
Algorithms in Bioinformatics: A
Practical Introduction

Phylogenetic Tree comparison and
Consensus Trees

Phylogenetic Tree comparison

Why tree comparison?
 Different phylogenies are resulted using

different
 Kind of data (different segments of the genomes)
 Kind of model (CF model, Jukes-Cantor Model)
 Kind of reconstruction algorithm

 Tree comparison helps us to gain information
from multiple trees.

Two types of comparsions
 Similarity measurement

 Find the common structure among the given trees
 Maximum Agreement Subtree

 Dissimilarity measurement
 Determine the differences among the given trees

 Robinson-Foulds distance
 Nearest neighbor interchange
 Subtree Transfer Distance
 Quartet Distance

Restricted subtree

 Consider a trees T

x1 x2 x3

x4 x5


Restricted on

X1, X3, X5

x1 x3

x5

x1 x3

x5
Simplify

Evolution
information of X1,
X2, X3, X4, X5

Evolution
information
of X1, X3, X5

Agreement subtree

x1 x2 x3

x4 x5

x1

x5 x3

x2 x4 x1

x5

x2 x4

x1 x2

x4 x5

x1 x4x2 x5

Restricted on
x1, x2, x4, x5

Simplify

T

T’
Agreement
subtree of
T and T’

Maximum agreement subtree
(MAST)
 Given two trees T1 and T2

 Agreement subtree of T1 and T2 is the
common information agreed by both trees.
 Since it is agreed by both trees, the evolution of

the agreement subtree is more reliable!
 Maximum agreement subtree problem

 Find the agreement subtree with the largest
possible number of leaves.

 Such agreement subtree is called the maximum
agreement subtree

MAST for rooted trees
 MAST of two degree-d rooted trees T1 and T2

with n leaves can be computed in

 (Journal of Algorithm 2001)

 This lecture considers an O(n2)-time
algorithm which compute the maximum
agreement subtree of two binary trees with n
leaves.

 time))log((d
nndO

Computing MAST by dynamic
programming

 For any two binary rooted trees T1 and
T2, denote MAST(T1, T2) be the number
of leaves in the maximum agreement
subtree

 Some definition:
 For a tree T and a node u, Tu is the

subtree of T rooted at u

Not complete!
 For any node pair (u,v)∈T1×T2,

 let a and b be two children of u
 let c and d be two children of v

 Let R be the maximum agreement
subtree of T1 and T2.

 We have the following cases:
 R is an agreement subtree of T1

a

 R is an agreement subtree of T1
b

Recurrence

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2

Recurrence (II)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Recurrence (III)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Recurrence (IV)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Recurrence (V)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Recurrence (VI)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Recurrence (VII)

















+

+

=

),(

),(

),(

),(

),(),(

),(),(

max

),(

21

21

21

21

2121

2121

21

du

cu

vb

va

cbda

dbca

vu

TTMAST

TTMAST

TTMAST

TTMAST

TTMASTTTMAST

TTMASTTTMAST

TTMAST

u

a b

T1

v

c d

T2



Time complexity

 Suppose T1 and T2 are rooted
phylogenies for n species.

 We have to compute MAST(T1
u, T2

v) for
every u in T1 and v in T2.

 Thus, we need to fill in n2 entries. Each
entry can be computed in O(1) time.

 In total, the time complexity is O(n2).

MAST for unrooted trees
 In real life, we normally want to compute

MAST for unrooted trees.
 For unrooted degree-3 trees U1 and U2,

MAST(U1, U2) can be computed in O(n log n)
time. (STOC 97)

 For general unrooted trees U1 and U2,
MAST(U1, U2) can be computed in O(n1.5 log n)
time. (SIAM J. of Comp 2000)

 This lecture shows the relationship between
unrooted MAST and rooted MAST!

Relating rooted and unrooted
trees (I)

 Definition:
 For an unrooted tree U, for any edge e in

U, Ue is the rooted tree rooted at the edge
e.

x1

x5
x3

x2

x4

x1

x5 x3

x2 x4


rooted at
edge e

e

Relating rooted and unrooted
trees (II)

 Consider two unrooted trees U1 and U2

 Lemma: For any edge e of U1,

 Proof: Exercise!

 Based on the above lemma, we can
relate rooted MAST and unrooted MAST!

} of edgean is |),(max{),(22121 UfUUMASTUUMAST fe=

Robinson-Foulds distance

 Given two phylogenies T1 and T2,
 Intuitively, this method tries to count

the number of edges which are not
agreed by T1 and T2.

 First, we need to have some definitions!

Partitioning of a tree
 Each edge can partition the set of species
 In the following tree, the red edge partition

the species into {a, b, c} and {d, e}

c

a

b

d

e

Good and bad edges
 Consider two unrooted trees T and T’, an edge x in T is called a

good edge if there exists an edge x’ in T’ such that both of
them form the same partitions! Similarly, x’ is also called a good
edge.

 Otherwise, the edge is called a bad edge!

c

a

b

d

e

a

b

c

e

d

T T’
x x’

Leaf edges are always good

c

a

b

d

e

a

b

c

e

d

T T’

x

x’

Robinson-Foulds (RF) distance
 Robinson-Foulds distance =

(number of bad edges in T w.r.t T’ + number of bad
edges in T’ w.r.t. T)/2

 T and T’ looks similar if RF-dist(T, T’) is small.
 For example, the robinson-foulds distance of T and T’

= (1+1)/2 = 1.

c

a
b

d

e

a

b
c

e

d

T T’

Bad edges!

Degree-3 trees T and T’
 When both T and T’ are of degree-3,

number of bad edges in T w.r.t. T’ = number
of bad edges in T’ w.r.t. T

 Proof:
 Since both T and T’ are of degree-3, T and T’

have the same number of edges
 Number of good edges in T w.r.t. T’ = number of

good edges in T’ w.r.t. T
 Lemma follows.

How to find the set of good
edges in T w.r.t. T’?
 Brute-force algorithm:

 For every edge e in T,
 If the partition formed by e is the same as the

partition formed by some edge e’ in T’, e is a
good edge!

 Time analysis:
 For every edge e in T, the checking takes O(n)

time.
 In total, the time complexity is O(n2)!
 Can we do better?

Day’s algorithm
 Yes! The problem can be solved in O(n) time

based on Day’s algorithm.
 Input: two unrooted phylogenies T1 and T2

for the same set of species
 Output: the set of good edges in T1 w.r.t. T2

 Idea:
 Build data-structure which enables constant time

checking whether a particular partition of leaves
exists in T1.

Step 1
 Root T1 and T2 at the leaves with label n.
 This step takes O(n) time.

n n
T1 T2

Example for step 1
3

1
2

4

5

1

2
3

5

4

T1 T2

5

3 1 2 4

5

1 2 3 4

T1 T2

↓

Step 2
 Relabel the leaves of T1 in increasing order.
 Note: for every internal node x of T1, the set of leaf

labels in the subtree of x form an interval [i..j].
 This step takes O(n) time.

n n
T1 T2

1 n-1i j

x

Example for step 2
5

3 1 2 4

5

1 2 3 4

T1 T2

5

1 2 3 4

5

2 3 1 4

T1 T2

↓

[2..3]

Step 3
 Create a hash table H[1..n]
 For every node x in T1, we store the

corresponding interval [ix..jx] in either H[ix] or
H[jx]
 Store [ix..jx] in H[jx] if x is the leftmost child of its

parent in T1;
 Otherwise, store the interval [ix..jx] in the entry

H[ix].
 This step takes O(n) time.
 Question: Will we store two intervals in the

same entry in H?

Example for step 3

k H(k)
1
2 [2..3]
3 [1..3]
4 [1..4]

5

1 2 3 4

5

2 3 1 4

T1 T2

Observation
 Lemma: we store at most one interval in each entry in H.
 Proof:

 By contrary, suppose H[i] contain two intervals which are
represented by internal nodes x and y.

 By definition, i should be the endpoints of the intervals
represented by x and y. Thus, x and y should satisfy the
ancestor-descendent relationship. WLOG, assume x is the
ancestor of y. Then, y’s interval should be the subinterval of
x’s interval

 So, we can have either
1. x’s interval = [j..i] and y’s interval = [j’..i] for j<j’; OR

 This means that both x and y are the leftmost
children of their parents.

 The right endpoint of x’s interval should not be i!
 Contradiction!

2. x’s interval = [i..j] and y’s interval = [i..j’] for j>j’
 Similar to the above case, we can arrive at

contradiction!

y

j’ i

x

More on step 3

 Given the hash table H, we can check
whether an interval [i..j] exists in T1 by
checking if H[i] or H[j] equals [i..j]!

Step 4
 For T2, by traversing the tree, for each internal node

u, we compute
 the minimum (minu) and the maximum (maxu) leaf labels
 the number of leaves (sizeu)

in the subtree rooted at u
 If (maxu-minu+1=sizeu), then

 the leaves labels in the subtree of node u form an interval
[minu..maxu].

 Check whether H[minu] or H[maxu] equals [minu..maxu]. If
yes, (u,v) is a good edge where v is the parent of u in T2.

 This step takes O(n) time.

Example for step 4

5

2 3 1 4

T2

x
z

minu maxu sizeu maxu-minu+1
x 1 3 3 3
y 1 3 2 3

Note: sizex=maxx-minx+1
Also, H[3]=[1..3]
Thus, (x, z) is a good edge!

y

Time complexity

 All 4 steps can correctly recover the
good edges.

 They can be computed in O(n) time.
 Thus, the total time complexity is O(n).

Nearest Neighbor Interchange
(NNI)

 Given an unrooted, degree-3 tree T,
 NNI operation exchanges two subtrees

across an edge.

a

b d

c

a

d c

b

a

c d

b

NNI-dist
 Given two unrooted, degree-3 trees T1 and T2,
 NNI-dist(T1, T2) is the minimum number of

NNI-operations required to convert T1 to T2.
 T1 and T2 looks similar if NNI-dist(T1, T2) is

small.

 Computing NNI-dist is NP-hard.

Example
3

1
2

4

5

4

2
3

5

1

T1

T2
1

3
2

4

5

NNI-dist(T1, T2) = 2

Properties of NNI-dist
 Property 1:

NNI-dist(T1, T2)=NNI-dist(T2, T1)

 Property 2: NNI-dist(T1, T2)≥number of
bad edges in T1 w.r.t. T2.

 Proof:
 To remove one bad edge, we require at

least one NNI-operation

Approximation algorithm for
NNI-dist

 There exists a polynomial time (log n)-
approximated algorithm.

Subtree Transfer (STT)
 Consider a degree-3 unrooted tree T
 A subtree transfer operation is the operation

of detaching a subtree and reattached it to
the middle of another edge

 An STT operation is charged by the number
of nodes the subtree is transferred.

S S


The cost of this
STT operation is 2

STT-dist

 Given two degree-3 unrooted trees T1
and T2,

 STT-dist(T1, T2) is the minimum cost
series of STT operations which
transform T1 to T2.

 T1 and T2 looks similar if STT-dist(T1, T2)
is small.

Property of STT-dist
 STT-dist(T1, T2) = NNI-dist(T1, T2)
 Proof:

 STT-dist(T1, T2) ≤ NNI-dist(T1, T2)
because each NNI-operation is an STT-
operation.

 STT-dist(T1, T2) ≥ NNI-dist(T1, T2)
because each STT-operation of cost k can
be simulated by k NNI-operations.

More on STT-dist

 Based on the result for NNI-operation,
we have
 STT-dist(T1, T2) is NP-hard to compute.
 There exists a polynomial time (log n)-

approximated algorithm to compute
STT-dist(T1, T2)

Quartet
 A quartet is a phylogenetic tree with 4

species.

x

y

z

w y

zx

w

Butterfly quartet Star quartet

Quartet distance
 Given two unrooted trees T1 and T2,

 The quartet distance is the number of set of 4
species {w,x,y,z} such that
 T1|{w,x,y,z} ≠ T2|{w,x,y,z}.

3

1
2

4

5

T1
4

2
3

5

1

T2

{1,2,3,4}: different
{1,2,3,5}: different
{1,2,4,5}: different
{1,3,4,5}: different
{2,3,4,5}: same

Quartet distance = 4

Previous works

 When T1 and T2 are of degree-3,
 Steel and Penny (1993): O(n3) time.
 Bryant et al. (2000): O(n2) time.
 Brodal et al. (2003): O(n log n) time

 When T1 and T2 are of degree-d,
 Christiansen et al. (2005): O(n3) time or

O(d2n2) time.

Property

 Number of different quartets + number
of shared quartets = .






4
n

Brute-force method

 count = 0;
 for every {w,x,y,z} ⊆ S,

 if T1|{w,x,y,z} = T2|{w,x,y,z}, count++;

 Report - count;

 The running time is at least O(n4).









4
n

Observation
 Consider a tree T which is leaf-labeled by S.
 For any {x,y,z} ⊆ S,

 There exists a unique internal node c in T such that c appears in
any paths from x to y, y to z, and x to z.

 We denote Tc,x be a set of species which appear in the child
subtree containing x. (Similarly, we define Tc,y and Tc,z.)

 Let Tc,rest = S – (Tc,x ∪ Tc,y ∪ Tc,z).

x

z

y

c

 Note that, for all species w∈Tc,x, the quartet for
{w,x,y,z} in T is wx|yz.

 Similarly, for all species w∈Tc,y, the quartet for
{w,x,y,z} in T is wy|xz.

 Similarly, for all species w∈Tc,z, the quartet for
{w,x,y,z} in T is wz|xy.

 Similarly, for all species w∈Tc,rest, the quartet for
{w,x,y,z} in T is a star quartet.

 Consider two trees T1 and T2.
 The number of shared butterfly quartets

involving x,y,z is |T1
c,x∩T2

c’,x| +
|T1

c,y∩T2
c’,y| + |T1

c,z∩T2
c’,z| - 3.

 The number of shared star quartets
involving x,y,z is |T1

c,rest∩T2
c’,rest|.

Algorithm
 count = 0;
 Compute |R1∩R2| for any subtree R1 of T1 and any subtree R2 of

T2.
 For every {x,y,z} ⊆ S,

 Let c be the center of x,y, and z in T1.
 Let T1

c,x, T1
c,y, and T1

c,z be the subtrees attached to c containing x,
y, z, respectively.

 Set T1
c,rest = S – (T1

c,x ∪ T1
c,y ∪ T1

c,z).
 Let c’ be the center of x,y, and z in T2.
 Let T2

c’,x, T2
c’,y, and T2

c’,z be the subtrees attached to c’ containing
x, y, z, respectively.

 Set T2
c’,rest = S – (T2

c’,x ∪ T2
c’,y ∪ T2

c’,z).
 count = count + |T1

c,x∩T2
c’,x| + |T1

c,y∩T2
c’,y| + |T1

c,z∩T2
c’,z| +

|T1
c,rest∩T2

c’,rest| - 3
 Report - count/4;








4
n

Computing |R1∩R2|
 For any e=(u,v) in T1

 e partitions T1 into two subtrees with leaf sets Qv
and Qu = S-Qv.

 For any e’=(u’,v’) in T2,
 e’ partitions T2 into two subtrees with leaf sets Qv’ and

Qu’=S-Qv’.
 |T1

u,v∩T2
u’,v’|=|Qv∩Qv’|

 The running time is O(n3).
 The algorithm can be improved to O(n2) time.

Computing |T1
c,rest∩T2

c’,rest| in
O(1) time

 |T1
c,rest∩T2

c’,rest| = |T2
c’,rest|- (|T1

c,x∩T2
c’,rest| + |T1

c,y∩T2
c’,rest| +

|T1
c,z∩T2

c’,rest|)

 |T2
c’,rest| = |S| - |T2

c’,x|- |T2
c’,y| - |T2

c’,z|

 |T1
c,x∩T2

c’,rest| = |T1
c,x| - (|T1

c,x∩T2
c’,x| + |T1

c,x∩T2
c’,y| + |T1

c,x∩T2
c’,z|).

 |T1
c,y∩T2

c’,rest| = |T1
c,y| - (|T1

c,y∩T2
c’,x| + |T1

c,y∩T2
c’,y| + |T1

c,y∩T2
c’,z|).

 |T1
c,z∩T2

c’,rest| = |T1
c,z| - (|T1

c,z∩T2
c’,x| + |T1

c,z∩T2
c’,y| + |T1

c,z∩T2
c’,z|).

Time complexity
 |R1∩R2| can be computed in O(n2) time.
 For every {x,y,z} ⊆ S,

 |T1
c,x∩T2

c’,x|, |T1
c,y∩T2

c’,y|, |T1
c,z∩T2

c’,z|,
and |T1

c,rest∩T2
c’,rest| can be computed in

O(1) time.

 In total, the running time is O(n3).

Consensus Tree

Consensus tree problem
 Given a set of n species S
 Given a set of trees {T1, T2, …, Tm}

 where the leaves of every Ti are labeled by S

 Question: Find a tree which summarizes all
the trees T1, T2, …, Tm.

Applications

1. Find the bootstrapping tree.

2. Given a set of gene trees, infer the
species tree.

Split of an edge
 Each edge can partition the set of species
 In the following tree, the red edge partition the species into {a,

b, c} and {d, e}.
 So, the split of the red edge is {a,b,c}|{d,e}.
 Note that for any x∈S, {x}|S-{x} must be a valid split due to the

leaf edge connecting the leaf x.
c

a

b

d

e

Properties of split
 Two splits A|S-A and B|S-B are compatible if

A⊆B or A⊆S-B or B⊆A or B⊆S-A.

 For any tree T, any two splits of T are
compatible.

 Given a set of splits W which are pairwise
compatible, there exists a tree T which
contains all the splits in W.

Example
 There is a one-to-one correspond between

the tree and the set of splits of all its edges.

c

a

b

d

e

{a}|{b,c,d,e}
{b}|{a,c,d,e}
{c}|{a,b,d,e}
{d}|{a,b,c,e}
{e}|{a,b,c,d}
{a,b}|{c,d,e}
{a,b,c}|{d,e}

Strict consensus tree
 The strict consensus tree T of {T1, T2, …, Tm} contains exactly

those splits which appear in all Ti.
 The strict consensus tree always exists.

 Example: T is the strict consensus tree of T1 and T2.

T1 T2 T

The strict consensus tree always
exists

 Let Wi be the set of splits of Ti,
i=1,2,...,m.

 The set of splits of the strict consensus
tree is W1∩W2∩…∩Wm.

How to find strict consensus tree
of two trees?
Input: Two trees T1, T2

Output: the strict consensus tree
 Run O(n) time Day’s algorithm to find all the

good edges.
 Generate the strict consensus tree.

 Precisely, the strict consensus tree is formed by
contracting all bad edges.

 Time complexity: O(n).

How to find strict consensus tree
of m trees?

Input: m trees T1, T2, …, Tm.
Output: the strict consensus tree
 Let T=T1.
 For i = 2 to m

 Set T be the strict consensus tree of T and Ti.

 Return T;

 Time complexity: O(mn)

Majority rule tree
 The majority rule tree contains exactly those splits that appear

in more than half of the input trees.
 The majority rule tree is unique (why?) and always exists.

 Example: T is also the majority rule tree of T1 , T2, and T3.

T1 T2 TT3

 Given two trees, the majority rule tree
is the same as the strict consensus tree.

Algorithm
Input: m trees T1, T2, …, Tm.
Output: the majority tree
1. Count the occurrences of each split,

storing the counts in a table.
2. Select those splits with occurrences >

m/2.
3. Using the selected splits, create the

majority tree.

Step 1
 For each Ti,

 We run Day’s algorithm for (Ti, Tj) for all j = i+1,
…, m.

 For every edge in Ti which are unmarked, we
count the number of good edges in Tj for j>i.

 Also, we mark those good edges in Tj as counted.

 Time complexity: Each Ti takes O(nm) time.
Hence, Step 1 takes O(m2n) time.

A lemma for step 3
 Suppose we rooted the majority consensus

tree at the leaf 1.

 Lemma: If p is a parent split of c in the
majority tree, there exists a tree Tj which
contains both splits p and c.

 Proof: Both p and c appears in more than
m/2 trees. By pigeon-hole principle, there
exists a tree which contains both p and c.

Step 3
 We root all tree Ti at the leaf 1.
 For each Ti, we get T’i which is the tree formed by

contracting all the non-majority splits.
 Let T’ be T’1.
 For each i=2, …, m,

 We traverse T’i in depth first search order.
 For any split c in T’i, let p be its parent split in T’i.
 If c does not exists in T’, we introduce c as the child split of

p in T’. (Note: p must exists in T’ since we traverse the tree
in depth first search order.)

 Time complexity: O(nm) time.

Time complexity for constructing
majority consensus tree

 In summary, the majority consensus
tree can be constructed in O(nm2) time.

 Note: Majority consensus tree can be
built in O(nm) expected time.
 Nina Amenta, Frederick Clarke and

Katherine St. John. A Linear-time Majority
Tree Algorithm, 216-227, WABI, 2003.

Symmetric difference distance
 Denote d(T1, T2) be the symmetric difference between T1 and

T2.
 The number of splits appearing in one tree but not the other.

 Example: For T1 and T2, {A,D,E}|{B,C} only appears in T1 and
{A,C}|{B,D,E} only appears in T2. Hence, d(T1, T2) = 2.

T1 T2

Median tree
 The median tree T for T1, T2, …, Tm

minimizes
 Σi=1..m d(T, Ti).

 Barthelemy and McMorris showed that
majroity rule tree is the same as the
median tree.

Asymmetric median consensus
tree
 For every split, its weight is defined to be the number of input trees

containing it.
 The asymmetric median tree a set of splits which maximizes the total

weight.
 The asymmetric tree always exists.

 Example: Both T1 and T2 are also the asymmetric median trees of T1
and T2.

T1 T2

Asymmetric difference distance
 Denote da(T1, T2) be the symmetric difference between T1 and

T2.
 The number of splits appearing in T2 but T1.

 Example: For T1 and T2, ({A,C}, {B,D,E}) only appears in T2 but
not T1. Hence, da(T1, T2) = 1.

T1 T2

Property of asymmetric median
tree

 The asymmetric median tree T for T1,
T2, …, Tm minimizes
 Σi=1..m da(T, Ti).

Greedy consensus tree

 Greedy consensus tree is created by
 Sequentially include split one by one.
 Every iteration, we include the most

frequent split that is compatible with the
included splits (breaking the ties
randomly).

 Do this until we cannot include any other
split.

Example

T1 T2

a

c
b

d

e

b

c
a

f

T3

e

c
a

b

f
d

e
d

f

T

b

c
a

d

e
f3

3

3
3

3
3

2
2

1

 Greedy consensus tree is a refinement
of the majority-rule consensus tree.

R* tree

 For each set of 3 species, find the most
commonly occurring triplet e.g., C|AB,
B|AC or A|BC.

 Build the tree from the most commonly
occurring triplets.

Example of R* tree

 C|AB – 3, A|BC – 0, B|AC – 0
 A|CD – 1, C|AD – 1, D|AC – 1
 B|CD – 1, C|BD – 1, D|BC – 1
 D|AB – 3, A|BD – 0, B|AD – 0

BA C D BA

C

D

BA

C

D

BA

C DC|AB, D|AB

Correctness
 Lemma: Let C be the set of most commonly

occurring triplets. There exists a most
resolved tree which is consistent with all
triplets in C. Also, such tree is unique.

 Proof:
 Steel, M. The complexity of reconstructing trees

from qualitative characters and subtrees. Journal
of Classification, 9:91–116, 1992.

Algorithm for computing R* tree
1. Computing the number of occurrences of all triplets in the m

trees.
 There are n3 triplets in each tree and there are m trees. Hence, it

takes O(m n3) time.
2. For each set of 3 species {A, B, C}, find the most commonly

occurring triplet.
 This step takes O(n3) time.

3. Constructing the tree from the set C of the most commonly
occurring triplets.
 By triplet method, this step takes O(min{O(k log2n), O(k + n2log

n)}) where k=|C|<n3. Hence, this step takes O(n3) time.

 The whole algorithm runs in O(m n3) time.

Other directions of
Phylogenetic study
 Supertree

 No method can find the phylogenetic tree for all species
 To find the phylogenetic tree for all species, one method is

to combine a number of phylogenetic trees
 The combined tree is called supertree.
 The difficulties of this problem is to resolve the conflicts

among the trees.

x1 x2 x3

x4 x5

x1 x3

x5

x2 x3

x4 x5
+ 

Other directions of
Phylogenetic study
 Phylogenetic network

 Evolution is in fact more than a point mutation. We have other types of
evolutions. Like:

 Hybridization.
 E.g. tiger + lion  tiglion

 Horizontal gene transfer
 E.g. Bovine Corona Virus (genbank ID NC_003045) + Murine Hepatitis Virus

(genbank ID AF201929)  SARS

 Phylogenetic tree cannot model those types of evolutions.

x1 x2 x3

x4

Reference (Robinson-Foulds
distance and Day's algorithm)

 D. F. Robinson and L. R. Foulds.
Comparison of phylogenetic trees.
Mathematical Biosciences, 53:131-147,
1981.

 W. H. E. Day. Optimal algorithms for
comparing trees with labeled leaves.
Journal of Classification, 2:7-28, 1985.

Reference (NNI-distance and
Subtree-transfer distance)
 M. Li, J. Tromp, and L. X. Zhang. Some notes on the nearest neighbour

interchange distance. Journal of Theoretical Biology, 182:463-467, 1996.
 B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtree-

transfer distance between phylogenetic trees. Algorithmica, 25(2):176-195,
1999.

 B. Das Gupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distance
between phylogenetic trees. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 427-436, 1997.

 J. Hein. Reconstructing evolution of sequences subject to recombination using
parsimony. Mathematical Biosciences, 98:185-200, 1990.

 J. Hein. A heuristic method to reconstruct the history of sequences subject to
recombination. Journal of Molecular Evolution, 36:396-405, 1993.

 G. W. Moore, M. Goodman, and J. Barnabas. An iterative approach from teh
standpoint of the additive hypothesis to the dendrogram problem posed by
molecular data sets. Journal of Theoretical Biology, 38:423-457, 1973.

 D. F. Robinson. Comparison of labeled trees with valency three. Journal of
Combinatorial Theory, 11:105-119, 1971.

Reference for consensus tree

 Nina Amenta, Frederick Clarke, and
Katherine St. John. A linear-time
majority tree algorithm. WABI, 216-227,
2003.

 T. Margush and F.R. McMorris.
Consensus n-trees. Bulletin of
Mathematical Biology, 43:239–244,
1981.

	Algorithms in Bioinformatics: A Practical Introduction
	Phylogenetic Tree comparison
	Why tree comparison?
	Two types of comparsions
	Restricted subtree
	Agreement subtree
	Maximum agreement subtree (MAST)
	MAST for rooted trees
	Computing MAST by dynamic programming
	Not complete!
	Recurrence
	Recurrence (II)
	Recurrence (III)
	Recurrence (IV)
	Recurrence (V)
	Recurrence (VI)
	Recurrence (VII)
	Time complexity
	MAST for unrooted trees
	Relating rooted and unrooted trees (I)
	Relating rooted and unrooted trees (II)
	Robinson-Foulds distance
	Partitioning of a tree
	Good and bad edges
	Leaf edges are always good
	Robinson-Foulds (RF) distance
	Degree-3 trees T and T’
	How to find the set of good edges in T w.r.t. T’?
	Day’s algorithm
	Step 1
	Example for step 1
	Step 2
	Example for step 2
	Step 3
	Example for step 3
	Observation
	More on step 3
	Step 4
	Example for step 4
	Time complexity
	Nearest Neighbor Interchange (NNI)
	NNI-dist
	Example
	Properties of NNI-dist
	Approximation algorithm for NNI-dist
	Subtree Transfer (STT)
	STT-dist
	Property of STT-dist
	More on STT-dist
	Quartet
	Quartet distance
	Previous works
	Property
	Brute-force method
	Observation
	Slide Number 56
	Slide Number 57
	Algorithm
	Computing |R1R2|
	Computing |T1c,restT2c’,rest| in O(1) time
	Time complexity
	Consensus Tree
	Consensus tree problem
	Applications
	Split of an edge
	Properties of split
	Example
	Strict consensus tree
	The strict consensus tree always exists
	How to find strict consensus tree of two trees?
	How to find strict consensus tree of m trees?
	Majority rule tree
	Slide Number 73
	Algorithm
	Step 1
	A lemma for step 3
	Step 3
	Time complexity for constructing majority consensus tree
	Symmetric difference distance
	Median tree
	Asymmetric median consensus tree
	Asymmetric difference distance
	Property of asymmetric median tree
	Greedy consensus tree
	Example
	Slide Number 86
	R* tree
	Example of R* tree
	Correctness
	Algorithm for computing R* tree
	Other directions of Phylogenetic study
	Other directions of Phylogenetic study
	Reference (Robinson-Foulds distance and Day's algorithm)
	Reference (NNI-distance and Subtree-transfer distance)
	Reference for consensus tree

