Algorithms in Bioinformatics: A Practical Introduction

Phylogenetic Tree comparison and Consensus Trees

Phylogenetic Tree comparison

Why tree comparison?

- Different phylogenies are resulted using different
- Kind of data (different segments of the genomes)
- Kind of model (CF model, Jukes-Cantor Model)
- Kind of reconstruction algorithm
- Tree comparison helps us to gain information from multiple trees.

Two types of comparsions

- Similarity measurement
- Find the common structure among the given trees
- Maximum Agreement Subtree
- Dissimilarity measurement
- Determine the differences among the given trees
- Robinson-Foulds distance
- Nearest neighbor interchange
- Subtree Transfer Distance
- Quartet Distance

Restricted subtree

- Consider a trees T

Evolution
information of X_{1},
$X_{2}, X_{3}, X_{4}, X_{5}$

Agreement subtree

Maximum agreement subtree (MAST)

- Given two trees T_{1} and T_{2}
- Agreement subtree of T_{1} and T_{2} is the common information agreed by both trees.
- Since it is agreed by both trees, the evolution of the agreement subtree is more reliable!
- Maximum agreement subtree problem
- Find the agreement subtree with the largest possible number of leaves.
- Such agreement subtree is called the maximum agreement subtree

MAST for rooted trees

- MAST of two degree-d rooted trees T_{1} and T_{2} with n leaves can be computed in
- $O\left(\sqrt{d} n \log \left(\frac{n}{d}\right)\right)$ time (Journal of Algorithm 2001)
- This lecture considers an $\mathrm{O}\left(\mathrm{n}^{2}\right)$-time algorithm which compute the maximum agreement subtree of two binary trees with n leaves.

Computing MAST by dynamic programming

- For any two binary rooted trees T_{1} and T_{2}, denote $\operatorname{MAST}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ be the number of leaves in the maximum agreement subtree
- Some definition:
- For a tree T and a node u, T is the subtree of T rooted at u

Not complete!

- For any node pair $(u, v) \in T_{1} \times T_{2}$,
- let a and b be two children of u - let c and d be two children of v
- Let R be the maximum agreement subtree of T_{1} and T_{2}.
- We have the following cases:
- R is an agreement subtree of $T_{1}{ }^{a}$
- R is an agreement subtree of $T_{1}{ }^{b}$

Recurrence

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}{ }^{u}, T_{2}{ }^{d}\right)$

Recurrence (II)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{d}\right) \leftarrow$

Recurrence (III)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right) \leftarrow$
$\operatorname{MAST}\left(T_{1}{ }^{u}, T_{2}{ }^{d}\right)$

Recurrence (IV)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right) \leftarrow$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}{ }^{d}\right)$

Recurrence (V)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right) \leftarrow$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}{ }^{u}, T_{2}{ }^{d}\right)$

Recurrence (VI)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{d}\right)\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{c}\right) \leftarrow$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}{ }^{d}\right)$

Recurrence (VII)

$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{v}\right)=$
$\left(\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{c}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{d}\right) \leftarrow\right.$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}{ }^{d}\right)+\operatorname{MAST}\left(T_{1}^{b}, T_{2}{ }^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{a}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{b}, T_{2}^{v}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}^{c}\right)$
$\operatorname{MAST}\left(T_{1}^{u}, T_{2}{ }^{d}\right)$

Time complexity

- Suppose T_{1} and T_{2} are rooted phylogenies for n species.
- We have to compute $\operatorname{MAST}\left(T_{1}{ }^{u}, T_{2}{ }^{v}\right)$ for every u in T_{1} and v in T_{2}.
- Thus, we need to fill in n^{2} entries. Each entry can be computed in $\mathrm{O}(1)$ time.
- In total, the time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.

MAST for unrooted trees

- In real life, we normally want to compute MAST for unrooted trees.
- For unrooted degree-3 trees U_{1} and U_{2}, $\operatorname{MAST}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ can be computed in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time. (STOC 97)
- For general unrooted trees U_{1} and U_{2}, $\operatorname{MAST}\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right)$ can be computed in $\mathrm{O}\left(\mathrm{n}^{1.5} \log \mathrm{n}\right)$ time. (SIAM J. of Comp 2000)
- This lecture shows the relationship between unrooted MAST and rooted MAST!

Relating rooted and unrooted trees (I)

- Definition:
- For an unrooted tree U, for any edge e in U, U is the rooted tree rooted at the edge e.

Relating rooted and unrooted trees (II)

- Consider two unrooted trees U_{1} and U_{2}
- Lemma: For any edge e of U_{1},
$\operatorname{MAST}\left(U_{1}, U_{2}\right)=\max \left\{\operatorname{MAST}\left(U_{1}{ }^{e}, U_{2}{ }^{f}\right) \mid f\right.$ is an edge of $\left.U_{2}\right\}$
- Proof: Exercise!
- Based on the above lemma, we can relate rooted MAST and unrooted MAST!

Robinson-Foulds distance

- Given two phylogenies T_{1} and T_{2},
- Intuitively, this method tries to count the number of edges which are not agreed by T_{1} and T_{2}.
- First, we need to have some definitions!

Partitioning of a tree

- Each edge can partition the set of species
- In the following tree, the red edge partition the species into $\{a, b, c\}$ and $\{d, e\}$

Good and bad edges

- Consider two unrooted trees T and T^{\prime}, an edge x in T is called a good edge if there exists an edge x^{\prime} in T^{\prime} such that both of them form the same partitions! Similarly, x^{\prime} is also called a good edge.
- Otherwise, the edge is called a bad edge!

Leaf edges are always good

Robinson-Foulds (RF) distance

- Robinson-Foulds distance = (number of bad edges in T w.r.t T' + number of bad edges in T^{\prime} w.r.t. T)/2
- T and T' looks similar if RF-dist(T, T^{\prime}) is small.
- For example, the robinson-foulds distance of T and T, $=(1+1) / 2=1$.

Degree-3 trees T and T,

- When both T and T' are of degree-3, number of bad edges in T w.r.t. T' = number of bad edges in T' w.r.t. T
- Proof:
- Since both T and T' are of degree-3, T and T, have the same number of edges
- Number of good edges in T w.r.t. T' = number of good edges in T' w.r.t. T
- Lemma follows.

How to find the set of good edges in T w.r.t. T'?

- Brute-force algorithm:
- For every edge e in T,
- If the partition formed by e is the same as the partition formed by some edge e^{\prime} in T^{\prime}, e is a good edge!
- Time analysis:
- For every edge e in T, the checking takes O(n) time.
- In total, the time complexity is $\mathrm{O}\left(\mathrm{n}^{2}\right)$!
- Can we do better?

Day’s algorithm

- Yes! The problem can be solved in $O(n)$ time based on Day's algorithm.
- Input: two unrooted phylogenies T_{1} and T_{2} for the same set of species
- Output: the set of good edges in T_{1} w.r.t. T_{2}
- Idea:
- Build data-structure which enables constant time checking whether a particular partition of leaves exists in T_{1}.

Step 1

- Root T_{1} and T_{2} at the leaves with label n. - This step takes O(n) time.

Example for step 1

Step 2

- Relabel the leaves of T_{1} in increasing order.
- Note: for every internal node x of T_{1}, the set of leaf labels in the subtree of x form an interval [i..j].
- This step takes O(n) time.

Example for step 2

Step 3

- Create a hash table H[1..n]
- For every node x in T_{1}, we store the corresponding interval $\left[i_{x} . \mathrm{j}_{\mathrm{x}}\right]$ in either $\mathrm{H}\left[\mathrm{i}_{x}\right]$ or H[jx]
- Store $\left[i_{x} \cdot j_{x}\right]$ in $H\left[j_{x}\right]$ if x is the leftmost child of its parent in T_{1};
- Otherwise, store the interval $\left[i_{x} \cdot . \mathrm{j}_{\mathrm{x}}\right]$ in the entry $H\left[i_{x}\right]$.
- This step takes $O(n)$ time.
- Question: Will we store two intervals in the same entry in H?

Example for step 3

k	$H(k)$
1	
2	$[2 . .3]$
3	$[1 . .3]$
4	$[1 . .4]$

Observation

- Lemma: we store at most one interval in each entry in H .

Proof:

- By contrary, suppose H[i] contain two intervals which are represented by internal nodes x and y.
- By definition, i should be the endpoints of the intervals represented by x and y. Thus, x and y should satisfy the ancestor-descendent relationship. WLOG, assume x is the ancestor of y. Then, y 's interval should be the subinterval of x's interval
- So, we can have either

1. $\quad x$'s interval $=[j . . i]$ and y 's interval $=[j$ '..i] for $j<j$ '; OR

- This means that both x and y are the leftmost children of their parents.
- The right endpoint of x's interval should not be i!
- Contradiction!

2. x 's interval $=[i . . j]$ and y 's interval $=\left[i . . j^{\prime}\right]$ for $j>j$ '

- Similar to the above case, we can arrive at contradiction!

More on step 3

Given the hash table H, we can check whether an interval [i..j] exists in T_{1} by checking if $\mathrm{H}[\mathrm{i}]$ or $\mathrm{H}[\mathrm{j}]$ equals [i..j]!

Step 4

- For T_{2}, by traversing the tree, for each internal node u, we compute
- the minimum ($\min _{u}$) and the maximum (max $_{u}$) leaf labels
- the number of leaves (sizeu)
in the subtree rooted at u
- If $\left(\max _{u}-\min _{u}+1=s i z e_{u}\right)$, then
- the leaves labels in the subtree of node u form an interval [$\mathrm{min}_{\mathrm{u}}$. max $_{\mathrm{u}}$].
- Check whether H[min ${ }_{u}$] or $\mathrm{H}\left[\max _{\mathrm{u}}\right.$] equals [$\min _{u}$. max $_{\mathrm{u}}$]. If yes, (u, v) is a good edge where v is the parent of u in T_{2}.
- This step takes O(n) time.

Example for step 4

	$\min _{u}$	$\max _{u}$	$\operatorname{size}_{\mathrm{u}}$	$\max _{\mathrm{u}}-\min _{\mathrm{u}}+1$
x	1	3	3	3
y	1	3	2	3

Note: size $_{x}=$ max $_{x}-\min _{x}+1$
Also, H[3]=[1..3]
Thus, (x, z) is a good edge!

Time complexity

- All 4 steps can correctly recover the good edges.
- They can be computed in $\mathrm{O}(\mathrm{n})$ time.
- Thus, the total time complexity is O(n).

Nearest Neighbor Interchange (NNI)

- Given an unrooted, degree-3 tree T, - NNI operation exchanges two subtrees across an edge.

NNI-dist

- Given two unrooted, degree-3 trees T_{1} and T_{2},
- NNI-dist($\mathrm{T}_{1}, \mathrm{~T}_{2}$) is the minimum number of NNI-operations required to convert T_{1} to T_{2}.
- T_{1} and T_{2} looks similar if NNI -dist $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is small.
- Computing NNI-dist is NP-hard.

Example

Properties of NNI-dist

- Property 1 : NNI-dist($\left.\mathrm{T}_{1}, \mathrm{~T}_{2}\right)=\mathrm{NNI}-\operatorname{dist}\left(\mathrm{T}_{2}, \mathrm{~T}_{1}\right)$
- Property 2: NNI-dist($\left.\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \geq$ number of bad edges in T_{1} w.r.t. T_{2}.
- Proof:
- To remove one bad edge, we require at least one NNI-operation

Approximation algorithm for NNI-dist

- There exists a polynomial time (log n)approximated algorithm.

Subtree Transfer (STT)

- Consider a degree-3 unrooted tree T
- A subtree transfer operation is the operation of detaching a subtree and reattached it to the middle of another edge
- An STT operation is charged by the number of nodes the subtree is transferred.

STT-dist

- Given two degree-3 unrooted trees T_{1} and T_{2},
- STT-dist $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ is the minimum cost series of STT operations which transform T_{1} to T_{2}.
- T_{1} and T_{2} looks similar if STT-dist($\mathrm{T}_{1}, \mathrm{~T}_{2}$) is small.

Property of STT-dist

- STT-dist $\left(T_{1}, T_{2}\right)=\operatorname{NNI-dist}\left(T_{1}, T_{2}\right)$
- Proof:
- STT-dist(T1, T2) $\leq \mathrm{NNI}-\operatorname{dist}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ because each NNI-operation is an STToperation.
- STT-dist(T1, T2) $\geq \mathrm{NNI}-\operatorname{dist}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ because each STT-operation of cost k can be simulated by k NNI-operations.

More on STT-dist

- Based on the result for NNI-operation, we have
- STT-dist($\mathrm{T}_{1}, \mathrm{~T}_{2}$) is NP-hard to compute.
- There exists a polynomial time $(\log \mathrm{n})$ approximated algorithm to compute STT-dist($\mathrm{T}_{1}, \mathrm{~T}_{2}$)

Quartet

- A quartet is a phylogenetic tree with 4 species.

Butterfly quartet

Star quartet

Quartet distance

- Given two unrooted trees T_{1} and T_{2},
- The quartet distance is the number of set of 4 species $\{w, x, y, z\}$ such that
- $T_{1}\left|\{w, x, y, z\} \neq T_{2}\right|\{w, x, y, z\}$.

$\{1,2,3,4\}$: different $\{1,2,3,5\}$: different \{1,2,4,5\}: different
$\{1,3,4,5\}$: different
$\{2,3,4,5\}$: same
Quartet distance $=4$

Previous works

- When T_{1} and T_{2} are of degree-3,
- Steel and Penny (1993): O(n^{3}) time.
- Bryant et al. (2000): O(n²) time.
- Brodal et al. (2003): O(n log n) time
- When T_{1} and T_{2} are of degree-d,
- Christiansen et al. (2005): O(n^{3}) time or $\mathrm{O}\left(\mathrm{d}^{2} \mathrm{n}^{2}\right)$ time.

Property

- Number of different quartets + number of shared quartets $=\binom{n}{4}$.

Brute-force method

- count = 0;
- for every $\{\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\} \subseteq \mathrm{S}$,
- if $T_{1}\left|\{w, x, y, z\}=T_{2}\right|\{w, x, y, z\}$, count++;
- Report ($\left.\begin{array}{l}n \\ 4\end{array}\right)$ - count;
- The running time is at least $O\left(n^{4}\right)$.

Observation

- Consider a tree T which is leaf-labeled by S.
- For any $\{x, y, z\} \subseteq S$,
- There exists a unique internal node c in T such that c appears in any paths from x to y, y to z, and x to z.
- We denote $T^{c, x}$ be a set of species which appear in the child subtree containing x. (Similarly, we define $T^{c, y}$ and $T^{c, z}$.)
- Let $T^{c, r e s t}=S-\left(T^{c, x} \cup T^{c, y} \cup T^{c, z}\right)$.

- Note that, for all species $w \in T^{c, x}$, the quartet for $\{w, x, y, z\}$ in T is $w x \mid y z$.
- Similarly, for all species $w \in T^{c, y}$, the quartet for $\{w, x, y, z\}$ in T is $w y \mid x z$.
- Similarly, for all species $w \in T^{c, z}$, the quartet for $\{w, x, y, z\}$ in T is $w z \mid x y$.
- Similarly, for all species $w \in T^{c}$, rest, the quartet for $\{w, x, y, z\}$ in T is a star quartet.
- Consider two trees T_{1} and T_{2}.
- The number of shared butterfly quartets involving x, y, z is $\left|T_{1}{ }^{c, x} \cap T_{2}{ }^{c}, x\right|+$ $\left|T_{1}{ }^{c, y} \cap T_{2}{ }^{c^{\prime}, y}\right|+\left|T_{1}{ }^{c, z} \cap T_{2}{ }^{c^{\prime}, z}\right|-3$.
- The number of shared star quartets involving x, y, z is $\mid T_{1}{ }^{c}$, rest $\cap T_{2}{ }^{c}$, rest \mid.

Algorithm

- count = 0;
- Compute $\left|R_{1} \cap R_{2}\right|$ for any subtree R_{1} of T_{1} and any subtree R_{2} of T_{2}.
- For every $\{x, y, z\} \subseteq S$,
- Let c be the center of x, y, and z in T_{1}.
- Let $T_{1}{ }^{c, x}, T_{1}{ }^{c, y}$, and $T_{1}{ }^{c, z}$ be the subtrees attached to c containing x, y, z, respectively.
- Set $T_{1}{ }^{c}$, rest $=S-\left(T_{1}{ }^{c, x} \cup T_{1}{ }^{c, y} \cup T_{1}{ }^{c, z}\right)$.
- Let c^{\prime} be the center of x, y, and z in T_{2}.
- Let $T_{2}{ }^{c}, x, T_{2}{ }^{c, y}$, and $T_{2}{ }^{c}, z$ be the subtrees attached to c^{\prime} containing $\mathrm{x}, \mathrm{y}, \mathrm{z}$, respectively.
- Set $T_{2}{ }^{c}$, rest $=S-\left(T_{2}{ }^{c}, x \cup T_{2}{ }^{c}, y \cup T_{2}{ }^{c}, z\right)$.
- count $=$ count $+\left|T_{1}^{c, x} \cap T_{2}{ }^{c}, \times\left|+\left|T_{1}^{c, y} \cap T_{2}^{c}{ }^{c}, y\right|+\left|T_{1}{ }^{c},{ }^{c} \cap T_{2}{ }^{c}, z\right|+\right.\right.$ $\mid \mathrm{T}_{1}$, , rest $\cap \mathrm{T}_{2}{ }^{\mathrm{c}, \text {, } \text { est }} \mid-3^{1}$
- Report $\binom{n}{4}$ - count/4;

Computing $\left|\mathrm{R}_{1} \cap \mathrm{R}_{2}\right|$

- For any $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ in T_{1}
- e partitions T_{1} into two subtrees with leaf sets Q_{v} and $\mathrm{Q}_{\mathrm{u}}=\mathrm{S}-\mathrm{Q}_{\mathrm{v}}$.
- For any $e^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ in T_{2},
- e' partitions T_{2} into two subtrees with leaf sets Q_{v} and $\mathrm{Q}_{\mathrm{u}}=\mathrm{S}-\mathrm{Q}_{\mathrm{v}}$.
- $\left|T_{1}{ }^{u, v} \cap T_{2}{ }^{u^{u}, v^{v}}\right|=\left|Q_{v} \cap Q_{v^{\prime}}\right|$
- The running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.
- The algorithm can be improved to $O\left(n^{2}\right)$ time.

Computing $\mid T_{1}{ }^{c}$, rest $\cap T_{2}{ }^{c^{c}, \text { rest }} \mid$ in O(1) time

- $\left|T_{2}{ }^{c^{c}, \text { rest }}\right|=|S|-\left|T_{2}{ }^{c^{\prime}, x}\right|-\left|T_{2}{ }^{c}, y\right|-\left|T_{2}{ }^{c^{\prime}, z}\right|$

Time complexity

- $\left|\mathrm{R}_{1} \cap \mathrm{R}_{2}\right|$ can be computed in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time.
- For every $\{x, y, z\} \subseteq S$,
- $\left|T_{1}{ }^{c, x} \cap T_{2}{ }^{c}, x\right|,\left|T_{1}{ }^{c, y} \cap T_{2}{ }^{c}, y\right|,\left|T_{1}{ }^{c, z} \cap T_{2}{ }^{c}, z\right|$, and $\left|T_{1}{ }^{\text {c,rest }} \cap T_{2}{ }^{\mathrm{c}, \text { rest }}\right|$ can be computed in O(1) time.
- In total, the running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$.

Consensus Tree

Consensus tree problem

- Given a set of n species S
- Given a set of trees $\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$
- where the leaves of every T_{i} are labeled by S
- Question: Find a tree which summarizes all the trees $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{m}}$.

Applications

1. Find the bootstrapping tree.
2. Given a set of gene trees, infer the species tree.

Split of an edge

- Each edge can partition the set of species
- In the following tree, the red edge partition the species into \{a, $\mathrm{b}, \mathrm{c}\}$ and $\{\mathrm{d}, \mathrm{e}\}$.
- So, the split of the red edge is $\{a, b, c\} \mid\{d, e\}$.
- Note that for any $x \in S,\{x\} \mid S-\{x\}$ must be a valid split due to the leaf edge connecting the leaf x.

b

Properties of split

- Two splits $\mathrm{A} \mid \mathrm{S}-\mathrm{A}$ and $\mathrm{B} \mid \mathrm{S}-\mathrm{B}$ are compatible if $A \subseteq B$ or $A \subseteq S-B$ or $B \subseteq A$ or $B \subseteq S-A$.
- For any tree T, any two splits of T are compatible.
- Given a set of splits W which are pairwise compatible, there exists a tree T which contains all the splits in W.

Example

- There is a one-to-one correspond between the tree and the set of splits of all its edges.

\{a\}| \{b,c,d,e\}
\{b\}|\{a, c, d,e\}
\{c\}| \{a,b,d,e\}
$\{d\} \mid\{a, b, c, e\}$
$\{e\} \mid\{a, b, c, d\}$
\{a,b\}|\{c,d,e\}
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \mid\{\mathrm{d}, \mathrm{e}\}$

Strict consensus tree

- The strict consensus tree T of $\left\{T_{1}, T_{2}, \ldots, T_{m}\right\}$ contains exactly those splits which appear in all T_{i}.
- The strict consensus tree always exists.
- Example: T is the strict consensus tree of T_{1} and T_{2}.

T_{1}

T

The strict consensus tree always exists

- Let W_{i} be the set of splits of T_{i}, $\mathrm{i}=1,2, \ldots, \mathrm{~m}$.
- The set of splits of the strict consensus tree is $W_{1} \cap W_{2} \cap \ldots \cap W_{m}$.

How to find strict consensus tree of two trees?

Input: Two trees $\mathrm{T}_{1}, \mathrm{~T}_{2}$
Output: the strict consensus tree

- Run O(n) time Day's algorithm to find all the good edges.
- Generate the strict consensus tree.
- Precisely, the strict consensus tree is formed by contracting all bad edges.
- Time complexity: $\mathrm{O}(\mathrm{n})$.

How to find strict consensus tree of m trees?

Input: m trees $T_{1}, T_{2}, \ldots, T_{m}$.
Output: the strict consensus tree

- Let $\mathrm{T}=\mathrm{T}_{1}$.
- For $\mathrm{i}=2$ to m
- Set T be the strict consensus tree of T and T_{i}.
- Return T;
- Time complexity: O(mn)

Majority rule tree

- The majority rule tree contains exactly those splits that appear in more than half of the input trees.
- The majority rule tree is unique (why?) and always exists.
- Example: T is also the majority rule tree of T_{1}, T_{2}, and T_{3}.

T_{1}

T_{3}

T
- Given two trees, the majority rule tree is the same as the strict consensus tree.

Algorithm

Input: m trees $T_{1}, T_{2}, \ldots, T_{m}$.
Output: the majority tree

1. Count the occurrences of each split, storing the counts in a table.
2. Select those splits with occurrences > $\mathrm{m} / 2$.
3. Using the selected splits, create the majority tree.

Step 1

- For each T_{i},
- We run Day's algorithm for $\left(T_{i}, T_{j}\right)$ for all $j=i+1$, ..., m.
- For every edge in T_{i} which are unmarked, we count the number of good edges in T_{j} for $\mathrm{j}>\mathrm{i}$.
- Also, we mark those good edges in T_{j} as counted.
- Time complexity: Each T_{i} takes $\mathrm{O}(\mathrm{nm})$ time. Hence, Step 1 takes $O\left(m^{2} n\right)$ time.

A lemma for step 3

- Suppose we rooted the majority consensus tree at the leaf 1.
- Lemma: If p is a parent split of c in the majority tree, there exists a tree T_{j} which contains both splits p and c.
- Proof: Both p and c appears in more than $\mathrm{m} / 2$ trees. By pigeon-hole principle, there exists a tree which contains both p and c.

Step 3

- We root all tree T_{i} at the leaf 1.
- For each T_{i}, we get T_{i} which is the tree formed by contracting all the non-majority splits.
- Let T' be T' ${ }_{1}$.
- For each $i=2, \ldots, m$,
- We traverse T_{i} in depth first search order.
- For any split c in T_{i}, let p be its parent split in T_{i}.
- If c does not exists in T', we introduce c as the child split of p in T'. (Note: p must exists in T' since we traverse the tree in depth first search order.)
- Time complexity: O(nm) time.

Time complexity for constructing majority consensus tree

- In summary, the majority consensus tree can be constructed in $\mathrm{O}\left(\mathrm{nm}^{2}\right)$ time.
- Note: Majority consensus tree can be built in $\mathrm{O}(\mathrm{nm})$ expected time.
- Nina Amenta, Frederick Clarke and Katherine St. John. A Linear-time Majority Tree Algorithm, 216-227, WABI, 2003.

Symmetric difference distance

- Denote $\mathrm{d}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ be the symmetric difference between T_{1} and T_{2}.
- The number of splits appearing in one tree but not the other.
- Example: For T_{1} and $T_{2},\{A, D, E\} \mid\{B, C\}$ only appears in T_{1} and $\{A, C\} \mid\{B, D, E\}$ only appears in T_{2}. Hence, $d\left(T_{1}, T_{2}\right)=2$.

T_{1}

T_{2}

Median tree

- The median tree T for $T_{1}, T_{2}, \ldots, T_{m}$ minimizes
- $\Sigma_{i=1 . . m} d\left(T, T_{i}\right)$.
- Barthelemy and McMorris showed that majroity rule tree is the same as the median tree.

Asymmetric median consensus tree

- For every split, its weight is defined to be the number of input trees containing it.
- The asymmetric median tree a set of splits which maximizes the total weight.
- The asymmetric tree always exists.
- Example: Both T_{1} and T_{2} are also the asymmetric median trees of T_{1} and T_{2}.

T_{1}

T_{2}

Asymmetric difference distance

- Denote $d_{a}\left(T_{1}, T_{2}\right)$ be the symmetric difference between T_{1} and T_{2}.
- The number of splits appearing in T_{2} but T_{1}.
- Example: For T_{1} and T_{2}, ($\{A, C\},\{B, D, E\}$) only appears in T_{2} but not T_{1}. Hence, $d_{a}\left(T_{1}, T_{2}\right)=1$.

T_{1}

T_{2}

Property of asymmetric median tree

- The asymmetric median tree T for T_{1}, T_{2}, \ldots, T_{m} minimizes
- $\Sigma_{i=1 . . \mathrm{m}} \mathrm{d}_{\mathrm{a}}\left(\mathrm{T}, \mathrm{T}_{\mathrm{i}}\right)$.

Greedy consensus tree

- Greedy consensus tree is created by
- Sequentially include split one by one.
- Every iteration, we include the most frequent split that is compatible with the included splits (breaking the ties randomly).
- Do this until we cannot include any other split.

Example

T_{2}

T_{3}

T

- Greedy consensus tree is a refinement of the majority-rule consensus tree.

R* tree

- For each set of 3 species, find the most commonly occurring triplet e.g., $C \mid A B$, $\mathrm{B} \mid \mathrm{AC}$ or $\mathrm{A} \mid \mathrm{BC}$.
- Build the tree from the most commonly occurring triplets.

Example of R* tree

- C|AB-3, A|BC - $0, B \mid A C-0$
- $A|C D-1, C| A D-1, D \mid A C-1$
- $B|C D-1, C| B D-1, D \mid B C-1$
- $D|A B-3, A| B D-0, B \mid A D-0$
$C|A B, D| A B$

Correctness

- Lemma: Let C be the set of most commonly occurring triplets. There exists a most resolved tree which is consistent with all triplets in C. Also, such tree is unique.
- Proof:
- Steel, M. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9:91-116, 1992.

Algorithm for computing R* tree

1. Computing the number of occurrences of all triplets in the m trees.

- There are n^{3} triplets in each tree and there are m trees. Hence, it takes $\mathrm{O}\left(\mathrm{m} \mathrm{n}^{3}\right)$ time.

2. For each set of 3 species $\{A, B, C\}$, find the most commonly occurring triplet.

- This step takes $O\left(n^{3}\right)$ time.

3. Constructing the tree from the set C of the most commonly occurring triplets.

- By triplet method, this step takes $\mathrm{O}\left(\min \left\{\mathrm{O}\left(\mathrm{k} \log ^{2} \mathrm{n}\right), \mathrm{O}\left(\mathrm{k}+\mathrm{n}^{2} \log \right.\right.\right.$ n) \}) where $k=|C|<n^{3}$. Hence, this step takes $O\left(n^{3}\right)$ time.
- The whole algorithm runs in $\mathrm{O}\left(\mathrm{m} \mathrm{n}^{3}\right)$ time.

Other directions of Phylogenetic study

- Supertree
- No method can find the phylogenetic tree for all species
- To find the phylogenetic tree for all species, one method is to combine a number of phylogenetic trees
- The combined tree is called supertree.
- The difficulties of this problem is to resolve the conflicts among the trees.

Other directions of Phylogenetic study

- Phylogenetic network
- Evolution is in fact more than a point mutation. We have other types of evolutions. Like:
- Hybridization.
- E.g. tiger + lion \rightarrow tiglion
- Horizontal gene transfer
- E.g. Bovine Corona Virus (genbank ID NC_003045) + Murine Hepatitis Virus (genbank ID AF201929) \rightarrow SARS
- Phylogenetic tree cannot model those types of evolutions.

Reference (Robinson-Foulds distance and Day's algorithm)

- D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathematical Biosciences, 53:131-147, 1981.
- W. H. E. Day. Optimal algorithms for comparing trees with labeled leaves. J ournal of Classification, 2:7-28, 1985.

Reference (NNI-distance and Subtree-transfer distance)

- M. Li, J. Tromp, and L. X. Zhang. Some notes on the nearest neighbour interchange distance. J ournal of Theoretical Biology, 182:463-467, 1996.
- B. DasGupta, X. He, T. Jiang, M. Li, and J. Tromp. On the linear-cost subtreetransfer distance between phylogenetic trees. Algorithmica, 25(2):176-195, 1999.
- B. Das Gupta, X. He, T. Jiang, M. Li, J. Tromp, and L. Zhang. On distance between phylogenetic trees. In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 427-436, 1997.
- J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences, 98:185-200, 1990.
- J. Hein. A heuristic method to reconstruct the history of sequences subject to recombination. Journal of Molecular Evolution, 36:396-405, 1993.
- G. W. Moore, M. Goodman, and J. Barnabas. An iterative approach from teh standpoint of the additive hypothesis to the dendrogram problem posed by molecular data sets. J ournal of Theoretical Biology, 38:423-457, 1973.
- D. F. Robinson. Comparison of labeled trees with valency three. Journal of Combinatorial Theory, 11:105-119, 1971.

Reference for consensus tree

- Nina Amenta, Frederick Clarke, and Katherine St. John. A linear-time majority tree algorithm. WABI, 216-227, 2003.
- T. Margush and F.R. McMorris. Consensus n-trees. Bulletin of Mathematical Biology, 43:239-244, 1981.

