 For any three species i, j, k, we can find their

center c as follows. [call it 3-star method!]
 Let dxy be the length of the path from x to y
 (1) Mik = dic + dck, (2) Mjk = djc + dck, and (3) Mij

= dic + dcj

 By solving the three equations, we have
 dic=(Mij + Mik – Mjk)/2
 djc = (Mij + Mjk – Mik)/2
 dkc = (Mik + Mjk – Mij)/2

 Note: this tree is unique!

i

k

j
c

Recovering additive tree for 4
species (I)
 Given four species h, i, j, k, we want to recover the

additive tree.
 For species i, j, k, we get the additive tree using the

3-star method
 To include h into the tree, we need to introduce one

more internal node c’.
 c’ will split either (i, c), (j, c) or (k, c).

i

k

j
c

Recovering additive tree for 4
species (II)
 To check whether c’ splits (k, c), we apply 3-star

method for species i, k, h.
 If dkc’<dkc, c’ splits (k, c).

 Otherwise, using the same approach to check
whether c’ splits (i, c) or (j, c).

 Note: c’ can only split exactly one edge. Thus, the
additive tree for 4 species is unique.

i

k

j
c

c’ h

Recovering additive tree for k
species
 Inductively, assume we know how to recover

the additive tree for k-1 species.
 To recover the additive tree for k species,

 We first build the additive tree T’ for the first k-1
species. Then, insert the last species to T’

 The last species will split one of the edge in T’.
 For every edge in T’, we check whether the last

species will split it using 3-star method.
 Note:

 The time required is O(k-1).
 Also, the tree is unique!

Time complexity

 In summary, to recover an additive tree
with n species, the time is
O(1 + 2 + … + n) = O(n2).

 Note: the additive tree for M is unique!

Example
M a b c d e

a 0 11 10 9 15

b 11 0 3 12 18

c 10 3 0 11 17

d 9 12 11 0 8

e 15 18 17 8 0

b c

d

e

a

4

4

5

2 1

1

7

a b11 a

b

c
9 1

2 a

b

c

4
1
25

5

d

Reconstruct nearly additive
tree

 If M is not an additive metric, we can
find the nearly additive tree using the
following methods
 Least Squares Method
 Fitch-Margoliash method
 Neighbor-Joining Method
 L∞-metric

Least Squares Method
 Input: a metric M for a set of species S
 Definition: For any tree T for the set of

species S, let D be its corresponding distance
matrix. We define

 Aim: Find a tree T which minimizes SSQ(T).
Such tree is known as Least Squares Tree.

 This problem is NP-hard!

∑∑
= ≠

−
=

n

i ij ij

ijij

D
MD

TSSQ
1

2

2)(
)(

Neighbor joining (NJ)

 Attempts to approximate the additive
tree

 Idea: join clusters A and B that are
1. close together [small dist(A,B)]
2. far away from the rest [big uA and uB

where uA = (ΣD∈Z dist(D, A))/(n-2)]
 In other word, minimize dist(A,B)-uA-uB

Algorithm
 Input: n x n distance matrix M
1. Initialize set Z to consist of n initial singleton clusters {1},

{2}, …, {n}
2. For all {i}, {j} ∈ Z, initialize dist({i}, {j}) = Mij

3. Repeat n-1 times
1. For every cluster A ∈ Z, let uA = (ΣD∈Z dist(D, A))/(n-2)
2. Determine cluster A, B ∈ Z such that dist(A, B)-uA-uB is

minimized.
3. Connect A and B by a new internal node r. The resulting cluster

is called C.
4. Calculate branch length: dAr = dist(A,B)/2 + (uA-uB)/2, dBr =

dist(A,B)/2 + (uB-uA)/2
5. Z = Z – {A, B} ∪ {C}
6. Update dist(): For all D ∈ Z – {C}, define dist(D, C) = dist(C, D)

= (dist(A,D)+dist(B,D) – dist(A,B))/2

Time complexity

 Initialization takes O(n2) time
 There are n iterations

 Each iteration takes O(n2) time, due to
step 3.2.

 In total, the time complexity is O(n3).

L∞-metric
 Given two distance matrices M and E for a set

of species S,
 L∞(M, E) = maxi,j |Mij – Eij|

 Input: a metric M for a set of species S
 Aim: Find an additive metric E such that

 L∞(M, E) is minimized
 This problem is NP-hard!
 Agarwala et al. give a 3-approximation

algorithm with respect to the L∞-metric.

More on neighbor joining
 Let M be any distance matrix and MT be an

additive matrix.
 Suppose L∞(M, MT)<µ(T)/2

 where µ(T) is the minimum edge length in T.
 In this case, M is said be be nearly additive.

 Atteson showed that, given a nearly additive
matrix M,
 NJ always return the correct tree T.

Can we apply distance based
methods on character based data?

 Yes! For any two species i and j, we can compute the
distance Mij.

 However, as stated before, we cannot compute the
distance Mij as the hamming distance hij between
species i and j.

 Instead, we use a corrected distance.
 E.g. Assuming the CF model,

 the corrected distance Mij = -ln(1- hij/m).

 As the number of characters increase, M converges to an
additive metric.

Can we improving the tree generated
by distance based methods?
 The tree generated by a distance-based method is

usually unstable.
 Bootstrapping helps to identify those stable edges in

the tree.

Algorithm Bootstrapping
Input: n species, each is described by m characters
 Repeat x times,

 Randomly select m characters (with replacement)
 Build the distance matrix for the n species
 Build the distance-based tree

 Report the consensus tree

Example: bootstrapping

c

d

e

a

b

c
d
e

a

b

e

d

c

a

b

c

d

e

a

b

3
4

4

4
4

4

2

b

d

e

a

c

Can tree reconstruction methods
infer the correct tree?

Can tree reconstruction methods
infer the correct tree? (I)
 Experimentally, bacteriophage T7 was propagated

and split sequentially in the presence of a mutagen,
where each lineage was tracked.

 Out of 135,135 possible phylogenetic trees, the true
tree was correctly determined by phylogenetic
methods in a blind analysis. Five different
phylogenetic methods were used independently, and
each one chose the correct tree.
 DM Hillis, JJ Bull, ME White, MR Badgett, and IJ Molineux.

Experimental phylogenetics: generation of a known
phylogeny. Science 255(5044):589-592, 1992.

Can tree reconstruction methods
infer the correct tree? (II)
 In 1998, researchers used 111 modern HIV-1 (AIDS

virus) sequences in a phylogenetic analysis to predict
the nucleotide sequence of the viral ancestor of
which they were all descendants.

 The predicted ancestor sequence closely matched,
with high statistical probability, an actual ancestral
HIV sequence found in an HIV-1 seropositive African
plasma sample collected and archived in the Belgian
Congo in 1959
 Zhu, T., B. Korber, et al. (1998) "An African HIV-1 sequence

from 1959 and implications for the origin of the epidemic."
Nature 391: 594-597.

HIV evolution
 HIV evolves approximately one million times

faster than the nucleic genomes of higher
organisms

 Leitner et al. studied the real evolution tree of
11 HIV-1 samples in a period of 13 years
(1981-1994).

 They also collect the sample sequences.

 T Leitner, D Escanilla, C Franzén, M Uhlén, and J Albert. Accurate
reconstruction of a known HIV-1 transmission history by phylogenetic
tree analysis. PNAS, 93(20):10864–10869, 1996.

Population history of HIV-1 in a
Swedish transmission cluster
 HIV-1 transmission time

are also known (within a
few months)

 Square: male; circle:
female

 Solid:HIV-infected;
Open: uninfected

 Small symbols: children

The true phylogenetic tree
 The env V3 and p17 gag

regions of the HIV-1
genome were directly
sequenced from uncultured
peripheral blood
mononuclear cells of p1 to
p11 at different time

 Combining virus
transmission time and
sample collection time, we
get the true phylogenetic
tree for 13 HIV-1 genomes.

Phylogenetic tree reconstruction
methods
 7 tree reconstruction methods:

 Fitch-Margoliash (FM)
 Neighbor-joining (NJ)
 Minimum-evolution (ME)
 Maximum-likelihood (ML)
 Maximum-parsimony (MP)
 Unweighted pair group method using arithmetic averages

(UPGMA)
 A FM method assuming a molecular clock (KITSCH)

 They are applied to 13 samples on regions
 Env V3
 p17 gag
 Env V3 + p17 gag

Results
 FM, NJ, ML perform the best

 MP in the middle

 UPGMA and KITSCH, which assume constant
molecular clock perform the worst

 All methods tended to overestimate the
length of short branches and underestimate
long branches.

Dissimilarity with the true tree

 Dissimilarity is based on
comparing quartets
between the true tree
and the constructed tree.

 p17+V3 > V3 > p17
 ML,NJ,FM > MP

Software for constructing
phylogenetic tree

 Felsenstein's PHYLIP
 It offers a large array of methods, including ML,

MP and NJ.
 Command line mode only
 The most widely used program suite
 Source code is available
 Free of charge
 http://evolution.genetics.washington.edu/phylip.ht

ml

http://evolution.genetics.washington.edu/phylip.html�
http://evolution.genetics.washington.edu/phylip.html�

Methodology for constructing
phylogeny

 Multiple alignment
 Bootstrapping (says, 100 times)
 Apply phylogeny reconstruction

methods
 Build consensus tree

	Algorithms in Bioinformatics: A Practical Introduction
	Evolution
	Definition of Phylogeny
	Example of phylogeny
	Rooted and Unrooted Tree
	Rooted a phylogeny by outgroup
	Human evolution
	About mitochondrial Eve
	Genetics helps finding the origin of human
	Eve tree
	About Y chromosome Adam (I)
	About Y chromosome Adam (II)
	About Y chromosome Adam (III)
	Adam tree
	Explanation why Adam and Eve appear in different time
	Applications of Phylogeny
	Computational problem:�Phylogeny reconstruction
	Character Based Phylogenetic Tree Reconstruction
	Character Based
	Outline for Character based methods
	Parsimony
	Example (4 species, each is represented by a sequence of 4 characters)
	Example (4 species, each is represented by a sequence of 4 characters)
	Computational Problems
	Small Parsimony Problem
	Simple case: each sequence only has one character
	An example
	Each sequence has m characters
	Large Parsimony Problem
	Approximation algorithm
	Approximation algorithm (II)
	Approximation algorithm (III)
	Final remark for maximum parsimony
	Application of Maximum Parsimony:�Predicting evolution of influenza
	How to build the influenza tree?
	Observation from the influenza tree
	Question: What is the trend of the evolution lineage?
	Is the prediction accurate?�
	Compatibility
	More on compatibility
	Example
	Perfect phylogeny
	Computational Problems
	Compatibility problem
	Observation
	Assumption on the input matrix M
	Main lemma
	Proof()
	Proof ()
	Simple solution for compatibility
	Can we get a better algorithm?
	Step 1
	Step 2
	Technical Lemma
	Step 3
	Time complexity
	Tree reconstruction
	Example
	Time analysis
	Large Compatibility Problem
	CLIQUE Problem
	Large Compatibility Problem vs CLIQUE Problem
	Algorithm for solving large compatibility problem
	Compatibility for characters with k possible states
	Maximum Likelihood
	What is a model?
	Cavender-Felsenstein Model (I)
	Cavender-Felsenstein Model (II)
	Cavender-Felsenstein Model (III)
	Computational Problems
	Likelihood of a model
	Recursive Definition
	Time complexity
	Find model using maximum likelihood
	Estimating the weight of an edge
	Find p(u,v) which maximizes L (I)
	Find p(u,v) which maximizes L (II)
	DNAml
	Final remark for Maximum Likelihood
	Distance Based Phylogenetic Tree Reconstruction
	Distance between species
	Distance Based
	Constraints for the distance matrix M
	Metric space
	Additive metric
	Additive Metric Example
	Properties of additive metric
	Proof for the 4-point condition
	Criteria for checking if M is additive or not
	Why additive metric?
	Hamming distance is additive?
	Ultrametric
	Ultrametric Example
	Properties of ultrametric
	Criteria for checking if M is ultrametric or not
	Constant molecular clock assumption
	Computational Problems
	Ultrametric Tree Reconstruction
	UPGMA (Unweighted Pair Group Method with Arithmetic mean)
	Definition - height
	Distance between two clusters
	Idea of the algorithm
	Observation
	Algorithm
	Example
	Time complexity
	Algorithm
	Additive tree reconstruction
	Recovering additive tree for 3 species
	Recovering additive tree for 4 species (I)
	Recovering additive tree for 4 species (II)
	Recovering additive tree for k species
	Time complexity
	Example
	Reconstruct nearly additive tree
	Least Squares Method
	Neighbor joining (NJ)
	Algorithm
	Time complexity
	L-metric
	More on neighbor joining
	Can we apply distance based methods on character based data?
	Can we improving the tree generated by distance based methods?
	Example: bootstrapping
	Can tree reconstruction methods infer the correct tree?
	Can tree reconstruction methods infer the correct tree? (I)
	Can tree reconstruction methods infer the correct tree? (II)
	HIV evolution
	Population history of HIV-1 in a Swedish transmission cluster
	The true phylogenetic tree
	Phylogenetic tree reconstruction methods
	Results
	Slide Number 133
	Dissimilarity with the true tree�
	Software for constructing phylogenetic tree
	Methodology for constructing phylogeny

