
Algorithms in Bioinformatics: A 
Practical Introduction

Genome Rearrangement



Evidences of Genome 
Rearrangement

 In 1917, Sturtevant showed that strains 
of Drosophila melanogaster coming 
from the same or from distinct 
geographical localities may differ in 
having blocks of genes rotated by 180°
(reversal).



Evidences of Genome 
Rearrangement

 In 1938, Dobzhansky and 
Sturtevant studied 
chromosome 3 of 16 
different strains of 
Drosophila pseudoobscura 
and Drosophila miranda.

 They observed that the 17 
strains from a evolutionary 
tree where every edge 
corresponds to one 
reversal.

 Hence, Dobzhansky and 
Sturtevant proposed that 
species can evolve through 
genome rearrangements.



Evidences of Genome 
Rearrangement
 In 1980s Jeffrey Palmer and co-authors studied evolution of 

plant organelles by comparing the gene order of mitochondrial 
genomes 

 They pioneered studies of the shortest (most parsimonious) 
rearrangement scenarios between two genomes.
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Evidences of Genome 
Rearrangement

 Human and mouse are also highly similarity in DNA sequences (98%).
 Moreover, their DNA segments are swapped.
 For example, chromosome X of human can be transformed to 

chromosome X of mouse using 7 reversals.

 To transfrom human to mouse, it takes 131 
reversals/translocations/fusions/fissions.



Types of genome rearrangement 
within one chromosome
 Reversal is just the most common rearrangement. Below, we list 

the known rearrangement operations within one chromosome:
 Insertion: Inserting of a DNA segment into the genome (ACABC)
 Deletion: Removal of a DNA segment from the genome (ABCAC)

 Duplication: A particular DNA segment is duplicated two times in 
the genome (ABCABBC, ABCDABCBD)

 Reversal: Reversing a DNA segment (Ab1b2b3CAb3b2b1C)

 Transposition: cutting out a DNA segment and insert it into another 
location (ABCDACBD). This operation is believed to be rare since 
it requires 3 breakpoints.



Duplication

A      B      C      D    E   F   G    H    I      J   K    L

A      B      C      D    E   F   E   F   G    H    I      J   K    L



Reversal



Transposition
 Transposition involves 3 breakpoints!

A      B      C      D    E   F   G    H    I      J   K    L

A      B      C      D    G    H    I     E   F    J   K    L



Types of genome rearrangement 
on two chromosomes (I)

 Translocation: the transfer of a 
segment of one chromosome to another 
nonhomologous one.

 Fussion: two chromosomes merge

 Fission: one chromsome splits up into 
two chromosomes



Genome rearrangement on two 
chromosomes (II)

Translocation:

Fusion:

Fission:



Computational problems
 Given two genomes with a set common genes, those genes are 

arranged in different order in different genomes.
 Our aim is to understand how one genome evolves into another 

through rearrangements.
 By parsimony, we hope to find the shortest rearrangement path.
 Depending on the allowed rearrangement operations, literature 

studied the following problems:
 Genome rearrangement by reversals
 Genome rearrangement by translocations
 Genome rearrangement by transpositions

 In this lecture, we focus on genome rearrangement by 
reversals. This problem is also called sorting by reversals.



Sorting permutation by reversals
 Consider a permutation of {1, 2, …, n}, that is, π = (π1, π2, …, 

πn) representing the ordering of n genes in a genome.
 A reversal ρ(i,j) is an operation applying on π, denoted as 

π⋅ρ(i,j), which reverses the order of the element in the interval 
[i..j].

 Thus, π⋅ρ(i,j) = (π1, …, πi-1, πj, …, πi, πj+1, …, πn).
 Example: Let π = (2, 4, 3, 5, 8, 7, 6, 1). 

 π⋅ρ(3,5) = (2, 4, 8, 5, 3, 7, 6, 1).

 Our aim is to find the minimum number of reversals that 
transform π to an identify permutation (1, 2, …, n).

 The minimum number of reversals need to transform π to 
identity permutation is called the reversal distance, denoted by 
d(π).



Example: sorting unsigned 
permutation

 2, 4, 3, 5, 8, 7, 6, 1

 2, 3, 4, 5, 8, 7, 6, 1

 2, 3, 4, 5, 6, 7, 8, 1

 8, 7, 6, 5, 4, 3, 2, 1

 1, 2, 3, 4, 5, 6, 7, 8



Previous works on 
sorting unsigned permutation
 Kececioglu and Sankoff (1995): 2-approximation
 Bafna and Pevzner (SIAM Comp 1996): 1.75-

approximation
 Caprara (RECOMB 1997, SIAM Discrete Math 2001): 

NP-hard
 Christie (SODA 1998): 1.5-approximation
 Berman and Karpinski (ICALP 1999): MAX-SNP hard
 Berman, Hannenhalli, Karpinski (ESA 2002): 1.375-

approximation



Upper bound on unsigned 
reversal distance

 A way to transform π to identity permutation 
is by at most n reversals. The i-th reversal 
moves element i to position i.

 Example:
 (4, 5, 3, 1, 2)
 (1, 3, 5, 4, 2)
 (1, 2, 4, 5, 3)
 (1, 2, 3, 5, 4)
 (1, 2, 3, 4, 5)



Lower bound on unsigned 
reversal distance
 Let π=(π1, π2, …, πn) be a permutation of {1, 2, …, n} 
 There is a breakpoint between πi and πi+1 if |πi-πi+1|>1.
 Denote b(π) be the number of breakpoints in π.
 Since a reversal can reduce at most 2 breakpoints, hence d(π) ≥

b(π)/2.

 Example: π= • 7  6  5  4 • 1 • 9  8 • 2  3 •
 Each • is a breakpoint. Thus, b(π) = 5

 Theorem: b(π)/2 ≤ d(π) ≤ n.



4-approximation algorithm (I)
 A strip is a maximal subsequence without 

breakpoints.
 A strip is either increasing or decreasing. 
 Strip of size 1 is assumed to be decreasing.

 (There is one exception. We assume there is a hidden ‘0’ on 
the left of π. And a hidden ‘n+1’ on the right of π. If the 
leftmost strip is (1), we say it is increasing. If the rightmost 
strip is (n), we say it is increasing.)

 Example: π=(7, 6, 5, 4, 1, 9, 8, 2, 3)
 There are three breakpoints: (-,7), (4,1), (1,9), (8,2), (3,-).
 Hence, there are 4 strips: (7,6,5,4), (1), (9,8), (2,3).
 Among them, (2,3) is an increasing strip.



4-approximation algorithm (II)
 If π has a decreasing strip, 

 let smin be the decreasing strip in π with the minimal element πmin.
 Let s’min be the strip containing πmin-1, which is increasing.
 let ρmin be the reversal which which arrange πmin and πmin-1 side by side.

πminπmin-2,πmin-1

ρmin

πmin πmin-2,πmin-1

ρmin

E.g. 8, 9, 3, 4, 14, 7, 6, 5, 1, 2, 10, 11, 16, 14, 13, 12, 15

E.g. 8, 9, 14, 7, 6, 5, 1, 2, 10, 11, 3, 4, 16, 14, 13, 12, 15



4-approximation algorithm (III)
 Lemma: If π has a decreasing strip, then b(π⋅ρmin)-b(π) ≥ 1.

 Proof:
 There are two cases depending on whether smin is to the right or to the left 

of s’min. As shown in the figure, the reversal ρmin reduces b(π) by 1.

πminπmin-2,πmin-1

ρmin

πmin πmin-2,πmin-1

ρmin



4-approximation algorithm (IV)
 Algorithm simpleApprox

 while b(π) > 0,
 if there exist a decreasing strip, 

 we reverse π by ρmin [this reversal reduces 
b(π) by at least 1];

 else
 reverse an increasing strip to create a 

decreasing strip [b(π) does not change]

 The above algorithm will perform at most 2b(π) reversals.
 The optimal solution performs at least b(π)/2 reversals.
 Thus, algorithm simpleApprox has approximation ratio 4.



Example
 π=(8, 9, 3, 4, 7, 6, 5, 1, 2, 10, 11)
 π=(8, 9, 3, 4, 5, 6, 7, 1, 2, 10, 11)
 π=(9, 8, 3, 4, 5, 6, 7, 1, 2, 10, 11)
 π=(9, 8, 7, 6, 5, 4, 3, 1, 2, 10, 11)
 π=(9, 8, 7, 6, 5, 4, 3, 2, 1, 10, 11)
 π=(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)



2-approximation algorithm
 Previous method cannot guarantee after 

resolving each breakpoint, we still have some 
decreasing strip.

 Idea for this algorithm:
 We try to ensure we have decreasing strip after 

resolving each breakpoint.
 If we fail to ensure that there is a decreasing strip, 

we show that we can resolve two breakpoints.



2-approximation algorithm
 If π has a decreasing strip, 

 Let smin be the decreasing strip in π with the minimal 
element πmin. Let s’min be the strip containing πmin-1, which is 
increasing.  Let ρmin be the reversal which arrange πmin and 
πmin-1 side by side.

 Let smax be the decreasing strip in π with the maximal 
element πmax. Let s’max be the strip containing πmax+1, which 
is increasing. Let ρmax be the reversal which arrange πmax
and πmax+1 side by side.

 Lemma: Consider a permutation π that has a 
decreasing strip. Suppose both π⋅ρmin and π⋅ρmax
contain no decreasing strip. Then, the reversal 
ρmin=ρmax removes 2 breakpoints.



2-approximation algorithm
 Proof: Assume both π⋅ρmin and π⋅ρmax contain 

no decreasing strip.
 We claim that s’min is to the left of smin. 

 Otherwise, the reversal ρmin removes a breakpoint 
and still maintains a decreasing strip.

 Similarly, we can show that smax is to the left of 
s’max.

πmin πmin-1

ρmin

s’minsmin

πminπmin-1

ρmin

s’min smin



2-approximation algorithm
 We claim that smax is in between s’min and smin.
 Otheriwse, if smax is to the left (or right) of both smin and s’min, then 

after the reversal of ρmin, we still have the decreasing strip smax.

 Similarly, we can show that smin is in between smax and s’max.

 Hence, the only possible arrangement such that there is no 
decreasing strip after performing either ρmin or ρmax is as follows.

πminπmin-1

ρmin

s’min smin

πmax

smax

πminπmin-1 πmax πmax+1
s’min s’maxsminsmax



2-approximation algorithm

 We claim that there is no element between s’min and smax.
 Between s’min and smax, 

 If there is a decreasing strip, we apply the reversal of ρmax and this 
decreasing strip retain.

 If there is an increasing strip, we apply the reversal of ρmin and this 
strip become decreasing.

 Similarly, we can show that there is no element between smin and 
s’max.

 Therefore, the reversal ρmax=ρmin reverses the interval between 
πmax and πmin and removes two breakpoints.

πminπmin-1 πmax πmax+1
s’min s’maxsminsmax



2-approximation algorithm
 Algorithm

 if there exist no decreasing strip in π, 
 we reverse any increasing strip to create a decreasing strip.

 while b(π) > 0,
 if π⋅ρmin contains decreasing strip, 

 we reverse π by ρmin [this reversal reduces b(π) by at least 1];
 else if π⋅ρmax contains decreasing strip,

 We reverse π by ρmax [this reversal reduces b(π) by at least 1];
 else

 We reverse π by ρmax = ρmin [this reversal reduces b(π) by 2];
 We reverse any increasing strip to create a decreasing strip [b(π) does not 

change]

 The above algorithm will reduce the number of breakpoints by 2 for every 2
reversals.

 Hence, it will perform b(π) reversals.
 The optimal solution performs at least b(π)/2 reversals.
 Thus, the above algorithm has approximation ratio 2.



Example
 (11, 12, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10); 5 breakpoints
 (11, 12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); 3 breakpoints
 (11, 12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1); 3 breakpoints
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 11); 2 breakpoints
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12); 0 breakpoint



Sorting signed permutation by 
reversals
 Genes have orientation. If we know the orientations, then we 

have the problem of sorting signed permutation.

 Given a signed permutation of {0, 1, 2, …, n}, that is, π = (π0,
π1, π2, …, πn).

 We set π0=0 and πn=n to denote the boundary of the genome.
 A reversal ρ(i,j) is an operation applying on π, denoted as 

π⋅ρ(i,j), which reverses the order and flip the signs of the 
element in the interval [i..j].

 Thus, π⋅ρ(i,j) = (π0, π1, …, πi-1, -πj, …, -πi, πj+1, …, πn).
 Our aim is to find the minimum number of reversals that 

transform π to (0, 1, 2, …, n).
 The minimum number of reversals need to transform π to (0, 1, 

2, …, n) is called the reversal distance, denoted by d(π).



Example: sorting signed 
permutation

 +0,+3,+1,+6,+5,-2,+4,+7

 +0,-5,-6,-1,-3,-2,+4,+7

 +0,-5,-6,-1,+2,+3,+4,+7

 +0,-5,-6,+1,+2,+3,+4,+7

 +0,-5,-4,-3,-2,-1,+6,+7

 +0,+1,+2,+3,+4,+5,+6,+7



Previous works on 
sorting signed permutation
 Sankoff (1992): Introduce the problem
 Hannenhalli and Pevzner (1995): First polynomial time algorithm 

for sorting a signed permutation O(n4) time.
 Berman and Hannenhalli (1996): Improved to O(n2α(n)) time 

where α is the inverse Ackerman’s function.
 Kaplan, Shamir, and Tarjan (1999): O(n2) time.
 Bergeron (2001): A simplifed method O(n3) time and O(n2) time 

on a vector-machine
 Tannier, Bergeron, and Sagot (2007): O(n3/2sqrt(log n)) time.

 Computing reversal distance only:
Bader, Moret, and Yan (2001): O(n) time
Bergeron, Mixtacki, and Stoye (2004): O(n) time



Upper bound on signed reversal 
distance
 A simple way to transform π to (0, 1, 2, …, 

n):
 Disregarding the sign, we can create a correct 

sequence by n reversals
 We can correct the sign by at most n sign flips 

(reversals of length 1).
 Then, the simple upper bound for the 

reversal distance is 2n.

 Can we get a better upper bound?



Pancake problem
 A waiter has a stack of n pancakes. To avoid disaster, the 

waiter wants to sort the pancakes in order by size. Having only 
one free hand, the only available operation is to lift a top 
portion of the stack, invert it, and replace it. 

 The Pancake Problem (Goodman 1975) finds the maximum 
number of flips needed.

 Gate and Papadimitriou (1979) showed that the number of flips 
is at most (5n+5)/3. 

 This problem is equivalent to sorting an unsigned permutation 
by prefix reversals.

 Hence, the reversal distance for sorting unsigned permutation is 
at most (5n+5)/3. 



Burnt Pancake problem
 Gates and Papadimitriou (1979) introduced the Burnt 

Pancake Problem. Here one side of each pancake is 
burnt, and the pancakes must be sorted with the 
burnt side down. 

 Heydari and Sudborough (1997) showed that the 
number of flips is at most 3(n+1)/2. 

 This problem is equivalent to sorting a signed 
permutation by prefix reversals.

 Hence, the reversal distance for sorting signed 
permutation is at most 3(n+1)/2. 



Sorting signed permutation
 Below, we discuss an O(n3) time solution for 

sorting signed permutation.

 First, we need to understand three concepts:
 Interval
 Cycle
 Component



Points and breakpoints
 Consider a signed permutation π=(π0, …, πn) 

where π0=0 and πn=n.
 Let vi be a point between πi and πi+1 for each 

0≤i≤n.
 A point vi is a non-breakpoint if (πi, πi+1) 

equals either (k,k+1) or (-(k+1),-k) for some 
k.

 For example, there are two non-breakpoints 
in the following example.

0   -2   -1   4   3   5   -8   6   7   9



Elementary interval
 For any (πi, πj) such that {|πi|,|πi|}={k,k+1}, 

we define the elementary interval Ik be the 
interval whose endpoints are:
 The right point of k if the sign of k is positive; 

otherwise its left point.
 The left point of k+1 if the sign of k+1 is positive; 

otherwise its right point.

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8



Oriented interval
 An elementary interval Ik is oriented if the signs of k 

and k+1 are different; otherwise, it is unoriented.

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Red color intervals
are oriented intervals



Property of oriented interval

 Property: Reversing 
an oriented interval 
reduces the number 
of breakpoints.

0   -4   1   2   3   5   -8   6   7   9
I0 I1

I3
I4

I5 I6

I7 I8

I2

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Reverse I2



Cycle
 Note that every breakpoint meet exactly two 

endpoints of some elementary intervals.
 Hence, the elementary intervals form disjoint 

cycles.
 Example: There are 4 cycles containing 1, 1, 

3 and 4 elementary intervals.
 I1 and I6 are isolated and we call them 

isolated intervals.
0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8



Property of Cycle (I)
 Property: Reversing any elementary intervals 

modifies the number of cycles by +1, 0, or -1.
 Proof:

 Suppose we reverse (πi, …, πj).
 Let v be the breakpoint between πj and πj+1 and v’ be the 

breakpoint between πi-1 and πi.
 The reversal will only affect the cycles passing through v 

and v’. There are two cases.



Property of Cycle (II)

 Case 1: Two distinct cycles passing 
through v and v’. In this case, we will 
merge the two cycles. Hence, the 
number of cycle is reduced by 1.

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vjReversal

πi-1 πi ………… πj πj+1

vi-1 …………………vj



Property of Cycle (III)
 Case 2: One cycle passing through v and v’. In this 

case, we will either maintain one cycle or break the 
cycle into two. Hence, the number of cycle is either 
no change or increase by 1.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ……… -πi πj+1

vi-1 …………………vj

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj



Property of Cycle (IV)
 Suppose π has c cycles.
 Note that the identity permutation (0, 

1, 2, …, n) is the only permutation 
which has n cycles.

 By the previous property, we have the 
following lemma:

 Lemma: d(π)≥n-c.



Property of Cycle (V)

 Lemma: Reversing an oriented interval 
increases the number of cycle by one. 
The new cycle is an isolated interval.

 Proof:
 See the following example.

k πi …………-(k+1) πj+1

Reversal

k  (k+1)  ……… -πi πj+1

Ik

Ik



Component
 A component is an interval in π which

 either starts from i and ends at j OR starts from -j and ends at -i 
for some i<j.

 contains all numbers between i and j.
 It is not the union of two or more such intervals.

 Below example has 4 components:
 (0..5)
 (5..9)
 (-2..-1)
 (6..7) 0   -2   -1   4   3   5   -8   6   7   9

I0 I1
I2 I3

I4

I5 I6

I7 I8



Component (II)
 Example 2: 
π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -
10, -11, -9, 8, 16)
 There are 6 components:

 (0..4), 
 (4..7), 
 (7..16)
 (1..2), 
 (-15..-12), 
 (-12..-9)



Oriented component
 A component is unoriented if it has breakpoint but 

does not have any oriented interval. 

 Example:
 (0..5): oriented
 (5..9): oriented
 (-2..-1) oriented
 (6..7): oriented

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8



Oriented component (II)
 Example: 

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11, 
-9,  8, 16)
 There are 6 components

 (0..4) --- oriented
 (4..7) --- unoriented
 (7..16) --- oriented
 (1..2) --- oriented
 (-15..-12) --- unoriented
 (-12..-9) --- unoriented



Sorting signed permutation

 When all components are oriented,
 Bergeron’s basic algorithm

 Otherwise,
 The Hannenhalli-Pevzner Theorem



Bergeron’s basic algorithm

 Define the score of a permutation π be
 the number of oriented intervals in the permutation π.

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8

score(π)=4



Bergeron’s basic algorithm
 Input: a signed permutation with no unoriented 

component.

 Algorithm Bergeron_basic
 while π has an oriented interval

 Choose the oriented interval I that has maximum 
score(π⋅I)

 Report I and set π=π⋅I



Example
 π1=(0,+3,+1,+6,+5,-2,+4,+7)

 score(π1⋅I1)=2, score(π1⋅I2)=4
 π2=(0,-5,-6,-1,-3,-2,+4,+7)

 score(π2⋅I0)=2, score(π2⋅I3)=4, score(π2⋅I4)=2, score(π2⋅I6)=2
 π3=(0,-5,-6,-1,+2,+3,+4,+7)

 score(π3⋅I0)=0, score(π3⋅I1)=2, score(π3⋅I4)=2, score(π3⋅I6)=2
 π4=(0,-5,-6,+1,+2,+3,+4,+7)

 score(π3⋅I4)=2, score(π4⋅I6)=2
 π5=(0,-5,-4,-3,-2,-1,+6,+7)

 score(π5⋅I0)=0, score(π5⋅I5)=0
 π6=(0,+1,+2,+3,+4,+5,+6,+7)



Property of intersect

 For any intervals Ik, we says 
an interval Ik’ intersects with Ik
if either k’ or k’+1 (but not 
both) is within Ik.

 Property: Once we perform a 
reversal on an oriented interval 
Ik, 
 any elementary interval Ik’, where 

intersects with Ik, will changes its 
orientation. 0   -4   1   2   3   5   -8   6   7   9

I0 I1

I3
I4

I5 I6

I7 I8

I2

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8

Reverse I2



Correctness
 Theorem: Reversing the oriented interval I of maximal score does not 

create new unoriented components.
 Proof:

 Suppose the reversal of I introduces a new unoriented component C.
 Note that the reversal of I only affects elementary intervals which intersects 

with I.
 Let I’ be an elementary interval which intersects with I and belongs to C.

 Let T be the total number of oriented intervals before reversal.
 Let U and O be the number of unoriented and oriented intervals, 

respectively, in π which intersects with I.
 We have Score(π⋅I)=T+U-O-1.

 Similarly, let U’ and O’ be the number of unoriented and oriented intervals, 
respectively, in π which intersects with I’.

 Score(π⋅I’)=T+U’-O’-1.

I

In this example, U=5, O=3.
Suppose T=20.
Then, Score(π⋅I)=20+5-3-1=21.



Correctness (II)
 We claim that any unoriented interval, that intersects 

with I, also intersects with I’.
 Otherwise, let J be an unoriented interval that intersects 

with I but not I’. After reversing I, J becomes oriented and 
intersects with I’. This contradicts with the assumption that 
C is unoriented.

 Thus, U’≥U.

J
I

I’

J
I

I’

Reverse I



Correctness (III)
 We also claim that any oriented interval, that 

intersects with I’, also intersects with I.
 Otherwise, let J be an oriented interval that intersects with 

I’ but not I. After reversing I, J remains oriented and 
intersects with I’. This also contradicts with the assumption 
that C is unoriented.

 Hence, O≥O’.

J
I’

I

J
I’

I

Reverse I’



Correctness (IV)
 If U=U’ and O=O’,

 I and I’ correspond to the same interval.
 After reversing I, both I and I’ becomes isolated 

intervals. This contradicts that C is unoriented.

 This means that
 Score(π⋅I)=T+U-O-1<T+U’-O’-1=Score(π⋅I’).

 This contradicts with the fact that I 
maximizes Score(π⋅I).



Summary for sorting oriented 
components
 Corollary: If π has c cycles and has no 

unoriented component, d(π)=n-c.
 Proof:

 Recall that d(π)≥n-c.
 Any oriented reversal will increase the number of 

cycle by 1.
 Previous theorem ensures that we always have 

oriented reversal.
 Hence, after n-c oriented reversal, we get n 

cycles, which is an identify permutation.
 Thus, d(π)≤n-c.



Sorting when there is unoriented 
component

 When unoriented component exists,
 The idea is to perform reversals to remove 

all the unoriented component.
 Then, we apply the Bergeron’s basic 

algorithm

 Below, we first give some properties of 
component.



More on Component (I)
 Any point vi between πi and πi+1 belongs to the 

smallest component which contains both πi and πi+1.
 Example:

 (0..5) contains v0, v2, v3, v4

 (5..9) contains v5, v6, v8

 (-2..-1) contains v1

 (6..7) contains v7

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8

v0 v1 v2 v3 v4 v5 v6 v7 v8



More on Component (II)

 Property: The endpoints of any 
elementary interval belong to the same 
component.

 Corollary: For any cycle, its endpoints 
belong to the same component.



More on Component (III)
 Lemma: Two different components of a permutation 

are either disjoint, nested with different endpoints, or 
overlapping on one element.

 Example:
 (-2..-1) and (5..9) are disjoint
 (0..5) and (5..9) overlap on one element
 (6..7) is nested within (5..9)

0   -2   -1   4   3   5   -8   6   7   9
I0 I1
I2 I3

I4

I5 I6

I7 I8



Chain and component

 When two components overlap on 
one element, they are said to be 
linked.

 Successive linked components 
form a chain.

 A maximal chain is a chain that 
cannot be extended. (It may 
consist of a single component.)

 The relationship among 
components can be represented 
as a tree Tπ as follows.
 Each component represents a 

round node
 Each maximal chain represents a 

square node whose components 
are ordered children of it.

 A maximal chain is a child of the 
smallest component that contains 
this maximal chain.

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11, -9,  8, 16)

(-12..-9)(-15..-12)(1..2)

(4..7)
(0..4) (7..16)



Effect of reversal on components 
(I)
 Lemma A: Consider an unoriented component C. The 

reversal of any interval in C will not increase the 
number of cycles. Moreover, C will become oriented.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vjReversal

πi-1 πi ………… πj πj+1

vi-1 …………………vj



Effect of reversal on components 
(I)

 Lemma B: Consider an unoriented component 
C. The reversal of any elementary interval in 
C will not change the number of cycles. 
Moreover, C will become oriented.

 This reversal operation is denoted as the cut
operation.

πi-1 πi …………… πj πj+1

vi-1 …………………… vj
Reversal

πi-1 -πj ………… -πi πj+1

vi-1 …………………… vj



Effect of reversal on components 
(II)
 Lemma C: If a reversal has its two endpoints in 

different components A and B, then only the 
components on the path from A to B in Tπ are 
affected.
 Any component C contains either A or B but not both will be 

destroyed.
 If the lowest common ancestor of A and B in Tπ is a 

component C, if A or B is unoriented, then C become 
oriented after the reversal.

 If the lowest common ancestor of A and B in Tπ is a chain, a 
new component C is created. If either A or B is unoriented, 
C will be oriented.

 The reversal operation is denoted as merge
operation.



A D BE F
C

G H

After this reversal,
A, G, B, and H are destroyed.
If A or B is unoriented, C become oriented.

D E F
C



A D BE FG H

D E F

After this reversal,
A, G, B, and H are destroyed.
A new component C is formed.
If A or B is unoriented, C become oriented.

C



Cover
 A cover C of Tπ is a collection of paths joining all the unoriented 

components of π such that no two paths end at the same node.
 A path that ends at two unoriented components is called long path.
 A path that contain only one unoriented component is called short 

path.

 We can generate a permutation with no unoriented component as 
follows:
 For each long path, we apply merge operation on the two unoriented 

components at the ends of the long path.
 For each short path, we apply cut operation on the unoriented component.



Cover (II)

 The cost of a long path is 2.
 The cost of a short path is 1.
 The cost of a cover is the 

sum of the costs of its 
paths.

 An optimal cover is a cover 
of minimal cost.

 Example: the optimal cover is
 (4..7) to (-12..-9)
 (-15..-12)

π=(0, -3, 1, 2, 4, 6, 5, 7, -15, -13, -14, -12, -10, -11, -9,  8, 16)

(-12..-9)(-15..-12)(1..2)

(4..7)
(0..4) (7..16)

Oriented components

No breakpoint



The Hannenhalli-Pevzner 
Theorem
 Theorem: Given a permutation π of {0, 1, …, n} with c cycles 

and the associated tree Tπ has minimal cost t,
 d(π) = n – c + t.

 Proof:
 We claim that d(π) ≤ n – c + t.
 We apply m merges to the m long paths and q cuts to the q short 

paths.
 Note that t = 2m + q.
 After applying m merges and q cuts, the resulting permutation π’

has c-m cycles and has no unoriented component.
 Hence, d(π’) = n-(c-m).
 d(π) ≤ d(π’) + m + q = n – c +2m +q = n – c + t



The Hannenhalli-Pevzner 
Theorem

 We also claim that d(π) ≥ n – c + t.
 Let d be the optimal reversal distance.
 d = s + m + q where

 s is the number of reversals split cycle
 m is the number of reversals merge cycle
 q is the number of reversals which do not change the number of cycle

 Since identity permutation has n cycles, we have c+s-m = n.
 Thus, d = n - c + 2m + q.
 Any reversal merges a group of components on a path in Tπ. We 

keep the shortest segment that includes all unoriented components 
of the group. 

 Those paths should cover all unoriented components. Otherwise, 
we cannot transform π to identity permutation.

 Hence, t ≤ 2m+q. Thus, d ≥ n – c + t.



General algorithm for sorting by 
signed reversal
Algorithm Sort_Signed_Reversal
 Construct Tπ

 Find the optimal cover C of Tπ

 For each long path in the cover C, identify the 
leftmost and the rightmost unoriented 
components and merge them.

 For each short path in the cover C, cut the 
unoriented component on the short path.

 Run Bergeron_basic
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