
Algorithms in Bioinformatics: A
Practical Introduction

Genome Rearrangement

Evidences of Genome
Rearrangement

 In 1917, Sturtevant showed that strains
of Drosophila melanogaster coming
from the same or from distinct
geographical localities may differ in
having blocks of genes rotated by 180°
(reversal).

Evidences of Genome
Rearrangement

 In 1938, Dobzhansky and
Sturtevant studied
chromosome 3 of 16
different strains of
Drosophila pseudoobscura
and Drosophila miranda.

 They observed that the 17
strains from a evolutionary
tree where every edge
corresponds to one
reversal.

 Hence, Dobzhansky and
Sturtevant proposed that
species can evolve through
genome rearrangements.

Evidences of Genome
Rearrangement
 In 1980s Jeffrey Palmer and co-authors studied evolution of

plant organelles by comparing the gene order of mitochondrial
genomes

 They pioneered studies of the shortest (most parsimonious)
rearrangement scenarios between two genomes.

+1 -5 +4 -3 +2

+1 -5 +4 -3 -2

+1 -5 -4 -3 -2

+1 +2 +3 +4 +5

B. oleraca
(cabbage)

B. campestris
(turnip)

Minimum numbers
of reversals to
transform cabbage
to turnip.

Evidences of Genome
Rearrangement

 Human and mouse are also highly similarity in DNA sequences (98%).
 Moreover, their DNA segments are swapped.
 For example, chromosome X of human can be transformed to

chromosome X of mouse using 7 reversals.

 To transfrom human to mouse, it takes 131
reversals/translocations/fusions/fissions.

Types of genome rearrangement
within one chromosome
 Reversal is just the most common rearrangement. Below, we list

the known rearrangement operations within one chromosome:
 Insertion: Inserting of a DNA segment into the genome (ACABC)
 Deletion: Removal of a DNA segment from the genome (ABCAC)

 Duplication: A particular DNA segment is duplicated two times in
the genome (ABCABBC, ABCDABCBD)

 Reversal: Reversing a DNA segment (Ab1b2b3CAb3b2b1C)

 Transposition: cutting out a DNA segment and insert it into another
location (ABCDACBD). This operation is believed to be rare since
it requires 3 breakpoints.

Duplication

A B C D E F G H I J K L

A B C D E F E F G H I J K L

Reversal

Transposition
 Transposition involves 3 breakpoints!

A B C D E F G H I J K L

A B C D G H I E F J K L

Types of genome rearrangement
on two chromosomes (I)

 Translocation: the transfer of a
segment of one chromosome to another
nonhomologous one.

 Fussion: two chromosomes merge

 Fission: one chromsome splits up into
two chromosomes

Genome rearrangement on two
chromosomes (II)

Translocation:

Fusion:

Fission:

Computational problems
 Given two genomes with a set common genes, those genes are

arranged in different order in different genomes.
 Our aim is to understand how one genome evolves into another

through rearrangements.
 By parsimony, we hope to find the shortest rearrangement path.
 Depending on the allowed rearrangement operations, literature

studied the following problems:
 Genome rearrangement by reversals
 Genome rearrangement by translocations
 Genome rearrangement by transpositions

 In this lecture, we focus on genome rearrangement by
reversals. This problem is also called sorting by reversals.

Sorting permutation by reversals
 Consider a permutation of {1, 2, …, n}, that is, π = (π1, π2, …,

πn) representing the ordering of n genes in a genome.
 A reversal ρ(i,j) is an operation applying on π, denoted as

π⋅ρ(i,j), which reverses the order of the element in the interval
[i..j].

 Thus, π⋅ρ(i,j) = (π1, …, πi-1, πj, …, πi, πj+1, …, πn).
 Example: Let π = (2, 4, 3, 5, 8, 7, 6, 1).

 π⋅ρ(3,5) = (2, 4, 8, 5, 3, 7, 6, 1).

 Our aim is to find the minimum number of reversals that
transform π to an identify permutation (1, 2, …, n).

 The minimum number of reversals need to transform π to
identity permutation is called the reversal distance, denoted by
d(π).

Example: sorting unsigned
permutation

 2, 4, 3, 5, 8, 7, 6, 1

 2, 3, 4, 5, 8, 7, 6, 1

 2, 3, 4, 5, 6, 7, 8, 1

 8, 7, 6, 5, 4, 3, 2, 1

 1, 2, 3, 4, 5, 6, 7, 8

Previous works on
sorting unsigned permutation
 Kececioglu and Sankoff (1995): 2-approximation
 Bafna and Pevzner (SIAM Comp 1996): 1.75-

approximation
 Caprara (RECOMB 1997, SIAM Discrete Math 2001):

NP-hard
 Christie (SODA 1998): 1.5-approximation
 Berman and Karpinski (ICALP 1999): MAX-SNP hard
 Berman, Hannenhalli, Karpinski (ESA 2002): 1.375-

approximation

Upper bound on unsigned
reversal distance

 A way to transform π to identity permutation
is by at most n reversals. The i-th reversal
moves element i to position i.

 Example:
 (4, 5, 3, 1, 2)
 (1, 3, 5, 4, 2)
 (1, 2, 4, 5, 3)
 (1, 2, 3, 5, 4)
 (1, 2, 3, 4, 5)

Lower bound on unsigned
reversal distance
 Let π=(π1, π2, …, πn) be a permutation of {1, 2, …, n}
 There is a breakpoint between πi and πi+1 if |πi-πi+1|>1.
 Denote b(π) be the number of breakpoints in π.
 Since a reversal can reduce at most 2 breakpoints, hence d(π) ≥

b(π)/2.

 Example: π= • 7 6 5 4 • 1 • 9 8 • 2 3 •
 Each • is a breakpoint. Thus, b(π) = 5

 Theorem: b(π)/2 ≤ d(π) ≤ n.

4-approximation algorithm (I)
 A strip is a maximal subsequence without

breakpoints.
 A strip is either increasing or decreasing.
 Strip of size 1 is assumed to be decreasing.

 (There is one exception. We assume there is a hidden ‘0’ on
the left of π. And a hidden ‘n+1’ on the right of π. If the
leftmost strip is (1), we say it is increasing. If the rightmost
strip is (n), we say it is increasing.)

 Example: π=(7, 6, 5, 4, 1, 9, 8, 2, 3)
 There are three breakpoints: (-,7), (4,1), (1,9), (8,2), (3,-).
 Hence, there are 4 strips: (7,6,5,4), (1), (9,8), (2,3).
 Among them, (2,3) is an increasing strip.

4-approximation algorithm (II)
 If π has a decreasing strip,

 let smin be the decreasing strip in π with the minimal element πmin.
 Let s’min be the strip containing πmin-1, which is increasing.
 let ρmin be the reversal which which arrange πmin and πmin-1 side by side.

πminπmin-2,πmin-1

ρmin

πmin πmin-2,πmin-1

ρmin

E.g. 8, 9, 3, 4, 14, 7, 6, 5, 1, 2, 10, 11, 16, 14, 13, 12, 15

E.g. 8, 9, 14, 7, 6, 5, 1, 2, 10, 11, 3, 4, 16, 14, 13, 12, 15

4-approximation algorithm (III)
 Lemma: If π has a decreasing strip, then b(π⋅ρmin)-b(π) ≥ 1.

 Proof:
 There are two cases depending on whether smin is to the right or to the left

of s’min. As shown in the figure, the reversal ρmin reduces b(π) by 1.

πminπmin-2,πmin-1

ρmin

πmin πmin-2,πmin-1

ρmin

4-approximation algorithm (IV)
 Algorithm simpleApprox

 while b(π) > 0,
 if there exist a decreasing strip,

 we reverse π by ρmin [this reversal reduces
b(π) by at least 1];

 else
 reverse an increasing strip to create a

decreasing strip [b(π) does not change]

 The above algorithm will perform at most 2b(π) reversals.
 The optimal solution performs at least b(π)/2 reversals.
 Thus, algorithm simpleApprox has approximation ratio 4.

Example
 π=(8, 9, 3, 4, 7, 6, 5, 1, 2, 10, 11)
 π=(8, 9, 3, 4, 5, 6, 7, 1, 2, 10, 11)
 π=(9, 8, 3, 4, 5, 6, 7, 1, 2, 10, 11)
 π=(9, 8, 7, 6, 5, 4, 3, 1, 2, 10, 11)
 π=(9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 11)
 π=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

2-approximation algorithm
 Previous method cannot guarantee after

resolving each breakpoint, we still have some
decreasing strip.

 Idea for this algorithm:
 We try to ensure we have decreasing strip after

resolving each breakpoint.
 If we fail to ensure that there is a decreasing strip,

we show that we can resolve two breakpoints.

2-approximation algorithm
 If π has a decreasing strip,

 Let smin be the decreasing strip in π with the minimal
element πmin. Let s’min be the strip containing πmin-1, which is
increasing. Let ρmin be the reversal which arrange πmin and
πmin-1 side by side.

 Let smax be the decreasing strip in π with the maximal
element πmax. Let s’max be the strip containing πmax+1, which
is increasing. Let ρmax be the reversal which arrange πmax
and πmax+1 side by side.

 Lemma: Consider a permutation π that has a
decreasing strip. Suppose both π⋅ρmin and π⋅ρmax
contain no decreasing strip. Then, the reversal
ρmin=ρmax removes 2 breakpoints.

2-approximation algorithm
 Proof: Assume both π⋅ρmin and π⋅ρmax contain

no decreasing strip.
 We claim that s’min is to the left of smin.

 Otherwise, the reversal ρmin removes a breakpoint
and still maintains a decreasing strip.

 Similarly, we can show that smax is to the left of
s’max.

πmin πmin-1

ρmin

s’minsmin

πminπmin-1

ρmin

s’min smin

2-approximation algorithm
 We claim that smax is in between s’min and smin.
 Otheriwse, if smax is to the left (or right) of both smin and s’min, then

after the reversal of ρmin, we still have the decreasing strip smax.

 Similarly, we can show that smin is in between smax and s’max.

 Hence, the only possible arrangement such that there is no
decreasing strip after performing either ρmin or ρmax is as follows.

πminπmin-1

ρmin

s’min smin

πmax

smax

πminπmin-1 πmax πmax+1
s’min s’maxsminsmax

2-approximation algorithm

 We claim that there is no element between s’min and smax.
 Between s’min and smax,

 If there is a decreasing strip, we apply the reversal of ρmax and this
decreasing strip retain.

 If there is an increasing strip, we apply the reversal of ρmin and this
strip become decreasing.

 Similarly, we can show that there is no element between smin and
s’max.

 Therefore, the reversal ρmax=ρmin reverses the interval between
πmax and πmin and removes two breakpoints.

πminπmin-1 πmax πmax+1
s’min s’maxsminsmax

2-approximation algorithm
 Algorithm

 if there exist no decreasing strip in π,
 we reverse any increasing strip to create a decreasing strip.

 while b(π) > 0,
 if π⋅ρmin contains decreasing strip,

 we reverse π by ρmin [this reversal reduces b(π) by at least 1];
 else if π⋅ρmax contains decreasing strip,

 We reverse π by ρmax [this reversal reduces b(π) by at least 1];
 else

 We reverse π by ρmax = ρmin [this reversal reduces b(π) by 2];
 We reverse any increasing strip to create a decreasing strip [b(π) does not

change]

 The above algorithm will reduce the number of breakpoints by 2 for every 2
reversals.

 Hence, it will perform b(π) reversals.
 The optimal solution performs at least b(π)/2 reversals.
 Thus, the above algorithm has approximation ratio 2.

Example
 (11, 12, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10); 5 breakpoints
 (11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 3 breakpoints
 (11, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1); 3 breakpoints
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11); 2 breakpoints
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); 0 breakpoint

Sorting signed permutation by
reversals
 Genes have orientation. If we know the orientations, then we

have the problem of sorting signed permutation.

 Given a signed permutation of {0, 1, 2, …, n}, that is, π = (π0,
π1, π2, …, πn).

 We set π0=0 and πn=n to denote the boundary of the genome.
 A reversal ρ(i,j) is an operation applying on π, denoted as

π⋅ρ(i,j), which reverses the order and flip the signs of the
element in the interval [i..j].

 Thus, π⋅ρ(i,j) = (π0, π1, …, πi-1, -πj, …, -πi, πj+1, …, πn).
 Our aim is to find the minimum number of reversals that

transform π to (0, 1, 2, …, n).
 The minimum number of reversals need to transform π to (0, 1,

2, …, n) is called the reversal distance, denoted by d(π).

Example: sorting signed
permutation

 +0,+3,+1,+6,+5,-2,+4,+7

 +0,-5,-6,-1,-3,-2,+4,+7

 +0,-5,-6,-1,+2,+3,+4,+7

 +0,-5,-6,+1,+2,+3,+4,+7

 +0,-5,-4,-3,-2,-1,+6,+7

 +0,+1,+2,+3,+4,+5,+6,+7

Previous works on
sorting signed permutation
 Sankoff (1992): Introduce the problem
 Hannenhalli and Pevzner (1995): First polynomial time algorithm

for sorting a signed permutation O(n4) time.
 Berman and Hannenhalli (1996): Improved to O(n2α(n)) time

where α is the inverse Ackerman’s function.
 Kaplan, Shamir, and Tarjan (1999): O(n2) time.
 Bergeron (2001): A simplifed method O(n3) time and O(n2) time

on a vector-machine
 Tannier, Bergeron, and Sagot (2007): O(n3/2sqrt(log n)) time.

 Computing reversal distance only:
Bader, Moret, and Yan (2001): O(n) time
Bergeron, Mixtacki, and Stoye (2004): O(n) time

Upper bound on signed reversal
distance
 A simple way to transform π to (0, 1, 2, …,

n):
 Disregarding the sign, we can create a correct

sequence by n reversals
 We can correct the sign by at most n sign flips

(reversals of length 1).
 Then, the simple upper bound for the

reversal distance is 2n.

 Can we get a better upper bound?

Pancake problem
 A waiter has a stack of n pancakes. To avoid disaster, the

waiter wants to sort the pancakes in order by size. Having only
one free hand, the only available operation is to lift a top
portion of the stack, invert it, and replace it.

 The Pancake Problem (Goodman 1975) finds the maximum
number of flips needed.

 Gate and Papadimitriou (1979) showed that the number of flips
is at most (5n+5)/3.

 This problem is equivalent to sorting an unsigned permutation
by prefix reversals.

 Hence, the reversal distance for sorting unsigned permutation is
at most (5n+5)/3.

Burnt Pancake problem
 Gates and Papadimitriou (1979) introduced the Burnt

Pancake Problem. Here one side of each pancake is
burnt, and the pancakes must be sorted with the
burnt side down.

 Heydari and Sudborough (1997) showed that the
number of flips is at most 3(n+1)/2.

 This problem is equivalent to sorting a signed
permutation by prefix reversals.

 Hence, the reversal distance for sorting signed
permutation is at most 3(n+1)/2.

Sorting signed permutation
 Below, we discuss an O(n3) time solution for

sorting signed permutation.

 First, we need to understand three concepts:
 Interval
 Cycle
 Component

Points and breakpoints
 Consider a signed permutation π=(π0, …, πn)

where π0=0 and πn=n.
 Let vi be a point between πi and πi+1 for each

0≤i≤n.
 A point vi is a non-breakpoint if (πi, πi+1)

equals either (k,k+1) or (-(k+1),-k) for some
k.

 For example, there are two non-breakpoints
in the following example.

0 -2 -1 4 3 5 -8 6 7 9

Elementary interval
 For any (πi, πj) such that {|πi|,|πi|}={k,k+1},

we define the elementary interval Ik be the
interval whose endpoints are:
 The right point of k if the sign of k is positive;

otherwise its left point.
 The left point of k+1 if the sign of k+1 is positive;

otherwise its right point.

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Oriented interval
 An elementary interval Ik is oriented if the signs of k

and k+1 are different; otherwise, it is unoriented.

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Red color intervals
are oriented intervals

Property of oriented interval

 Property: Reversing
an oriented interval
reduces the number
of breakpoints.

0 -4 1 2 3 5 -8 6 7 9
I0 I1

I3
I4

I5 I6

I7 I8

I2

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Reverse I2

Cycle
 Note that every breakpoint meet exactly two

endpoints of some elementary intervals.
 Hence, the elementary intervals form disjoint

cycles.
 Example: There are 4 cycles containing 1, 1,

3 and 4 elementary intervals.
 I1 and I6 are isolated and we call them

isolated intervals.
0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Property of Cycle (I)
 Property: Reversing any elementary intervals

modifies the number of cycles by +1, 0, or -1.
 Proof:

 Suppose we reverse (πi, …, πj).
 Let v be the breakpoint between πj and πj+1 and v’ be the

breakpoint between πi-1 and πi.
 The reversal will only affect the cycles passing through v

and v’. There are two cases.

Property of Cycle (II)

 Case 1: Two distinct cycles passing
through v and v’. In this case, we will
merge the two cycles. Hence, the
number of cycle is reduced by 1.

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vjReversal

πi-1 πi ………… πj πj+1

vi-1 …………………vj

Property of Cycle (III)
 Case 2: One cycle passing through v and v’. In this

case, we will either maintain one cycle or break the
cycle into two. Hence, the number of cycle is either
no change or increase by 1.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ……… -πi πj+1

vi-1 …………………vj

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj

Property of Cycle (IV)
 Suppose π has c cycles.
 Note that the identity permutation (0,

1, 2, …, n) is the only permutation
which has n cycles.

 By the previous property, we have the
following lemma:

 Lemma: d(π)≥n-c.

Property of Cycle (V)

 Lemma: Reversing an oriented interval
increases the number of cycle by one.
The new cycle is an isolated interval.

 Proof:
 See the following example.

k πi …………-(k+1) πj+1

Reversal

k (k+1) ……… -πi πj+1

Ik

Ik

Component
 A component is an interval in π which

 either starts from i and ends at j OR starts from -j and ends at -i
for some i<j.

 contains all numbers between i and j.
 It is not the union of two or more such intervals.

 Below example has 4 components:
 (0..5)
 (5..9)
 (-2..-1)
 (6..7) 0 -2 -1 4 3 5 -8 6 7 9

I0 I1
I2 I3

I4

I5 I6

I7 I8

Component (II)
 Example 2:
π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -
10, -11, -9, 8, 16)
 There are 6 components:

 (0..4),
 (4..7),
 (7..16)
 (1..2),
 (-15..-12),
 (-12..-9)

Oriented component
 A component is unoriented if it has breakpoint but

does not have any oriented interval.

 Example:
 (0..5): oriented
 (5..9): oriented
 (-2..-1) oriented
 (6..7): oriented

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Oriented component (II)
 Example:

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11,
-9, 8, 16)
 There are 6 components

 (0..4) --- oriented
 (4..7) --- unoriented
 (7..16) --- oriented
 (1..2) --- oriented
 (-15..-12) --- unoriented
 (-12..-9) --- unoriented

Sorting signed permutation

 When all components are oriented,
 Bergeron’s basic algorithm

 Otherwise,
 The Hannenhalli-Pevzner Theorem

Bergeron’s basic algorithm

 Define the score of a permutation π be
 the number of oriented intervals in the permutation π.

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

score(π)=4

Bergeron’s basic algorithm
 Input: a signed permutation with no unoriented

component.

 Algorithm Bergeron_basic
 while π has an oriented interval

 Choose the oriented interval I that has maximum
score(π⋅I)

 Report I and set π=π⋅I

Example
 π1=(0,+3,+1,+6,+5,-2,+4,+7)

 score(π1⋅I1)=2, score(π1⋅I2)=4
 π2=(0,-5,-6,-1,-3,-2,+4,+7)

 score(π2⋅I0)=2, score(π2⋅I3)=4, score(π2⋅I4)=2, score(π2⋅I6)=2
 π3=(0,-5,-6,-1,+2,+3,+4,+7)

 score(π3⋅I0)=0, score(π3⋅I1)=2, score(π3⋅I4)=2, score(π3⋅I6)=2
 π4=(0,-5,-6,+1,+2,+3,+4,+7)

 score(π3⋅I4)=2, score(π4⋅I6)=2
 π5=(0,-5,-4,-3,-2,-1,+6,+7)

 score(π5⋅I0)=0, score(π5⋅I5)=0
 π6=(0,+1,+2,+3,+4,+5,+6,+7)

Property of intersect

 For any intervals Ik, we says
an interval Ik’ intersects with Ik
if either k’ or k’+1 (but not
both) is within Ik.

 Property: Once we perform a
reversal on an oriented interval
Ik,
 any elementary interval Ik’, where

intersects with Ik, will changes its
orientation. 0 -4 1 2 3 5 -8 6 7 9

I0 I1

I3
I4

I5 I6

I7 I8

I2

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Reverse I2

Correctness
 Theorem: Reversing the oriented interval I of maximal score does not

create new unoriented components.
 Proof:

 Suppose the reversal of I introduces a new unoriented component C.
 Note that the reversal of I only affects elementary intervals which intersects

with I.
 Let I’ be an elementary interval which intersects with I and belongs to C.

 Let T be the total number of oriented intervals before reversal.
 Let U and O be the number of unoriented and oriented intervals,

respectively, in π which intersects with I.
 We have Score(π⋅I)=T+U-O-1.

 Similarly, let U’ and O’ be the number of unoriented and oriented intervals,
respectively, in π which intersects with I’.

 Score(π⋅I’)=T+U’-O’-1.

I

In this example, U=5, O=3.
Suppose T=20.
Then, Score(π⋅I)=20+5-3-1=21.

Correctness (II)
 We claim that any unoriented interval, that intersects

with I, also intersects with I’.
 Otherwise, let J be an unoriented interval that intersects

with I but not I’. After reversing I, J becomes oriented and
intersects with I’. This contradicts with the assumption that
C is unoriented.

 Thus, U’≥U.

J
I

I’

J
I

I’

Reverse I

Correctness (III)
 We also claim that any oriented interval, that

intersects with I’, also intersects with I.
 Otherwise, let J be an oriented interval that intersects with

I’ but not I. After reversing I, J remains oriented and
intersects with I’. This also contradicts with the assumption
that C is unoriented.

 Hence, O≥O’.

J
I’

I

J
I’

I

Reverse I’

Correctness (IV)
 If U=U’ and O=O’,

 I and I’ correspond to the same interval.
 After reversing I, both I and I’ becomes isolated

intervals. This contradicts that C is unoriented.

 This means that
 Score(π⋅I)=T+U-O-1<T+U’-O’-1=Score(π⋅I’).

 This contradicts with the fact that I
maximizes Score(π⋅I).

Summary for sorting oriented
components
 Corollary: If π has c cycles and has no

unoriented component, d(π)=n-c.
 Proof:

 Recall that d(π)≥n-c.
 Any oriented reversal will increase the number of

cycle by 1.
 Previous theorem ensures that we always have

oriented reversal.
 Hence, after n-c oriented reversal, we get n

cycles, which is an identify permutation.
 Thus, d(π)≤n-c.

Sorting when there is unoriented
component

 When unoriented component exists,
 The idea is to perform reversals to remove

all the unoriented component.
 Then, we apply the Bergeron’s basic

algorithm

 Below, we first give some properties of
component.

More on Component (I)
 Any point vi between πi and πi+1 belongs to the

smallest component which contains both πi and πi+1.
 Example:

 (0..5) contains v0, v2, v3, v4

 (5..9) contains v5, v6, v8

 (-2..-1) contains v1

 (6..7) contains v7

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

v0 v1 v2 v3 v4 v5 v6 v7 v8

More on Component (II)

 Property: The endpoints of any
elementary interval belong to the same
component.

 Corollary: For any cycle, its endpoints
belong to the same component.

More on Component (III)
 Lemma: Two different components of a permutation

are either disjoint, nested with different endpoints, or
overlapping on one element.

 Example:
 (-2..-1) and (5..9) are disjoint
 (0..5) and (5..9) overlap on one element
 (6..7) is nested within (5..9)

0 -2 -1 4 3 5 -8 6 7 9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Chain and component

 When two components overlap on
one element, they are said to be
linked.

 Successive linked components
form a chain.

 A maximal chain is a chain that
cannot be extended. (It may
consist of a single component.)

 The relationship among
components can be represented
as a tree Tπ as follows.
 Each component represents a

round node
 Each maximal chain represents a

square node whose components
are ordered children of it.

 A maximal chain is a child of the
smallest component that contains
this maximal chain.

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11, -9, 8, 16)

(-12..-9)(-15..-12)(1..2)

(4..7)
(0..4) (7..16)

Effect of reversal on components
(I)
 Lemma A: Consider an unoriented component C. The

reversal of any interval in C will not increase the
number of cycles. Moreover, C will become oriented.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vjReversal

πi-1 πi ………… πj πj+1

vi-1 …………………vj

Effect of reversal on components
(I)

 Lemma B: Consider an unoriented component
C. The reversal of any elementary interval in
C will not change the number of cycles.
Moreover, C will become oriented.

 This reversal operation is denoted as the cut
operation.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj

Effect of reversal on components
(II)
 Lemma C: If a reversal has its two endpoints in

different components A and B, then only the
components on the path from A to B in Tπ are
affected.
 Any component C contains either A or B but not both will be

destroyed.
 If the lowest common ancestor of A and B in Tπ is a

component C, if A or B is unoriented, then C become
oriented after the reversal.

 If the lowest common ancestor of A and B in Tπ is a chain, a
new component C is created. If either A or B is unoriented,
C will be oriented.

 The reversal operation is denoted as merge
operation.

A D BE F
C

G H

After this reversal,
A, G, B, and H are destroyed.
If A or B is unoriented, C become oriented.

D E F
C

A D BE FG H

D E F

After this reversal,
A, G, B, and H are destroyed.
A new component C is formed.
If A or B is unoriented, C become oriented.

C

Cover
 A cover C of Tπ is a collection of paths joining all the unoriented

components of π such that no two paths end at the same node.
 A path that ends at two unoriented components is called long path.
 A path that contain only one unoriented component is called short

path.

 We can generate a permutation with no unoriented component as
follows:
 For each long path, we apply merge operation on the two unoriented

components at the ends of the long path.
 For each short path, we apply cut operation on the unoriented component.

Cover (II)

 The cost of a long path is 2.
 The cost of a short path is 1.
 The cost of a cover is the

sum of the costs of its
paths.

 An optimal cover is a cover
of minimal cost.

 Example: the optimal cover is
 (4..7) to (-12..-9)
 (-15..-12)

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11, -9, 8, 16)

(-12..-9)(-15..-12)(1..2)

(4..7)
(0..4) (7..16)

Oriented components

No breakpoint

The Hannenhalli-Pevzner
Theorem
 Theorem: Given a permutation π of {0, 1, …, n} with c cycles

and the associated tree Tπ has minimal cost t,
 d(π) = n – c + t.

 Proof:
 We claim that d(π) ≤ n – c + t.
 We apply m merges to the m long paths and q cuts to the q short

paths.
 Note that t = 2m + q.
 After applying m merges and q cuts, the resulting permutation π’

has c-m cycles and has no unoriented component.
 Hence, d(π’) = n-(c-m).
 d(π) ≤ d(π’) + m + q = n – c +2m +q = n – c + t

The Hannenhalli-Pevzner
Theorem

 We also claim that d(π) ≥ n – c + t.
 Let d be the optimal reversal distance.
 d = s + m + q where

 s is the number of reversals split cycle
 m is the number of reversals merge cycle
 q is the number of reversals which do not change the number of cycle

 Since identity permutation has n cycles, we have c+s-m = n.
 Thus, d = n - c + 2m + q.
 Any reversal merges a group of components on a path in Tπ. We

keep the shortest segment that includes all unoriented components
of the group.

 Those paths should cover all unoriented components. Otherwise,
we cannot transform π to identity permutation.

 Hence, t ≤ 2m+q. Thus, d ≥ n – c + t.

General algorithm for sorting by
signed reversal
Algorithm Sort_Signed_Reversal
 Construct Tπ

 Find the optimal cover C of Tπ

 For each long path in the cover C, identify the
leftmost and the rightmost unoriented
components and merge them.

 For each short path in the cover C, cut the
unoriented component on the short path.

 Run Bergeron_basic

	Algorithms in Bioinformatics: A Practical Introduction
	Evidences of Genome Rearrangement
	Evidences of Genome Rearrangement
	Evidences of Genome Rearrangement
	Evidences of Genome Rearrangement
	Types of genome rearrangement within one chromosome
	Duplication
	Reversal
	Transposition
	Types of genome rearrangement on two chromosomes (I)
	Genome rearrangement on two chromosomes (II)
	Computational problems
	Sorting permutation by reversals
	Example: sorting unsigned permutation
	Previous works on �sorting unsigned permutation
	Upper bound on unsigned reversal distance
	Lower bound on unsigned reversal distance
	4-approximation algorithm (I)
	4-approximation algorithm (II)
	4-approximation algorithm (III)
	4-approximation algorithm (IV)
	Example
	2-approximation algorithm
	2-approximation algorithm
	2-approximation algorithm
	2-approximation algorithm
	2-approximation algorithm
	2-approximation algorithm
	Example
	Sorting signed permutation by reversals
	Example: sorting signed permutation
	Previous works on �sorting signed permutation
	Upper bound on signed reversal distance
	Pancake problem
	Burnt Pancake problem
	Sorting signed permutation
	Points and breakpoints
	Elementary interval
	Oriented interval
	Property of oriented interval
	Cycle
	Property of Cycle (I)
	Property of Cycle (II)
	Property of Cycle (III)
	Property of Cycle (IV)
	Property of Cycle (V)
	Component
	Component (II)
	Oriented component
	Oriented component (II)
	Sorting signed permutation
	Bergeron’s basic algorithm
	Bergeron’s basic algorithm
	Example
	Property of intersect
	Correctness
	Correctness (II)
	Correctness (III)
	Correctness (IV)
	Summary for sorting oriented components
	Sorting when there is unoriented component
	More on Component (I)
	More on Component (II)
	More on Component (III)
	Chain and component
	Effect of reversal on components (I)
	Effect of reversal on components (I)
	Effect of reversal on components (II)
	Slide Number 69
	Slide Number 70
	Cover
	Cover (II)
	The Hannenhalli-Pevzner Theorem
	The Hannenhalli-Pevzner Theorem
	General algorithm for sorting by signed reversal

