Algorithms in Bioinformatics: A Practical Introduction

Phylogenetic Tree comparison and Consensus Trees

Phylogenetic Tree comparison

Why tree comparison?

- Different phylogenies are resulted using different
 - Kind of data (different segments of the genomes)
 - Kind of model (CF model, Jukes-Cantor Model)
 - Kind of reconstruction algorithm
- Tree comparison helps us to gain information from multiple trees.

Two types of comparsions

- Similarity measurement
 - Find the common structure among the given trees
 - Maximum Agreement Subtree
- Dissimilarity measurement
 - Determine the differences among the given trees
 - Robinson-Foulds distance
 - Nearest neighbor interchange
 - Subtree Transfer Distance
 - Quartet Distance

Maximum agreement subtree (MAST)

- Given two trees T₁ and T₂
- Agreement subtree of T₁ and T₂ is the common information agreed by both trees.
 - Since it is agreed by both trees, the evolution of the agreement subtree is more reliable!
- Maximum agreement subtree problem
 - Find the agreement subtree with the largest possible number of leaves.
 - Such agreement subtree is called the maximum agreement subtree

MAST for rooted trees

- MAST of two degree-d rooted trees T₁ and T₂ with n leaves can be computed in
 - $O(\sqrt{dn\log(\frac{n}{d})})$ time (Journal of Algorithm 2001)
- This lecture considers an O(n²)-time algorithm which compute the maximum agreement subtree of two binary trees with n leaves.

Computing MAST by dynamic programming

- For any two binary rooted trees T₁ and T₂, denote MAST(T₁, T₂) be the number of leaves in the maximum agreement subtree
- Some definition:
 - For a tree T and a node u, T^u is the subtree of T rooted at u

Not complete!

- For any node pair $(u,v) \in T_1 \times T_2$,
 - Iet a and b be two children of u
 - Iet c and d be two children of v
- Let R be the maximum agreement subtree of T₁ and T₂.
- We have the following cases:
 - R is an agreement subtree of T₁^a
 - R is an agreement subtree of T₁^b

 $MAST(T_1^b, T_2^v)$

 $MAST(T_1^u, T_2^c)$ $MAST(T_1^u, T_2^d)$

max

Time complexity

- Suppose T₁ and T₂ are rooted phylogenies for n species.
- We have to compute MAST(T₁^u, T₂^v) for every u in T₁ and v in T₂.
- Thus, we need to fill in n² entries. Each entry can be computed in O(1) time.
- In total, the time complexity is O(n²).

MAST for unrooted trees

- In real life, we normally want to compute MAST for unrooted trees.
- For unrooted degree-3 trees U₁ and U₂, MAST(U₁, U₂) can be computed in O(n log n) time. (STOC 97)
- For general unrooted trees U₁ and U₂, MAST(U₁, U₂) can be computed in O(n^{1.5} log n) time. (SIAM J. of Comp 2000)
- This lecture shows the relationship between unrooted MAST and rooted MAST!

Relating rooted and unrooted trees (I)

Definition:

 For an unrooted tree U, for any edge e in U, U^e is the rooted tree rooted at the edge e.

Relating rooted and unrooted trees (II)

- Consider two unrooted trees U₁ and U₂
 Lemma: For any edge e of U₁, MAST(U₁,U₂) = max{MAST(U₁^e,U₂^f) | f is an edge of U₂}
- Proof: Exercise!

Based on the above lemma, we can relate rooted MAST and unrooted MAST!

Robinson-Foulds distance

- Given two phylogenies T₁ and T₂,
- Intuitively, this method tries to count the number of edges which are not agreed by T₁ and T₂.

First, we need to have some definitions!

Partitioning of a tree

- Each edge can partition the set of species
- In the following tree, the red edge partition the species into {a, b, c} and {d, e}

Good and bad edges

- Consider two unrooted trees T and T', an edge x in T is called a good edge if there exists an edge x' in T' such that both of them form the same partitions! Similarly, x' is also called a good edge.
- Otherwise, the edge is called a bad edge!

Leaf edges are always good

Robinson-Foulds (RF) distance

- Robinson-Foulds distance = (number of bad edges in T w.r.t T' + number of bad edges in T' w.r.t. T)/2
- T and T' looks similar if RF-dist(T, T') is small.
- For example, the robinson-foulds distance of T and T' = (1+1)/2 = 1.

Degree-3 trees T and T'

- When both T and T' are of degree-3, number of bad edges in T w.r.t. T' = number of bad edges in T' w.r.t. T
- Proof:
 - Since both T and T' are of degree-3, T and T' have the same number of edges
 - Number of good edges in T w.r.t. T' = number of good edges in T' w.r.t. T
 - Lemma follows.

How to find the set of good edges in T w.r.t. T'?

- Brute-force algorithm:
 - For every edge e in T,
 - If the partition formed by e is the same as the partition formed by some edge e' in T', e is a good edge!
- Time analysis:
 - For every edge e in T, the checking takes O(n) time.
 - In total, the time complexity is O(n²)!
 - Can we do better?

Day's algorithm

- Yes! The problem can be solved in O(n) time based on Day's algorithm.
- Input: two unrooted phylogenies T₁ and T₂ for the same set of species
- Output: the set of good edges in T₁ w.r.t. T₂
- Idea:
 - Build data-structure which enables constant time checking whether a particular partition of leaves exists in T₁.

Root T₁ and T₂ at the leaves with label n.
This step takes O(n) time.

Example for step 1

Step 2

- Relabel the leaves of T₁ in increasing order.
- Note: for every internal node x of T₁, the set of leaf labels in the subtree of x form an interval [i..j].
- This step takes O(n) time.

Example for step 2

Step 3

- Create a hash table H[1..n]
- For every node x in T₁, we store the corresponding interval [i_x..j_x] in either H[i_x] or H[j_x]
 - Store [i_x..j_x] in H[j_x] if x is the leftmost child of its parent in T₁;
 - Otherwise, store the interval [i_x..j_x] in the entry H[i_x].
- This step takes O(n) time.
- Question: Will we store two intervals in the same entry in H?

Example for step 3

4

Observation

- Lemma: we store at most one interval in each entry in H.
- Proof:
 - By contrary, suppose H[i] contain two intervals which are represented by internal nodes x and y.
 - By definition, i should be the endpoints of the intervals represented by x and y. Thus, x and y should satisfy the ancestor-descendent relationship. WLOG, assume x is the ancestor of y. Then, y's interval should be the subinterval of x's interval
 - So, we can have either
 - 1. x's interval = [j..i] and y's interval = [j'..i] for j < j'; OR
 - This means that both x and y are the leftmost children of their parents.
 - The right endpoint of x's interval should not be i!

Х

- Contradiction!
- 2. x's interval = [i..j] and y's interval = [i..j'] for j > j'
 - Similar to the above case, we can arrive at contradiction!
More on step 3

Given the hash table H, we can check whether an interval [i..j] exists in T₁ by checking if H[i] or H[j] equals [i..j]!

Step 4

- For T₂, by traversing the tree, for each internal node u, we compute
 - the minimum (min_u) and the maximum (max_u) leaf labels
 - the number of leaves (size_u)

in the subtree rooted at u

- If $(max_u min_u + 1 = size_u)$, then
 - the leaves labels in the subtree of node u form an interval [min_u..max_u].
 - Check whether H[min_u] or H[max_u] equals [min_u..max_u]. If yes, (u,v) is a good edge where v is the parent of u in T₂.
- This step takes O(n) time.

Example for step 4

	min _u	max _u	size _u	max _u -min _u +1
Х	1	3	3	3
у	1	3	2	3

Note: size_x=max_x-min_x+1 Also, H[3]=[1..3] Thus, (x, z) is a good edge!

Time complexity

- All 4 steps can correctly recover the good edges.
- They can be computed in O(n) time.
- Thus, the total time complexity is O(n).

Nearest Neighbor Interchange (NNI)

- Given an unrooted, degree-3 tree T,
- NNI operation exchanges two subtrees across an edge.

NNI-dist

- Given two unrooted, degree-3 trees T₁ and T₂,
- NNI-dist(T₁, T₂) is the minimum number of NNI-operations required to convert T₁ to T₂.
- T₁ and T₂ looks similar if NNI-dist(T₁, T₂) is small.
- Computing NNI-dist is NP-hard.

Properties of NNI-dist

Property 1: NNI-dist(T₁, T₂)=NNI-dist(T₂, T₁)

- Property 2: NNI-dist(T₁, T₂)≥number of bad edges in T₁ w.r.t. T₂.
- Proof:
 - To remove one bad edge, we require at least one NNI-operation

Approximation algorithm for NNI-dist

There exists a polynomial time (log n)approximated algorithm.

Subtree Transfer (STT)

- Consider a degree-3 unrooted tree T
- A subtree transfer operation is the operation of detaching a subtree and reattached it to the middle of another edge
- An STT operation is charged by the number of nodes the subtree is transferred.

STT-dist

- Given two degree-3 unrooted trees T₁ and T₂,
- STT-dist(T₁, T₂) is the minimum cost series of STT operations which transform T₁ to T₂.
- T₁ and T₂ looks similar if STT-dist(T₁, T₂) is small.

Property of STT-dist

- STT-dist(T_1 , T_2) = NNI-dist(T_1 , T_2)
- Proof:
 - STT-dist(T1, T2) ≤ NNI-dist(T1, T2) because each NNI-operation is an STToperation.
 - STT-dist(T1, T2) ≥ NNI-dist(T₁, T₂) because each STT-operation of cost k can be simulated by k NNI-operations.

More on STT-dist

- Based on the result for NNI-operation, we have
 - STT-dist(T₁, T₂) is NP-hard to compute.
 - There exists a polynomial time (log n)approximated algorithm to compute STT-dist(T₁, T₂)

Quartet

A quartet is a phylogenetic tree with 4 species.

Butterfly quartet

Star quartet

Quartet distance

- Given two unrooted trees T₁ and T₂,
 - The quartet distance is the number of set of 4 species {w,x,y,z} such that
 - $T_1 | \{w, x, y, z\} \neq T_2 | \{w, x, y, z\}.$

Previous works

• When T_1 and T_2 are of degree-3, Steel and Penny (1993): O(n³) time. Bryant et al. (2000): O(n²) time. Brodal et al. (2003): O(n log n) time • When T_1 and T_2 are of degree-d, Christiansen et al. (2005): O(n³) time or $O(d^2n^2)$ time.

Property

Number of different quartets + number of shared quartets = $\binom{n}{4}$.

Brute-force method

- count = 0;
- for every $\{w, x, y, z\} \subseteq S$,
 - if $T_1 | \{w, x, y, z\} = T_2 | \{w, x, y, z\}$, count ++;
- **Report** $\binom{n}{4}$ count;
- The running time is at least O(n⁴).

Observation

- Consider a tree T which is leaf-labeled by S.
- For any $\{x,y,z\} \subseteq S$,
 - There exists a unique internal node c in T such that c appears in any paths from x to y, y to z, and x to z.
- We denote T^{c,x} be a set of species which appear in the child subtree containing x. (Similarly, we define T^{c,y} and T^{c,z}.)
- Let $T^{c,rest} = S (T^{c,x} \cup T^{c,y} \cup T^{c,z})$.

- Note that, for all species w∈T^{c,x}, the quartet for {w,x,y,z} in T is wx|yz.
- Similarly, for all species w∈T^{c,y}, the quartet for {w,x,y,z} in T is wy|xz.
- Similarly, for all species w∈T^{c,z}, the quartet for {w,x,y,z} in T is wz|xy.
- Similarly, for all species w∈T^{c,rest}, the quartet for {w,x,y,z} in T is a star quartet.

- Consider two trees T_1 and T_2 .
- The number of shared butterfly quartets involving x,y,z is $|T_1^{c,x} \cap T_2^{c',x}| + |T_1^{c,y} \cap T_2^{c',y}| + |T_1^{c,z} \cap T_2^{c',z}| 3.$
- The number of shared star quartets involving x,y,z is |T₁^{c,rest}∩T₂^{c',rest}|.

Algorithm

- count = 0;
- Compute $|R_1 \cap R_2|$ for any subtree R_1 of T_1 and any subtree R_2 of T_2 .
- For every $\{x,y,z\} \subseteq S$,
 - Let c be the center of x,y, and z in T₁.
 - Let T₁^{c,x}, T₁^{c,y}, and T₁^{c,z} be the subtrees attached to c containing x, y, z, respectively.
 - Set $T_1^{c,rest} = S (T_1^{c,x} \cup T_1^{c,y} \cup T_1^{c,z}).$
 - Let c' be the center of x,y, and z in T₂.
 - Let T₂^{c',x}, T₂^{c',y}, and T₂^{c',z} be the subtrees attached to c' containing x, y, z, respectively.
 - Set $T_2^{c',rest} = S (T_2^{c',x} \cup T_2^{c',y} \cup T_2^{c',z}).$
 - count = count + $|T_1^{c,x} \cap T_2^{c',x}|$ + $|T_1^{c,y} \cap T_2^{c',y}|$ + $|T_1^{c,z} \cap T_2^{c',z}|$ + $|T_1^{c,z} \cap T_2^{c',z}|$ +
- Report $\binom{n}{4}$ count/4;

Computing $|R_1 \cap R_2|$

- For any e=(u,v) in T₁
 - e partitions T_1 into two subtrees with leaf sets Q_v and $Q_u = S - Q_v$.
 - For any e'=(u',v') in T₂
 - e' partitions T_2 into two subtrees with leaf sets $Q_{v^{\prime}}$ and $Q_{u^{\prime}}\!=\!S\!\!-\!Q_{v^{\prime}}.$
 - $|T_1^{u,v} \cap T_2^{u',v'}| = |Q_v \cap Q_{v'}|$
- The running time is O(n³).
- The algorithm can be improved to O(n²) time.

Computing $|T_1^{c,rest} \cap T_2^{c',rest}|$ in O(1) time

 $| T_1^{c,rest} \cap T_2^{c',rest} | = | T_2^{c',rest} | - (| T_1^{c,x} \cap T_2^{c',rest} | + | T_1^{c,y} \cap T_2^{c',rest} | + | T$

$$|T_2^{c',rest}| = |S| - |T_2^{c',x}| - |T_2^{c',y}| - |T_2^{c',z}|$$

$$|T_1^{c,x} \cap T_2^{c',rest}| = |T_1^{c,x}| - (|T_1^{c,x} \cap T_2^{c',x}| + |T_1^{c,x} \cap T_2^{c',y}| + |T_1^{c,x} \cap T_2^{c',z}|).$$

$$|T_1^{c,y} \cap T_2^{c',rest}| = |T_1^{c,y}| - (|T_1^{c,y} \cap T_2^{c',x}| + |T_1^{c,y} \cap T_2^{c',y}| + |T_1^{c,y} \cap T_2^{c',z}|). |T_1^{c,z} \cap T_2^{c',rest}| = |T_1^{c,z}| - (|T_1^{c,z} \cap T_2^{c',x}| + |T_1^{c,z} \cap T_2^{c',y}| + |T_1^{c,z} \cap T_2^{c',z}|).$$

Time complexity

- |R₁∩R₂| can be computed in O(n²) time.
 For every {x,y,z} ⊆ S,
 - $|T_1^{c,x} \cap T_2^{c',x}|$, $|T_1^{c,y} \cap T_2^{c',y}|$, $|T_1^{c,z} \cap T_2^{c',z}|$, and $|T_1^{c,rest} \cap T_2^{c',rest}|$ can be computed in O(1) time.

In total, the running time is O(n³).

Consensus Tree

Consensus tree problem

- Given a set of n species S
- Given a set of trees {T₁, T₂, ..., T_m}
 - where the leaves of every T_i are labeled by S
- Question: Find a tree which summarizes all the trees T₁, T₂, ..., T_m.

1. Find the bootstrapping tree.

2. Given a set of gene trees, infer the species tree.

Split of an edge

- Each edge can partition the set of species
- In the following tree, the red edge partition the species into {a, b, c} and {d, e}.
- So, the split of the red edge is {a,b,c}|{d,e}.
- Note that for any x∈S, {x}|S-{x} must be a valid split due to the leaf edge connecting the leaf x.

Properties of split

- Two splits A|S-A and B|S-B are compatible if A⊆B or A⊆S-B or B⊆A or B⊆S-A.
- For any tree T, any two splits of T are compatible.
- Given a set of splits W which are pairwise compatible, there exists a tree T which contains all the splits in W.

Example

There is a one-to-one correspond between the tree and the set of splits of all its edges.

{a}|{b,c,d,e}
{b}|{a,c,d,e}
{c}|{a,b,d,e}
{d}|{a,b,c,e}
{e}|{a,b,c,d}
{a,b}|{c,d,e}
{a,b,c}|{d,e}

Strict consensus tree

- The strict consensus tree T of {T₁, T₂, ..., T_m} contains exactly those splits which appear in all T_i.
- The strict consensus tree always exists.
- Example: T is the strict consensus tree of T₁ and T₂.

The strict consensus tree always exists

- Let W_i be the set of splits of T_i, i=1,2,...,m.
- The set of splits of the strict consensus tree is $W_1 \cap W_2 \cap \ldots \cap W_m$.

How to find strict consensus tree of two trees?

Input: Two trees T_1 , T_2 Output: the strict consensus tree

- Run O(n) time Day's algorithm to find all the good edges.
- Generate the strict consensus tree.
 - Precisely, the strict consensus tree is formed by contracting all bad edges.
- Time complexity: O(n).

How to find strict consensus tree of m trees?

Input: m trees T_1 , T_2 , ..., T_m . Output: the strict consensus tree

- Let $T=T_1$.
- For i = 2 to m
 - Set T be the strict consensus tree of T and T_i.

Return T;

Time complexity: O(mn)

Majority rule tree

- The majority rule tree contains exactly those splits that appear in more than half of the input trees.
- The majority rule tree is unique (why?) and always exists.
- Example: T is also the majority rule tree of T_1 , T_2 , and T_3 .

Given two trees, the majority rule tree is the same as the strict consensus tree.

Algorithm

Input: m trees T_1 , T_2 , ..., T_m . Output: the majority tree

- Count the occurrences of each split, storing the counts in a table.
- 2. Select those splits with occurrences > m/2.
- 3. Using the selected splits, create the majority tree.

Step 1

- For each T_i,
 - We run Day's algorithm for (T_i, T_j) for all j = i+1, ..., m.
 - For every edge in T_i which are unmarked, we count the number of good edges in T_i for j>i.
 - Also, we mark those good edges in T_i as counted.
- Time complexity: Each T_i takes O(nm) time.
 Hence, Step 1 takes O(m²n) time.

A lemma for step 3

- Suppose we rooted the majority consensus tree at the leaf 1.
- Lemma: If p is a parent split of c in the majority tree, there exists a tree T_j which contains both splits p and c.
- Proof: Both p and c appears in more than m/2 trees. By pigeon-hole principle, there exists a tree which contains both p and c.

Step 3

- We root all tree T_i at the leaf 1.
- For each T_i, we get T'_i which is the tree formed by contracting all the non-majority splits.
- Let T' be T'₁.
- For each i=2, ..., m,
 - We traverse T'_i in depth first search order.
 - For any split c in T'_i, let p be its parent split in T'_i.
 - If c does not exists in T', we introduce c as the child split of p in T'. (Note: p must exists in T' since we traverse the tree in depth first search order.)
- Time complexity: O(nm) time.

Time complexity for constructing majority consensus tree

In summary, the majority consensus tree can be constructed in O(nm²) time.

- Note: Majority consensus tree can be built in O(nm) expected time.
 - Nina Amenta, Frederick Clarke and Katherine St. John. A Linear-time Majority Tree Algorithm, 216-227, WABI, 2003.

Symmetric difference distance

- Denote d(T₁, T₂) be the symmetric difference between T₁ and T₂.
 - The number of splits appearing in one tree but not the other.
- Example: For T₁ and T₂, {A,D,E}|{B,C} only appears in T₁ and {A,C}|{B,D,E} only appears in T₂. Hence, d(T₁, T₂) = 2.

- The median tree T for T₁, T₂, ..., T_m minimizes
 - $\Sigma_{i=1..m} d(T, T_i)$.
- Barthelemy and McMorris showed that majroity rule tree is the same as the median tree.

Asymmetric median consensus tree

- For every split, its weight is defined to be the number of input trees containing it.
- The asymmetric median tree a set of splits which maximizes the total weight.
- The asymmetric tree always exists.
- Example: Both T₁ and T₂ are also the asymmetric median trees of T₁ and T₂.

Asymmetric difference distance

- Denote $d_a(T_1, T_2)$ be the symmetric difference between T_1 and T_2 .
 - The number of splits appearing in T_2 but T_1 .
- Example: For T₁ and T₂, ({A,C}, {B,D,E}) only appears in T₂ but not T₁. Hence, d_a(T₁, T₂) = 1.

Property of asymmetric median tree

 The asymmetric median tree T for T₁, T₂, ..., T_m minimizes
 Σ_{i=1..m} d_a(T, T_i).

Greedy consensus tree

- Greedy consensus tree is created by
 - Sequentially include split one by one.
 - Every iteration, we include the most frequent split that is compatible with the included splits (breaking the ties randomly).
 - Do this until we cannot include any other split.

Greedy consensus tree is a refinement of the majority-rule consensus tree.

R* tree

- For each set of 3 species, find the most commonly occurring triplet e.g., C|AB, B|AC or A|BC.
- Build the tree from the most commonly occurring triplets.

Example of R* tree

Correctness

- Lemma: Let C be the set of most commonly occurring triplets. There exists a most resolved tree which is consistent with all triplets in C. Also, such tree is unique.
- Proof:
 - Steel, M. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9:91–116, 1992.

Algorithm for computing R* tree

- 1. Computing the number of occurrences of all triplets in the m trees.
 - There are n³ triplets in each tree and there are m trees. Hence, it takes O(m n³) time.
- 2. For each set of 3 species {A, B, C}, find the most commonly occurring triplet.
 - This step takes O(n³) time.
- 3. Constructing the tree from the set C of the most commonly occurring triplets.
 - By triplet method, this step takes O(min{O(k log²n), O(k + n²log n)}) where k=|C|<n³. Hence, this step takes O(n³) time.
- The whole algorithm runs in O(m n³) time.

Other directions of Phylogenetic study

- Supertree
 - No method can find the phylogenetic tree for all species
 - To find the phylogenetic tree for all species, one method is to combine a number of phylogenetic trees
 - The combined tree is called supertree.
 - The difficulties of this problem is to resolve the conflicts among the trees.

Other directions of Phylogenetic study

- Phylogenetic network
 - Evolution is in fact more than a point mutation. We have other types of evolutions. Like:
 - Hybridization.
 - E.g. tiger + lion \rightarrow tiglion
 - Horizontal gene transfer
 - E.g. Bovine Corona Virus (genbank ID NC_003045) + Murine Hepatitis Virus (genbank ID AF201929) → SARS
 - Phylogenetic tree cannot model those types of evolutions.

Reference (Robinson-Foulds distance and Day's algorithm)

- D. F. Robinson and L. R. Foulds.
 Comparison of phylogenetic trees.
 Mathematical Biosciences, 53:131-147, 1981.
- W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal of Classification, 2:7-28, 1985.

Reference (NNI-distance and Subtree-transfer distance)

- M. Li, J. Tromp, and L. X. Zhang. Some notes on the nearest neighbour interchange distance. Journal of Theoretical Biology, 182:463-467, 1996.
- B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtreetransfer distance between phylogenetic trees. Algorithmica, 25(2):176-195, 1999.
- B. Das Gupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distance between phylogenetic trees. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 427-436, 1997.
- J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences, 98:185-200, 1990.
- J. Hein. A heuristic method to reconstruct the history of sequences subject to recombination. Journal of Molecular Evolution, 36:396-405, 1993.
- G. W. Moore, M. Goodman, and J. Barnabas. An iterative approach from teh standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. Journal of Theoretical Biology, 38:423-457, 1973.
- D. F. Robinson. Comparison of labeled trees with valency three. Journal of Combinatorial Theory, 11:105-119, 1971.

Reference for consensus tree

- Nina Amenta, Frederick Clarke, and Katherine St. John. A linear-time majority tree algorithm. WABI, 216-227, 2003.
- T. Margush and F.R. McMorris.
 Consensus n-trees. Bulletin of Mathematical Biology, 43:239–244, 1981.