
Algorithms in Bioinformatics: A
Practical Introduction

Multiple Sequence Alignment

Multiple Sequence Alignment

 Given k sequences S = {S1, S2, …, Sk}.
 A multiple alignment of S is a set of k equal-

length sequences {S’1, S’2, …, S’k}.
 where S’i is obtained by inserting gaps in to Si.

 The multiple sequence alignment problem
aims to
 find a multiple alignment which optimize certain

score.

Example: multiple alignment of 4
sequences

 S1 = ACG--GAGA

 S2 = -CGTTGACA

 S3 = AC-T-GA-A

 S4 = CCGTTCAC-

Applications of multiple sequence
alignment

 Align the domains of proteins
 Align the same genes/proteins from

multiple species
 Help predicting protein structure

Sum-of-Pair (SP) Score

 Consider the multiple alignment S’ of S.
 SP-score(a1, …, ak) = Σ1≤i<j≤k δ(ai,aj)

 where ai can be any character or a space.

 The SP-score of S’ is
 Σx SP-score(S’1[x], …, S’k[x]).

Example: multiple alignment of 4
sequences
 S1 = ACG--GAGA
 S2 = -CGTTGACA
 S3 = AC-T-GA-A
 S4 = CCGTTCAC-
 Assume score of

 match and mismatch/insert/delete are 2 and -2,
respectively.

 For position 1,
 SP-score(A,-,A,C) = 2δ(A,-) + 2δ(A,C) + δ(A,A) + δ(C,-) = -8

 SP-score= -8+12+0+0–6+0+12–10+0 = 0

Sum-of-Pair (SP) distance

 Equivalently, we have SP-dist.

 Consider the multiple alignment S’ of S.
 SP-dist(a1, …, ak) = Σ1≤i<j≤k δ(ai,aj)

 where ai can be any character or a space.

 The SP-dist of S’ is
 Σx SP-dist(S’1[x], …, S’k[x]).

Agenda

 Exact result
 Dynamic Programming

 Approximation algorithm
 Center star method

 Heuristics
 ClustalW --- Progressive alignment
 MUSCLE --- Iterative method

Dynamic Programming for
aligning two sequences
 Recall that the optimal alignment for two sequences

can be found as follows.
 Let V(i1, i2) be the score of the optimal alignment

between S1[1..i1] and S2[1..i2].

 The equation can be rephased as









+−
+−
+−−

=
])[(_,)1,(
_)],[(),1(

])[],[()1,1(
max),(

2221

1121

221121

21

iSiiV
iSiiV

iSiSiiV
iiV

δ
δ
δ

{ }])[],[(),(max),(2221112211
)}0,0{(}1,0{),(

21 2
21

biSbiSbibiViiV
bb

δ+−−=
−∈

Dynamic Programming for
aligning k sequences (I)
 Let V(i1, i2, …, ik) = the SP-score of the

optimal alignment of S1[1..i1], S2[1..i2], …,
Sk[1..ik].

 Observation: The last column of the optimal
alignment should be either Sj[ij] or ‘-’.

 Hence, the score for the last column should
be SP-score(S1[b1i1], S2[b2i2], …, Sk[bkik])
 For (b1, b2, …, bk) ∈ {0,1}k.
 (Assume that Sj[0] = ‘-’.)

Dynamic programming for
aligning k sequences (II)

 Based on the observation, we have
 V(i1, i2, …, ik) = max(b1, b2, …, bk) ∈ {0,1}k

{ V(i1-b1, …, ik-bk) +
SP-score(S1[b1i1], …, Sk[bkik]) }

 The SP-score of the optimal multiple
alignment of S={S1, S2, …, Sk} is
 V(n1, n2, …, nk)
 where ni is the length of Si.

Dynamic Programming for
aligning k sequences (III)

 By filling-in the dynamic programming
table,
 We compute V(n1, n2, …, nk).

 By back-tracing,
 We recover the multiple alignment.

Complexity
 Time:

 The table V has n1n2…nk entries.
 Filling in one entry takes 2kk2 time.
 Total running time is O(2kk2 n1n2…nk).

 Space:
 O(n1n2…nk) space to store the table V.

 Dynamic programming is expensive in both time and
space. It is rarely used for aligning more than 3 or 4
sequences.

Center star method

 Computing optimal multiple alignment
takes exponential time.

 Can we find a good approximation
using polynomial time?

 We introduce Center star method,
which minimizes Sum-of-Pair distance.

Idea

 Find a string Sc.
 Align all other strings with respect to Sc.
 Illustrate by an example:

Converting pair-wise alignment to
multiple alignment

Detail algorithm for center star
method

Step 1 Step 2 Step 3 Step 4

Step 1
O(k2n2)

Step 2
O(k2)

Step 3
O(kn2)

Step 4
O(k2n)

Running time of center star
method
 Assume all k sequences are of length n.

 Step 1 takes O(k2n2) time.
 Step 2 takes O(k2) time to find the center string Sc.
 Step 3 takes O(kn2) time to compute the alignment between Sc and Si for all

i.
 Step 4 introduces space into the multiple alignment, which takes O(k2n)

time.

 In total, the running time is O(k2n2).

Why center star method is
good? (I)

 Let M* be the optimal alignment.
 The SP-dist of M*

Why center star method is
good? (II)
 The SP-dist of M

 The SP-dist of M is at most twice of that of
M* (the optimal alignment).

Progress alignment
 Progress alignment is first proposed by Feng and

Doolittle (1987).

 It is a heuristics to get a good multiple alignment.
 Basic idea:

 Align the two most closest sequences
 Progressive align the most closest related sequences until all

sequences are aligned.

 Examples of Progress alignment method include:
 ClustalW, T-coffee, Probcons

 Probcons is currently the most accurate MSA
algorithm.

 ClustalW is the most popular software.

Basic algorithm

1. Computing pairwise distance scores
for all pairs of sequences

2. Generate the guide tree which ensures
similar sequences are nearer in the
tree

3. Aligning the sequences one by one
according to the guide tree

ClustalW
 A popular progressive

alignment method to
globally align a set of
sequences.

 Input: a set of
sequences

 Output: the multiple
alignment of these
sequences

Step 1: pairwise distance scores

 Example: For S1 and S2, the global alignment is
 S1=P-PGVKSDCAS

 S2=PADGVK-DCAS

 There are 9 non-gap positions and 8 match positions.
 The distance is 1 – 8/9 = 0.111

S1: PPGVKSDCAS
S2: PADGVKDCAS
S3: PPDGKSDS
S4: GADGKDCCS
S5: GADGKDCAS

S1 S2 S3 S4 S5
S1 0 0.111 0.25 0.555 0.444

S2 0 0.375 0.222 0.111

S3 0 0.5 0.5

S4 0 0.111

S5 0

Step 2: generate guide tree

 By neighbor-joining, generate the guide
tree.

S1 S2 S3 S4 S5
S1 0 0.111 0.25 0.555 0.444

S2 0 0.375 0.222 0.111

S3 0 0.5 0.5

S4 0 0.111

S5 0

s1 s2 s3 s4 s5

Step 3: align the sequences
according to the guide tree (I)

 Aligning S1 and S2, we get
 S1=P-PGVKSDCAS

 S2=PADGVK-DCAS

 Aligning S4 and S5, we get
 S4=GADGKDCCS

 S5=GADGKDCAS

s1 s2 s3 s4 s5

Step 3: align the sequences
according to the guide tree (II)
 Aligning (S1, S2) with S3, we

get
 S1=P-PGVKSDCAS

 S2=PADGVK-DCAS

 S3=PPDG-KSD--S

 Aligning (S1, S2, S3) with
(S4, S5), we get
 S1=P-PGVKSDCAS

 S2=PADGVK-DCAS

 S3=PPDG-KSD--S

 S4=GADG-K-DCCS

 S5=GADG-K-DCAS

S1: P-PGVKSDCAS
S2: PADGVK-DCAS
S3: PPDG-KSD--S
S4: GADG-K-DCCS
S5: GADG-K-DCASs1 s2 s3 s4 s5

S1: P-PGVKSDCAS
S2: PADGVK-DCAS
S3: PPDG-KSD--S
S4: GADG-K-DCCS
S5: GADG-K-DCAS

S1: PPGVKSDCAS
S2: PADGVKDCAS
S3: PPDGKSDS
S4: GADGKDCCS
S5: GADGKDCAS

S1 S2 S3 S4 S5
S1 0 0.111 0.25 0.555 0.444

S2 0 0.375 0.222 0.111

S3 0 0.5 0.5

S4 0 0.111

S5 0

s1 s2 s3 s4 s5

Summary

Detail of
Profile-Profile alignment (I)

 Given two aligned sets of sequences A1 and A2.
 Example:

 A1 is a length-11 alignment of S1, S2, S3
 S1=P-PGVKSDCAS
 S2=PADGVK-DCAS
 S3=PPDG-KSD--S

 A2 is a length-9 alignment of S4, S5
 S4=GADGKDCCS
 S5=GADGKDCAS

 Similar to the sequence alignment,
 the profile-profile alignment introduces gaps to A1 and A2 so

that both of them have the same length.

Detail of
Profile-Profile Alignment (II)

 To determine the alignment, we need a scoring
function PSP(A1[i], A2[j]).

 In clustalW, the score is defined as follows.
 PSP(A1[i],A2[j]) = Σx,y gx

i gy
j δ(x,y)

where gx
i is the observed frequency of amino acid x

in column i.
 This is a natural scoring for maximizing the SP-score.

 Our aim is to find an alignment between A1 and A2 to
maximizes the PSP score.

Example
 A1[1..11] is the alignment of S1, S2, S3

 S1=P-PGVKSDCAS
 S2=PADGVK-DCAS
 S3=PPDG-KSD--S

 A2[1..9] is the alignment of S4, S5
 S4=GADGKDCCS
 S5=GADGKDCAS

 PSP(A1[3],A2[3]) = 1x2xδ(P,D)+2x2xδ(D,D)
 PSP(A1[9],A2[8]) = 2δ(C,C)+2δ(C,A)+δ(-,C)+ δ(-,A)

Dynamic Programming
 Let V(i,j) = the score of the best alignment

between A1[1..i] and A2[1..j].
 We have V(i,j) = maximum of

 V(i-1,j-1)+PSP(A1[i],A2[j])
 V(i-1,j)+PSP(A1[i],-)
 V(i,j-1)+PSP(-,A2[j])

 By fill-in the dynamic programming table, we
can find the optimal alignment.

 Time complexity: O(k1n1+k2n2+n1n2) time.

Example

 By profile-profile alignment, we have
 S1=P-PGVKSDCAS

 S2=PADGVK-DCAS

 S3=PPDG-KSD--S

 S4=GADG-K-DCCS

 S5=GADG-K-DCAS

Complexity
 Step 1 performs k2 global alignments, which

takes O(k2n2) time.
 Step 2 performs neighbor-joining, which

takes O(k3) time.
 Step 3 performs at most k profile-profile

alignments, each takes O(kn+n2) time. Thus,
Step 3 takes O(k2n+kn2) time.

 Hence, ClustalW takes O(k2n2+k3) time.

Limitation of progressive
alignment method

 Progressive alignment method will not
realign the sequence
 Hence, the final alignment is bad if we

have a poor initial alignment.

 Progressive alignment method does not
guaranteed to converge to the global
optimal.

Iterative method
 To reduce the error in progress alignment, iterative

methods are introduced.

 Iterative methods are also heuristics.
 Basic idea:

 Generate an initial multiple alignment based on methods like
progress alignment.

 Iteratively improve the multiple alignment.

 Examples of iterative method include:
 PRRP, MAFFT, MUSCLE

 We discuss the detail of MUSCLE.

Multiple sequence comparison by
log-expectation (MUSCLE)

 Idea 1:
 Try to construct a draft multiple

alignment as fast as possible; then,
MUSCLE improves the alignment.

 Idea 2:
 Introduce the log-expectation score for

profile-profile alignment

Profile-profile alignment
 For clustalW, we use the PSP score

 PSP(A1[i],A2[j]) = Σx,y gx
i gy

j δ(x,y)
where gx

i is the observed frequency of amino acid x
in column i.

 PSP score may favor more gaps. So, we use the log-
expectation (LE) score.
 LE(A1[i],A2[j]) =

(1-fiG)(1-fjG)log (Σx,y fixfjy pxy/(pxpy))
fiG is the proportion of gaps in A1
fix is the proportion of amino acid x in A1
px is the background proportion of amino acid x
pxy is the probability that x aligns with y
Note: pxy/(pxpy) = eδ(x,y)

3 Stages of MUSCLE

1. Draft progressive
 Generate an initial alignment based on some

progressive alignment method
2. Improved progressive

 Based on the alignment generated, compute a
more accurate pairwise distance

 An improved multiple alignment is generated by
using a progressive alignment method

3. Refinement
 An optional tree-based iteration step is included

to further improve the alignment.

Stage 1: Draft progressive
 The steps are similar to ClustalW.

1. Pairwise distance matrix
 To improve efficiency, we first compute the q-mer

similarity, which is the fraction F of q-mers shared by two
sequences. Then, the distance is 1-F.

2. Build guide tree
 Instead of using neighbor joining, we use UPGMA, which is

more efficient.
3. Profile-profile alignment

 When performing profile-profile alignment, we uses log-
expectation score.

Complexity of Stage 1
 Step 1 performs k2 q-mer distance

computation, which takes O(k2n) time.
 Step 2 performs UPGMA, which takes O(k2)

time.
 Step 3 performs at most k profile-profile

alignments, each takes O(kn+n2) time. Thus,
Step 3 takes O(k2n+kn2) time.

 Hence, Stage 1 takes O(k2n+kn2) time.

Stage 2: Improved progressive
 The steps are similar to ClustalW.

1. Pairwise distance matrix
 We first find the fraction D of identical bases shared by two

aligned sequences. Then, the distance is –loge(1-D-D2/5).
2. Build guide tree

 The guide tree is built using UPGMA.
3. Profile-profile alignment

 When performing profile-profile alignment, we uses log-
expectation score.

 Only perform re-alignment when there are changes relative
to the original guide tree.

Complexity of Stage 2
 Step 1 performs k2 distance computation,

which takes O(k2n) time.
 Step 2 performs UPGMA, which takes O(k2)

time.
 Step 3 performs at most k profile-profile

alignments, each takes O(kn+n2) time. Thus,
Step 3 takes O(k2n+kn2) time.

 Hence, Stage 2 takes O(k2n+kn2) time.

Stage 3: Refinement

 This stage is optional. It refines the
multiple sequence alignment to
maximizes the SP-score.

A. Visit the edges e in decreasing distance
from the root,
1. Partition the alignment into two sets by

deleting the edge e from the guide tree.
2. The two sets are realigned using profile-

profile alignment.
3. Compute the SP-score for the new

alignment.
4. If the SP-score is improved, we keep the

new alignment.
B. Iterate Step A until there is no

improvement in SP-score or a user
defined maximum number of iterations.

s1 s2 s3 s4 s5

Complexity of Stage 3

 Step A.1 takes O(1) time.
 Step A.2 takes O(kn+n2) time.
 Step A.3 takes O(k2n) time.

 Step A iterates k times. So, Step A
takes O(k3n+kn2) time.

 Suppose we perform x refinements.
This stage takes O(xk3n+xkn2) time.

Total running time of MUSCLE
 Stage 1: O(k2n+kn2) time
 Stage 2: O(k2n+kn2) time
 Stage 3: O(xk3n+xkn2) time

 Total time: O(xk3n +xkn2) time.

 Assuming x=O(1), we have
 Runing time: O(k3n+kn2) time.

 Note: The time complexity we got is a bit different
from MUSCLE analysis since MUSCLE assumes the
length of the alignment is (k+n) instead of n.

Reference
 D. F. Feng and R. F. Doolittle. Progressive sequence alignment

as a prerequisite to correct phylogenetic trees. Journal of Mol
Evol, 25:351-360, 1987.

 D. G. Higgins and P. M. Sharp. CLUSTAL: a package for
performing multiple sequence alignment on a microcomputer.
Gene, 73(1):237-244, 1988.

 J. D. Thompson and D. G. Higgins and T. J. Gibson. CLUSTAL
W: improving the sensitivity of progressive multiple sequence
alignment through sequence weighting, positions-specific gap
penalties and weight matrix choice. Nucleic Acids Research,
22:4673-4680, 1994.

 R. C. Edgar. MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Research, 32:1792-
1797, 2004.

 R. C. Edgar. MUSCLE: a multiple sequence alignment method
with reduced time and space complexity. BMC Bioinformatics,
5:113, 2004.

	Algorithms in Bioinformatics: A Practical Introduction
	Multiple Sequence Alignment
	Example: multiple alignment of 4 sequences
	Applications of multiple sequence alignment
	Sum-of-Pair (SP) Score
	Example: multiple alignment of 4 sequences
	Sum-of-Pair (SP) distance
	Agenda
	Dynamic Programming for aligning two sequences
	Dynamic Programming for aligning k sequences (I)
	Dynamic programming for aligning k sequences (II)
	Dynamic Programming for aligning k sequences (III)
	Complexity
	Center star method
	Idea
	Converting pair-wise alignment to multiple alignment
	Detail algorithm for center star method
	Running time of center star method
	Why center star method is good? (I)
	Why center star method is good? (II)
	Progress alignment
	Basic algorithm
	ClustalW
	Step 1: pairwise distance scores
	Step 2: generate guide tree
	Step 3: align the sequences according to the guide tree (I)
	Step 3: align the sequences according to the guide tree (II)
	Summary
	Detail of�Profile-Profile alignment (I)
	Detail of�Profile-Profile Alignment (II)
	Example
	Dynamic Programming
	Example
	Complexity	
	Limitation of progressive alignment method
	Iterative method
	Multiple sequence comparison by log-expectation (MUSCLE)
	Profile-profile alignment
	3 Stages of MUSCLE
	Stage 1: Draft progressive
	Complexity	 of Stage 1
	Stage 2: Improved progressive
	Complexity	 of Stage 2
	Stage 3: Refinement
	Complexity	 of Stage 3
	Total running time of MUSCLE
	Reference

