
Algorithms in Bioinformatics: A 
Practical Introduction

Phylogenetic Tree comparison and 
Consensus Trees



Phylogenetic Tree comparison



Why tree comparison?
 Different phylogenies are resulted using 

different
 Kind of data (different segments of the genomes)
 Kind of model (CF model, Jukes-Cantor Model)
 Kind of reconstruction algorithm

 Tree comparison helps us to gain information 
from multiple trees.



Two types of comparsions
 Similarity measurement

 Find the common structure among the given trees
 Maximum Agreement Subtree

 Dissimilarity measurement
 Determine the differences among the given trees

 Robinson-Foulds distance
 Nearest neighbor interchange
 Subtree Transfer Distance
 Quartet Distance



Restricted subtree

 Consider a trees T
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Agreement subtree
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Maximum agreement subtree 
(MAST)
 Given two trees T1 and T2

 Agreement subtree of T1 and T2 is the 
common information agreed by both trees.
 Since it is agreed by both trees, the evolution of 

the agreement subtree is more reliable!
 Maximum agreement subtree problem

 Find the agreement subtree with the largest 
possible number of leaves.

 Such agreement subtree is called the maximum 
agreement subtree



MAST for rooted trees
 MAST of two degree-d rooted trees T1 and T2

with n leaves can be computed in

 (Journal of Algorithm 2001)

 This lecture considers an O(n2)-time 
algorithm which compute the maximum 
agreement subtree of two binary trees with n 
leaves.
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Computing MAST by dynamic 
programming

 For any two binary rooted trees T1 and 
T2, denote MAST(T1, T2) be the number 
of leaves in the maximum agreement 
subtree

 Some definition:
 For a tree T and a node u, Tu is the 

subtree of T rooted at u



Not complete!
 For any node pair (u,v)∈T1×T2, 

 let a and b be two children of u
 let c and d be two children of v

 Let R be the maximum agreement 
subtree of T1 and T2.

 We have the following cases:
 R is an agreement subtree of T1

a

 R is an agreement subtree of T1
b
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Recurrence (II)
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Recurrence (VII)
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Time complexity

 Suppose T1 and T2 are rooted 
phylogenies for n species.

 We have to compute MAST(T1
u, T2

v) for 
every u in T1 and v in T2.

 Thus, we need to fill in n2 entries. Each 
entry can be computed in O(1) time.

 In total, the time complexity is O(n2).



MAST for unrooted trees
 In real life, we normally want to compute 

MAST for unrooted trees.
 For unrooted degree-3 trees U1 and U2, 

MAST(U1, U2) can be computed in O(n log n) 
time. (STOC 97)

 For general unrooted trees U1 and U2, 
MAST(U1, U2) can be computed in O(n1.5 log n) 
time. (SIAM J. of Comp 2000)

 This lecture shows the relationship between 
unrooted MAST and rooted MAST!



Relating rooted and unrooted 
trees (I)

 Definition:
 For an unrooted tree U, for any edge e in 

U, Ue is the rooted tree rooted at the edge 
e.

x1

x5
x3

x2

x4

x1

x5 x3

x2 x4


rooted at 
edge e

e



Relating rooted and unrooted 
trees (II)

 Consider two unrooted trees U1 and U2

 Lemma: For any edge e of U1,

 Proof: Exercise!

 Based on the above lemma, we can 
relate rooted MAST and unrooted MAST!

} of edgean  is |),(max{),( 22121 UfUUMASTUUMAST fe=



Robinson-Foulds distance

 Given two phylogenies T1 and T2,
 Intuitively, this method tries to count 

the number of edges which are not 
agreed by T1 and T2.

 First, we need to have some definitions!



Partitioning of a tree
 Each edge can partition the set of species
 In the following tree, the red edge partition 

the species into {a, b, c} and {d, e}

c

a

b

d

e



Good and bad edges
 Consider two unrooted trees T and T’, an edge x in T is called a 

good edge if there exists an edge x’ in T’ such that both of 
them form the same partitions! Similarly, x’ is also called a good 
edge.

 Otherwise, the edge is called a bad edge!

c
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e

a
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c

e

d

T T’
x x’



Leaf edges are always good
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Robinson-Foulds (RF) distance
 Robinson-Foulds distance =

(number of bad edges in T w.r.t T’ + number of bad 
edges in T’ w.r.t. T)/2

 T and T’ looks similar if RF-dist(T, T’) is small.
 For example, the robinson-foulds distance of T and T’

= (1+1)/2 = 1.

c
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e

d

T T’

Bad edges!



Degree-3 trees T and T’
 When both T and T’ are of degree-3, 

number of bad edges in T w.r.t. T’ = number 
of bad edges in T’ w.r.t. T

 Proof:
 Since both T and T’ are of degree-3, T and T’

have the same number of edges
 Number of good edges in T w.r.t. T’ = number of 

good edges in T’ w.r.t. T
 Lemma follows.



How to find the set of good 
edges in T w.r.t. T’?
 Brute-force algorithm:

 For every edge e in T,
 If the partition formed by e is the same as the 

partition formed by some edge e’ in T’, e is a 
good edge!

 Time analysis:
 For every edge e in T, the checking takes O(n) 

time.
 In total, the time complexity is O(n2)!
 Can we do better?



Day’s algorithm
 Yes! The problem can be solved in O(n) time 

based on Day’s algorithm.
 Input: two unrooted phylogenies T1 and T2

for the same set of species
 Output: the set of good edges in T1 w.r.t. T2

 Idea:
 Build data-structure which enables constant time 

checking whether a particular partition of leaves 
exists in T1.



Step 1
 Root T1 and T2 at the leaves with label n.
 This step takes O(n) time.

n n
T1 T2



Example for step 1
3
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↓



Step 2
 Relabel the leaves of T1 in increasing order.
 Note: for every internal node x of T1, the set of leaf 

labels in the subtree of x form an interval [i..j].
 This step takes O(n) time.

n n
T1 T2

1 n-1i j

x



Example for step 2
5

3 1 2 4

5

1 2 3 4

T1 T2

5
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T1 T2

↓

[2..3]



Step 3
 Create a hash table H[1..n]
 For every node x in T1, we store the 

corresponding interval [ix..jx] in either H[ix] or 
H[jx]
 Store [ix..jx] in H[jx] if x is the leftmost child of its 

parent in T1;
 Otherwise, store the interval [ix..jx] in the entry 

H[ix].
 This step takes O(n) time.
 Question: Will we store two intervals in the 

same entry in H?



Example for step 3

k H(k)
1
2 [2..3]
3 [1..3]
4 [1..4]

5

1 2 3 4

5

2 3 1 4

T1 T2



Observation
 Lemma: we store at most one interval in each entry in H.
 Proof:

 By contrary, suppose H[i] contain two intervals which are 
represented by internal nodes x and y.

 By definition, i should be the endpoints of the intervals 
represented by x and y. Thus, x and y should satisfy the 
ancestor-descendent relationship. WLOG, assume x is the 
ancestor of y. Then, y’s interval should be the subinterval of 
x’s interval

 So, we can have either
1. x’s interval = [j..i] and y’s interval = [j’..i] for j<j’; OR

 This means that both x and y are the leftmost 
children of their parents.

 The right endpoint of x’s interval should not be i!
 Contradiction!

2. x’s interval = [i..j] and y’s interval = [i..j’] for j>j’
 Similar to the above case, we can arrive at 

contradiction!

y

j’ i

x



More on step 3

 Given the hash table H, we can check 
whether an interval [i..j] exists in T1 by 
checking if H[i] or H[j] equals [i..j]!



Step 4
 For T2, by traversing the tree, for each internal node 

u, we compute 
 the minimum (minu) and the maximum (maxu) leaf labels
 the number of leaves (sizeu)

in the subtree rooted at u
 If (maxu-minu+1=sizeu), then 

 the leaves labels in the subtree of node u form an interval 
[minu..maxu]. 

 Check whether H[minu] or H[maxu] equals [minu..maxu]. If 
yes, (u,v) is a good edge where v is the parent of u in T2.

 This step takes O(n) time.



Example for step 4

5

2 3 1 4

T2

x
z

minu maxu sizeu maxu-minu+1
x 1 3 3 3
y 1 3 2 3

Note: sizex=maxx-minx+1
Also, H[3]=[1..3]
Thus, (x, z) is a good edge!

y



Time complexity

 All 4 steps can correctly recover the 
good edges.

 They can be computed in O(n) time.
 Thus, the total time complexity is O(n).



Nearest Neighbor Interchange 
(NNI)

 Given an unrooted, degree-3 tree T,
 NNI operation exchanges two subtrees 

across an edge.
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b



NNI-dist
 Given two unrooted, degree-3 trees T1 and T2,
 NNI-dist(T1, T2) is the minimum number of 

NNI-operations required to convert T1 to T2.
 T1 and T2 looks similar if NNI-dist(T1, T2) is 

small.

 Computing NNI-dist is NP-hard.



Example
3
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NNI-dist(T1, T2) = 2



Properties of NNI-dist
 Property 1:

NNI-dist(T1, T2)=NNI-dist(T2, T1)

 Property 2: NNI-dist(T1, T2)≥number of 
bad edges in T1 w.r.t. T2.

 Proof:
 To remove one bad edge, we require at 

least one NNI-operation



Approximation algorithm for 
NNI-dist

 There exists a polynomial time (log n)-
approximated algorithm.



Subtree Transfer (STT)
 Consider a degree-3 unrooted tree T
 A subtree transfer operation is the operation 

of detaching a subtree and reattached it to 
the middle of another edge

 An STT operation is charged by the number 
of nodes the subtree is transferred.

S S


The cost of this 
STT operation is 2



STT-dist

 Given two degree-3 unrooted trees T1
and T2,

 STT-dist(T1, T2) is the minimum cost 
series of STT operations which 
transform T1 to T2.

 T1 and T2 looks similar if STT-dist(T1, T2) 
is small.



Property of STT-dist
 STT-dist(T1, T2) = NNI-dist(T1, T2)
 Proof:

 STT-dist(T1, T2) ≤ NNI-dist(T1, T2) 
because each NNI-operation is an STT-
operation.

 STT-dist(T1, T2) ≥ NNI-dist(T1, T2) 
because each STT-operation of cost k can 
be simulated by k NNI-operations.



More on STT-dist

 Based on the result for NNI-operation,  
we have
 STT-dist(T1, T2) is NP-hard to compute.
 There exists a polynomial time (log n)-

approximated algorithm to compute 
STT-dist(T1, T2)



Quartet
 A quartet is a phylogenetic tree with 4 

species.

x

y

z

w y

zx

w

Butterfly quartet Star quartet



Quartet distance
 Given two unrooted trees T1 and T2,

 The quartet distance is the number of set of 4 
species {w,x,y,z} such that
 T1|{w,x,y,z} ≠ T2|{w,x,y,z}.

3

1
2

4

5

T1
4

2
3

5

1

T2

{1,2,3,4}: different
{1,2,3,5}: different
{1,2,4,5}: different
{1,3,4,5}: different
{2,3,4,5}: same

Quartet distance = 4



Previous works

 When T1 and T2 are of degree-3,
 Steel and Penny (1993): O(n3) time.
 Bryant et al. (2000): O(n2) time.
 Brodal et al. (2003): O(n log n) time

 When T1 and T2 are of degree-d,
 Christiansen et al. (2005): O(n3) time or 

O(d2n2) time.



Property

 Number of different quartets + number 
of shared quartets =    .






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Brute-force method

 count = 0;
 for every {w,x,y,z} ⊆ S,

 if T1|{w,x,y,z} = T2|{w,x,y,z}, count++;

 Report     - count;

 The running time is at least O(n4).



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Observation
 Consider a tree T which is leaf-labeled by S.
 For any {x,y,z} ⊆ S,

 There exists a unique internal node c in T such that c appears in 
any paths from x to y, y to z, and x to z.

 We denote Tc,x be a set of species which appear in the child 
subtree containing x. (Similarly, we define Tc,y and Tc,z.)

 Let Tc,rest = S – (Tc,x ∪ Tc,y ∪ Tc,z).

x

z

y

c



 Note that, for all species w∈Tc,x, the quartet for 
{w,x,y,z} in T is wx|yz.

 Similarly, for all species w∈Tc,y, the quartet for 
{w,x,y,z} in T is wy|xz.

 Similarly, for all species w∈Tc,z, the quartet for 
{w,x,y,z} in T is wz|xy.

 Similarly, for all species w∈Tc,rest, the quartet for 
{w,x,y,z} in T is a star quartet.



 Consider two trees T1 and T2.
 The number of shared butterfly quartets 

involving x,y,z is |T1
c,x∩T2

c’,x| + 
|T1

c,y∩T2
c’,y| + |T1

c,z∩T2
c’,z| - 3.

 The number of shared star quartets 
involving x,y,z is |T1

c,rest∩T2
c’,rest|.



Algorithm
 count = 0;
 Compute |R1∩R2| for any subtree R1 of T1 and any subtree R2 of 

T2.
 For every {x,y,z} ⊆ S,

 Let c be the center of x,y, and z in T1.
 Let T1

c,x, T1
c,y, and T1

c,z be the subtrees attached to c containing x, 
y, z, respectively.

 Set T1
c,rest = S – (T1

c,x ∪ T1
c,y ∪ T1

c,z).
 Let c’ be the center of x,y, and z in T2. 
 Let T2

c’,x, T2
c’,y, and T2

c’,z be the subtrees attached to c’ containing 
x, y, z, respectively. 

 Set T2
c’,rest = S – (T2

c’,x ∪ T2
c’,y ∪ T2

c’,z).
 count = count + |T1

c,x∩T2
c’,x| + |T1

c,y∩T2
c’,y| + |T1

c,z∩T2
c’,z| + 

|T1
c,rest∩T2

c’,rest| - 3
 Report     - count/4;








4
n



Computing |R1∩R2|
 For any e=(u,v) in T1

 e partitions T1 into two subtrees with leaf sets Qv 
and Qu = S-Qv.

 For any e’=(u’,v’) in T2,
 e’ partitions T2 into two subtrees with leaf sets Qv’ and 

Qu’=S-Qv’.
 |T1

u,v∩T2
u’,v’|=|Qv∩Qv’|

 The running time is O(n3).
 The algorithm can be improved to O(n2) time.



Computing |T1
c,rest∩T2

c’,rest| in 
O(1) time

 |T1
c,rest∩T2

c’,rest| = |T2
c’,rest|- (|T1

c,x∩T2
c’,rest| + |T1

c,y∩T2
c’,rest| + 

|T1
c,z∩T2

c’,rest|)

 |T2
c’,rest| = |S| - |T2

c’,x|- |T2
c’,y| - |T2

c’,z|

 |T1
c,x∩T2

c’,rest| = |T1
c,x| - (|T1

c,x∩T2
c’,x| + |T1

c,x∩T2
c’,y| + |T1

c,x∩T2
c’,z|).

 |T1
c,y∩T2

c’,rest| = |T1
c,y| - (|T1

c,y∩T2
c’,x| + |T1

c,y∩T2
c’,y| + |T1

c,y∩T2
c’,z|).

 |T1
c,z∩T2

c’,rest| = |T1
c,z| - (|T1

c,z∩T2
c’,x| + |T1

c,z∩T2
c’,y| + |T1

c,z∩T2
c’,z|).



Time complexity
 |R1∩R2| can be computed in O(n2) time.
 For every {x,y,z} ⊆ S,

 |T1
c,x∩T2

c’,x|, |T1
c,y∩T2

c’,y|, |T1
c,z∩T2

c’,z|, 
and |T1

c,rest∩T2
c’,rest| can be computed in 

O(1) time.

 In total, the running time is O(n3).



Consensus Tree



Consensus tree problem
 Given a set of n species S
 Given a set of trees {T1, T2, …, Tm}

 where the leaves of every Ti are labeled by S

 Question: Find a tree which summarizes all 
the trees T1, T2, …, Tm.



Applications

1. Find the bootstrapping tree.

2. Given a set of gene trees, infer the 
species tree.



Split of an edge
 Each edge can partition the set of species
 In the following tree, the red edge partition the species into {a, 

b, c} and {d, e}.
 So, the split of the red edge is {a,b,c}|{d,e}.
 Note that for any x∈S, {x}|S-{x} must be a valid split due to the 

leaf edge connecting the leaf x.
c

a

b

d

e



Properties of split
 Two splits A|S-A and B|S-B are compatible if 

A⊆B or A⊆S-B or B⊆A or B⊆S-A.

 For any tree T, any two splits of T are 
compatible.

 Given a set of splits W which are pairwise 
compatible, there exists a tree T which 
contains all the splits in W.



Example
 There is a one-to-one correspond between 

the tree and the set of splits of all its edges.

c

a

b

d

e

{a}|{b,c,d,e}
{b}|{a,c,d,e}
{c}|{a,b,d,e} 
{d}|{a,b,c,e} 
{e}|{a,b,c,d}
{a,b}|{c,d,e}
{a,b,c}|{d,e}



Strict consensus tree
 The strict consensus tree T of {T1, T2, …, Tm} contains exactly 

those splits which appear in all Ti.
 The strict consensus tree always exists.

 Example: T is the strict consensus tree of T1 and T2.

T1 T2 T



The strict consensus tree always 
exists

 Let Wi be the set of splits of Ti, 
i=1,2,...,m.

 The set of splits of the strict consensus 
tree is W1∩W2∩…∩Wm.



How to find strict consensus tree 
of two trees?
Input: Two trees T1, T2

Output: the strict consensus tree
 Run O(n) time Day’s algorithm to find all the 

good edges.
 Generate the strict consensus tree.

 Precisely, the strict consensus tree is formed by 
contracting all bad edges.

 Time complexity: O(n).



How to find strict consensus tree 
of m trees?

Input: m trees T1, T2, …, Tm.
Output: the strict consensus tree
 Let T=T1.
 For i = 2 to m

 Set T be the strict consensus tree of T and Ti.

 Return T;

 Time complexity: O(mn)



Majority rule tree
 The majority rule tree contains exactly those splits that appear 

in more than half of the input trees.
 The majority rule tree is unique (why?) and always exists.

 Example: T is also the majority rule tree of T1 , T2, and T3.

T1 T2 TT3



 Given two trees, the majority rule tree 
is the same as the strict consensus tree.



Algorithm
Input: m trees T1, T2, …, Tm.
Output: the majority tree
1. Count the occurrences of each split, 

storing the counts in a table.
2. Select those splits with occurrences > 

m/2.
3. Using the selected splits, create the 

majority tree.



Step 1
 For each Ti,

 We run Day’s algorithm for (Ti, Tj) for all j = i+1, 
…, m.

 For every edge in Ti which are unmarked, we 
count the number of good edges in Tj for j>i.

 Also, we mark those good edges in Tj as counted.

 Time complexity: Each Ti takes O(nm) time. 
Hence, Step 1 takes O(m2n) time.



A lemma for step 3
 Suppose we rooted the majority consensus 

tree at the leaf 1.

 Lemma: If p is a parent split of c in the 
majority tree, there exists a tree Tj which 
contains both splits p and c.

 Proof: Both p and c appears in more than 
m/2 trees. By pigeon-hole principle, there 
exists a tree which contains both p and c.



Step 3
 We root all tree Ti at the leaf 1.
 For each Ti, we get T’i which is the tree formed by 

contracting all the non-majority splits.
 Let T’ be T’1.
 For each i=2, …, m,

 We traverse T’i in depth first search order.
 For any split c in T’i, let p be its parent split in T’i.
 If c does not exists in T’, we introduce c as the child split of 

p in T’. (Note: p must exists in T’ since we traverse the tree 
in depth first search order.)

 Time complexity: O(nm) time.



Time complexity for constructing 
majority consensus tree

 In summary, the majority consensus 
tree can be constructed in O(nm2) time.

 Note: Majority consensus tree can be 
built in O(nm) expected time.
 Nina Amenta, Frederick Clarke and 

Katherine St. John. A Linear-time Majority 
Tree Algorithm, 216-227, WABI, 2003.



Symmetric difference distance
 Denote d(T1, T2) be the symmetric difference between T1 and 

T2.
 The number of splits appearing in one tree but not the other.

 Example: For T1 and T2, {A,D,E}|{B,C} only appears in T1 and 
{A,C}|{B,D,E} only appears in T2. Hence, d(T1, T2) = 2.

T1 T2



Median tree
 The median tree T for T1, T2, …, Tm

minimizes
 Σi=1..m d(T, Ti).

 Barthelemy and McMorris showed that 
majroity rule tree is the same as the 
median tree.



Asymmetric median consensus 
tree
 For every split, its weight is defined to be the number of input trees 

containing it.
 The asymmetric median tree a set of splits which maximizes the total 

weight.
 The asymmetric tree always exists.

 Example: Both T1 and T2 are also the asymmetric median trees of T1
and T2.

T1 T2



Asymmetric difference distance
 Denote da(T1, T2) be the symmetric difference between T1 and 

T2.
 The number of splits appearing in T2 but T1.

 Example: For T1 and T2, ({A,C}, {B,D,E}) only appears in T2 but 
not T1. Hence, da(T1, T2) = 1.

T1 T2



Property of asymmetric median 
tree

 The asymmetric median tree T for T1, 
T2, …, Tm minimizes
 Σi=1..m da(T, Ti).



Greedy consensus tree

 Greedy consensus tree is created by
 Sequentially include split one by one.
 Every iteration, we include the most 

frequent split that is compatible with the 
included splits (breaking the ties 
randomly).

 Do this until we cannot include any other 
split.



Example

T1 T2
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3
3

3
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 Greedy consensus tree is a refinement 
of the majority-rule consensus tree.



R* tree

 For each set of 3 species, find the most 
commonly occurring triplet e.g., C|AB, 
B|AC or A|BC.

 Build the tree from the most commonly 
occurring triplets. 



Example of R* tree

 C|AB – 3, A|BC – 0, B|AC – 0
 A|CD – 1, C|AD – 1, D|AC – 1
 B|CD – 1, C|BD – 1, D|BC – 1
 D|AB – 3, A|BD – 0, B|AD – 0

BA C D BA

C

D

BA

C

D

BA

C DC|AB, D|AB



Correctness
 Lemma: Let C be the set of most commonly 

occurring triplets. There exists a most 
resolved tree which is consistent with all 
triplets in C. Also, such tree is unique.

 Proof:
 Steel, M. The complexity of reconstructing trees 

from qualitative characters and subtrees. Journal 
of Classification, 9:91–116, 1992.



Algorithm for computing R* tree
1. Computing the number of occurrences of all triplets in the m 

trees.
 There are n3 triplets in each tree and there are m trees. Hence, it 

takes O(m n3) time.
2. For each set of 3 species {A, B, C}, find the most commonly 

occurring triplet.
 This step takes O(n3) time.

3. Constructing the tree from the set C of the most commonly 
occurring triplets.
 By triplet method, this step takes O(min{O(k log2n), O(k + n2log 

n)}) where k=|C|<n3. Hence, this step takes O(n3) time.

 The whole algorithm runs in O(m n3) time.



Other directions of 
Phylogenetic study
 Supertree

 No method can find the phylogenetic tree for all species
 To find the phylogenetic tree for all species, one method is 

to combine a number of phylogenetic trees
 The combined tree is called supertree.
 The difficulties of this problem is to resolve the conflicts 

among the trees.

x1 x2 x3

x4 x5

x1 x3

x5

x2 x3

x4 x5
+ 



Other directions of 
Phylogenetic study
 Phylogenetic network

 Evolution is in fact more than a point mutation. We have other types of 
evolutions. Like:

 Hybridization.
 E.g. tiger + lion  tiglion

 Horizontal gene transfer
 E.g. Bovine Corona Virus   (genbank ID NC_003045 )  + Murine Hepatitis Virus  

( genbank ID AF201929)  SARS

 Phylogenetic tree cannot model those types of evolutions.

x1 x2 x3

x4
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