Algorithms In Bioinformatics: A

!’_ Practical Introduction

Multiple Sequence Alignment




i Multiple Sequence Alignment

= Given k sequences S = {S;, S,, ..., S;}.

= A multiple alignment of S is a set of k equal-
length sequences {S’;, S',, ..., S'\}.
= Where S’; Iis obtained by inserting gaps in to S..

= The multiple sequence alignment problem
aims to

= find a multiple alignment which optimize certain
score.



Example: multiple alignment of 4

i sequences

=S, = ACG--GAGA
=S, = -CGTTGACA
=S, = AC-T-GA-A
=S, = CCGTTCAC-




Applications of multiple sequence

i alignment

= Align the domains of proteins

= Align the same genes/proteins from
multiple species

= Help predicting protein structure




i Sum-of-Pair (SP) Score

= Consider the multiple alignment S’ of S.
s SP-score(ay, .., &) = Xy 0(8;,))
= Where a, can be any character or a space.

s The SP-score of S’ IS
n 2, SP-score(S',[X], ..., S [X]).



Example: multiple alignment of 4

i sequences

= S, = ACG--GAGA
= S, = ~CGTTGACA
= S, = AC-T-GA-A
= S, = CCGTTCAC-

s Assume score of

= Mmatch and mismatch/insert/delete are 2 and -2,
respectively.

= For position 1,
= SP-score(A,-,A,C) = 26(A,-) + 26(A,C) + 6(A,A) + 6(C,-) = -8
s SP-score= -8+12+0+0-6+0+12-10+0 =0




i Sum-of-Pair (SP) distance

= Equivalently, we have SP-dist.

= Consider the multiple alignment S’ of S.
| SP'dlSt(al, sy ak) — Zlgkjgk S(al,aj)
= Where a;, can be any character or a space.

s The SP-dist of S’ Is
n 2, SP-dist(S’,[x], ..., S [X]).



i Agenda

= Exact result
= Dynamic Programming

= Approximation algorithm
= Center star method

= Heuristics
= ClustalW --- Progressive alignment
= MUSCLE --- Iterative method



Dynamic Programming for

i aligning two sequences

Recall that the optimal alignment for two sequences
can be found as follows.

Let V(i I,) be the

score of the optimal alignment

between S;[1..1;] and S,[1..i,].

V (iy,i,) = maxs

V (i, —Li, —1) + 5(Sy[i], S,[i, 1)

V(il -1 iz) +5(Sl[i1]’_)
V(i1’ i2 _1) "’5(_1 Sz[iz])

The equation can be rephased as
V(,i,)=  max  {V(i,-b,i,—b,)+5(S,[ib]1,S,[i,b,1)}

(by,b,)ef0,1¥

—(0,0)}



Dynamic Programming for
i aligning k sequences (1)

= Let V(iy, Iy, ..., I,) = the SP-score of the
optima]I aﬁgnment of S;[1..11], S,[1..1,], ...,

Se[L..i.]-

= Observation: The last column of the optimal
alignment should be either Sj[i;] or *-'.

s Hence, the score for the last column should
be SP-score(S,[b;i1], S,[b,ls], ..., Silbyi])
= For (b, b,, ..., b) e {0,1}
= (Assume that S;[0] = "-.)



Dynamic programming for
i aligning k sequences (11)

s Based on the observation, we have

= V(I iz_’ eer Ii) = MaXm1, b2, ..., bk) e 0,13k
{ V(i1-by, .., b)) + |
SP-score(S,[b414], ..., S¢[byi]) }

= The SP-score of the optimal multiple
alignment of S={S,, S,, ..., S} IS
= V(N Ny, .y NY)
= Where n, is the length of S,.



Dynamic Programming for
i aligning k sequences (l11)

= By filling-in the dynamic programming
table,
= We compute V(n,, n,, ..., N,).

= By back-tracing,
= We recover the multiple alignment.




Complexity

= Time:
= The table V has n,n,...n, entries.
= Filling in one entry takes 2kk? time.
= Total running time is O(2%k? n n,...n,).

= Space:
= O(n;n,...n,) space to store the table V.

= Dynamic programming is expensive in both time and
space. It is rarely used for aligning more than 3 or 4
sequences.



i Center star method

= Computing optimal multiple alignment
takes exponential time.

= Can we find a good approximation
using polynomial time?

s We Introduce Center star method,
which minimizes Sum-of-Pair distance.
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= FInd a string S..
= Align all other strings with respect to S..
= |llustrate by an example:

3,: CCTGCTGCAG
. . . . - S, GATG-TGCCG
1 z 3 4| s
3 =
s COTEOTEC A 3, 1. £ 3 2 4 == 'kD(S1 S:I 13 El 1 COTGECTECAG 2,y COTGCoT-GCAG
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CECTLECLE 8. i > > Ei= HDIISq.S:I =17 3, CCTGCT-GCAG  3,: CC-GCTAGCAG
. CTETACE 3. 0 a 5 D(S S:I =18 Syt CCO-GCTAGCAG S CCTG-TAG—-G
s : i i=1.k &
SI: ;:_l [} =4 4T - _G-l'r\.
= = LI Ml . L Ll
3 CCTGE-TAG——IG

in



Converting pair-wise alignment to

i multiple alignment

: CCTGCTGCAG
: GATG-TGCCG

: CCTGCTGCAG
: GATG-TGCAG

.

: CCTGCTGCAG
: GATG-TGCCG
: GATG-TGCAG

S
COTGCT-GCAG 53
CC—-GCTAGCAG 4
S

: CCTGCTG-CAG
: GATG-TG-CCG

LS

: GHTG—TG—CRG\\\\‘.S{
+ CC-GCTAGCAG sé-
=

54:

: COCTGCT-GCAG 5 .

: CCTG-TAG—-G

CCTGCT-GCAG
GATG-T-GCCG
GATG-T-GCAG
CC-GCTAGCAG
CCTG-TAG-—-G



Detall algorithm for center star
2| method

Center_Star_Method

Require: A set S of sequences
Ensure: A multiple alignment of M with sum of pair distances at most twice
that of the optimal alignment of S

1: Find D(S;, S;) for all 4, j.

2: Find the center sequence S, which minimizes Z-i:l D(S..S;).
3: For every S; € S —{S.}, choose an optimal alignment between S, and S;.
4: Introduce spaces into S, so that the multiple alignment M satisfies the
alignments found in Step 3.

5 : cecrcorceac | Si| O : 3z a_: Lo kDS S) =13 5 . coreerecas 5,1 CCTGCT-GORG

o . carerecce o ST el 5] Z=xDS2S)=16  s.: eare-recac  s,: eaTe-T-Gece

s, carerecne  f— ~ 1 =1 5. ,D(S,S)=14 S,: GATG-T-GCAG

S,: CCGCTAGCAG | -2 1P =L, Ds.S)=1T & ffjdfzjc"{“ S4 CC-GCTRGCRE

Sgt COTGTAGG 5, 0| 4| T, D(S,S)=18 5 CETECTREEAS 5. COTGTTRAGT-C

Ss - L GCT-GCAG

Step 1 Step 2 Léiep 3 Step 4




Running time of center star
method

= Assume all k sequences are of length n.
= Step 1 takes O(k2n?) time.
= Step 2 takes O(k?) time to find the center string S..

= Step 3 takes O(kn?) time to compute the alignment between S; and S; for all
|

= Step 4 introduces space into the multiple alignment, which takes O(k2n)
time.

= In total, the running time is O(k?n?).

8,: CCTGCTGCAG
EZ GATG-TECCGE
Sl 3 53 54 3_
5. =
3 - COTGOTECOLGE ] 0 £ 3 2 4 = kD(ShS) 13 El COTGECTECAG 2. CCTGCT-GECRG
N - Tk D(S2,8) =16 5: care-Tecac s : GATG-T-GCCG
,_pz: GATETGEZCG ,‘32 L 1 [ 5 - = — -
S, GATGTGCAG [ —— T D(S55) =14 Sgf GRIG-T-GLAG
_ o T T T O e TR, T
5,: COGOTAGCAG | -3 1 2| =, D(S,S) =17 F1F CCTGCT-GLAG  S,: CC-GCTAGCRG
] T =T S e T — (o
SE: COTETLGEE 3&_ 0 4 Ei= RD(S;:S]: 18 Eq CC-GCTAGCLAG 5. CCTGE-TAG &
[=J
=5 8,: CCTGCT-GCAG
3. CCTG G——0G

Step 1 Step 2 Step3 | Step 4
o(k2n?) o(k?) o(kn?) o(k2n)



Why center star method Is

i good? (1)

= Let M* be the optimal alignment.
= The SP-dist of M*

— Z1§-g:<j§,t; A+ (1, 7)
Zlﬁi«(jgk D(S'«iﬁ Sj)

k k
% Zi:l Zj:l D(S?ﬁ SJ)
k k
% Z‘iZl ijl D(SC., Sj)
- k
% Zj:l D(SCW Sj)

'V

[V



Why center star method Is

i good? (1)

= The SP-dist of M
— Zl§f£.<j§lc dm (7, 7)
= $ 3 ey A (i )
< LY X [D(Se, i) + D(Se, ;)]
= £  D(S..S;) + 538 D(S., S))
— k>, D(S., S;)

s The SP-dist of M is at most twice of that of
M* (the optimal alignment).




Progress alignment

= Progress alignment is first proposed by Feng and
Doolittle (1987).

= [t is a heuristics to get a good multiple alignment.

= Basic idea:
= Align the two most closest sequences

= Progressive align the most closest related sequences until all
sequences are aligned.

= Examples of Progress alignment method include:
= Clustalw, T-coffee, Probcons

= Probcons is currently the most accurate MSA
algorithm.

= ClustalW is the most popular software.



i Basic algorithm

1.

Computing pairwise distance scores
for all pairs of sequences

Generate the guide tree which ensures
similar sequences are nearer In the
tree

Aligning the sequences one by one
according to the guide tree



‘L ClustalW

= A popular progressive [Ra tme ne ce . e
alignment method to |Mu|t|pIeAI|gnment MudeJ Font Size: 1I] -

FY

: 1 gi|1532237|gb

globally align a set of || @ &psas
3 gi|1532235|gb

4 gi|1532239|gb

5 gi|1532241|gb

sequences. : oiade
7 gi|1532217|gb

g gi|1532227|gb

9 gi|1532221|gb

1n gi|1532229|gb

11 gi|1532225|gb

1z gi|1532223|gb

13 gi|1532231|gb

= Input: a set of
sequences

= Output: the multiple / v/ \

-

alignment of these EIN 31T ] B
Seq uences File Ciwksung.oldyteachinglcs3225tassignmentiass2{HIV-1_PNAS1996_data




i Step 1: pairwise distance scores

= Example: For S; and S,, the global alignment is

= S5;=P-PGVKSDCAS
= S,=PADGVK-DCAS

= There are 9 non-gap positions and 8 match positions.
= The distance is 1 — 8/9 = 0.111

> PPGVKSDCAS
> PADGVKDCAS
> PPDGKSDS

> GADGKDCCS

> GADGKDCAS

S1

Sz

S3

Sy

Ss

0

0.111

0.25

0.555

0.444

0.375

0.222

0.111

0.5

0.5

0.111




i Step 2: generate guide tree

= By neighbor-joining, generate the guide

tree.

S, S, S; S, Sc
S; | 0 |0.111 | 0.25 | 0.555 | 0.444
S, 0 0.375 | 0.222 | 0.111
S; 0 0.5 0.5 ’/—‘ r—‘
S 0 0.111
. S, S,S3S; Ss
Sc 0




Step 3: align the sequences
i according to the guide tree (I)

= Aligning S1 and S2, we get
= S,=P-PGVKSDCAS
= S,=PADGVK-DCAS

= Aligning S4 and S5, we get
= S,=GADGKDCCS
= S.=GADGKDCAS

o

S; S, S; S, Sk




Step 3: align the sequences
i according to the guide tree (I1)

= Aligning (S1, S2) with S3, we = Aligning (S1, S2, S3) with
get (54, S5), we get
= S5,=P-PGVKSDCAS = S5,=P-PGVKSDCAS
= S,=PADGVK-DCAS S,=PADGVK-DCAS
s S3=PPDG-KSD--S S;=PPDG-KSD--S
S,=GADG-K-DCCS
S.=GADG-K-DCAS

S,: P-PGVKSDCAS

® S,: PADGVK-DCAS
S;: PPDG-KSD--S
o o S,: GADG-K-DCCS

S; S, S3S; S: Sz GADG-K-DCAS




i Summary

> PPGVKSDCAS

S;:
Syt
S3:
S,: GADGKDCCS
S GADGKDCAS

5-

PADGVKDCAS
PPDGKSDS

> P-PGVKSDCAS
> PADGVK-DCAS
> PPDG-KSD--S
> GADG-K-DCCS
> GADG-K-DCAS

S; | S S3 Sa S5
S; | 0 |0.111 | 0.25 | 0.555 | 0.444
S, 0 |0.375|0.222 | 0.111
S; 0 0.5 | 0.5
S, 0 |o0.111
Ss 0
S[ 12 S3 SE 15




Detail of
Profile-Profile alignment (1)

= Given two aligned sets of sequences A; and A,.

= Example:

= A, is alength-11 alignment of S, S,, S;
» S;=P-PGVKSDCAS
= S,=PADGVK-DCAS
= S,=PPDG-KSD--S

= A, is alength-9 alignment of S,, S¢
= S,=GADGKDCCS
= S:=GADGKDCAS

= Similar to the sequence alignment,

= the profile-profile alignment introduces gaps to A; and A, so
that both of them have the same length.



Detall of

i Profile-Profile Alignment (11)

To determine the alignment, we need a scoring
function PSP(A[i], A5[1]).

In clustalW, the score is defined as follows.

= PSP(A[ILA LD = 2, 94 9 8(X,Y)
where g,' is the observed frequency of amino acid x
In column 1.

This is a natural scoring for maximizing the SP-score.

Our aim is to find an alignment between A; and A, to
maximizes the PSP score.



i Example

= A[1..11] is the alignment of S, S,, S;
= S,=P-PGVKSDCAS
= S,=PADGVK-DCAS
= S,=PPDG-KSD--S
= A[1..9] is the alignment of S,, S.
= S,=GADGKDCCS
= S.=GADGKDCAS

= PSP(A;[3],A;[3]) = 1x2xd8(P,D)+2x2x8(D,D)
= PSP(A,[9],A,[8]) = 26(C,C)+25(C,A)+0o(-,C)+ 6(-,A)



i Dynamic Programming

= Let V(i,])) = the score of the best alignment
between A,[1..1] and A,[1..]].

= We have V(i,J)) = maximum of
= V(i-1,]-1)+PSP(A[1LLAL[I]D
= V(i-1,))+PSP(A,[1],-)
= V(i,]-1)+PSP(-,AS LD

= By fill-in the dynamic programming table, we
can find the optimal alignment.

= Time complexity: O(k,n;+k,n,+n;n,) time.



i Example

= By profile-profile alignment, we have
s 5;=P-PGVKSDCAS

= S,=PADGVK-DCAS
= S,=PPDG-KSD--S
« S,=GADG-K-DCCS
= S:=GADG-K-DCAS




i Complexity

= Step 1 performs k? global alignments, which
takes O(k?n?) time.

= Step 2 performs neighbor-joining, which
takes O(k3) time.

= Step 3 performs at most k profile-profile
alignments, each takes O(kn+n?) time. Thus,
Step 3 takes O(k?n+kn?) time.

= Hence, ClustalW takes O(k?n?+k3) time.



Limitation of progressive
i alignment method

= Progressive alignment method will not
realign the sequence
= Hence, the final alignment is bad if we
have a poor Initial alignment.

= Progressive alignment method does not
guaranteed to converge to the global
optimal.



i Iterative method

= To reduce the error in progress alignment, iterative
methods are introduced.

s lterative methods are also heuristics.
s Basic idea:

= Generate an initial multiple alignment based on methods like
progress alignment.

= Iteratively improve the multiple alignment.

= Examples of iterative method include:
= PRRP, MAFFT, MUSCLE

= We discuss the detail of MUSCLE.



Multiple sequence comparison by
i log-expectation (MUSCLE)

s ldea 1:

= Try to construct a draft multiple
alignment as fast as possible; then,
MUSCLE improves the alignment.

s ldea 2:

= Introduce the log-expectation score for
profile-profile alignment



i Profile-profile alignment

= For clustalW, we use the PSP score
" PSP(Al[I]’AZ[J]) = 2x,y gxi gyj 8(X’Y)
where g,' Is the observed frequency of amino acid x
In column 1.

= PSP score may favor more gaps. So, we use the log-

expectation (LE) score.

= LE(AL[ILADD) =

(1-19)(1-19)log (3, F5Y po/(pP))

f.C is the proportion of gaps in A;

fx is the proportion of amino acid x in A,

p, is the background proportion of amino acid x

P,y I the probability that x aligns with'y

Note: pxy/(pxpy) = %)



* 3 Stages of MUSCLE

1. Draft progressive

= Generate an initial alignment based on some
progressive alignment method

2. Improved progressive

= Based on the alignment generated, compute a
more accurate pairwise distance

= Animproved multiple alignment is generated by
using a progressive alignment method

3. Refinement

= An optional tree-based iteration step is included
to further improve the alignment.



i Stage 1: Draft progressive

= The steps are similar to ClustalWw.

1. Pairwise distance matrix
= To improve efficiency, we first compute the g-mer
similarity, which is the fraction F of g-mers shared by two
sequences. Then, the distance is 1-F.
2. Build guide tree
= Instead of using neighbor joining, we use UPGMA, which is
more efficient.
3. Profile-profile alignment

= When performing profile-profile alignment, we uses log-
expectation score.



i Complexity of Stage 1

= Step 1 performs k? g-mer distance
computation, which takes O(k?n) time.

= Step 2 performs UPGMA, which takes O(k?)
time.

= Step 3 performs at most k profile-profile
alignments, each takes O(kn+n?) time. Thus,
Step 3 takes O(k?n+kn?) time.

= Hence, Stage 1 takes O(k?n+kn?) time.



Stage 2: Improved progressive

= The steps are similar to ClustalW.

1. Pairwise distance matrix
= We first find the fraction D of identical bases shared by two
aligned sequences. Then, the distance is —log.(1-D-D?/5).
2. Build guide tree
= The guide tree is built using UPGMA.

3. Profile-profile alignment

= When performing profile-profile alignment, we uses log-
expectation score.

= Only perform re-alignment when there are changes relative
to the original guide tree.



i Complexity of Stage 2

= Step 1 performs k? distance computation,
which takes O(k?n) time.

= Step 2 performs UPGMA, which takes O(k?)
time.

= Step 3 performs at most k profile-profile
alignments, each takes O(kn+n?) time. Thus,
Step 3 takes O(k?n+kn?) time.

= Hence, Stage 2 takes O(k?n+kn?) time.



i Stage 3: Refinement

= This stage is optional. It refines the
multiple sequence alignment to
maximizes the SP-score.

A Visit the edges e in decreasing distance
from the root,
1. Partition the alignment into two sets by _‘ ’(_‘
deleting the edge e from the guide tree.

2. The two sets are realigned using profile- S1 S2 53 S4 S5
profile alignment.

5. Compute the SP-score for the new
alignment.

2. If the SP-score is improved, we keep the
new alignment.
. Iterate Step A until there is no
Improvement in SP-score or a user
defined maximum number of iterations.




i Complexity of Stage 3

m Step A.1 ta
s Step A.2 ta
s Step A.3 ta

Kes O(1) time.
kes O(kn+n2) time.

kes O(k?n) time.

= Step A iterates k times. So, Step A
takes O(k3n+kn?) time.

= Suppose we perform x refinements.
This stage takes O(xk3n+xkn?) time.



‘L Total running time of MUSCLE

= Stage 1: O(k?n+kn?) time
= Stage 2: O(k?n+kn?) time
= Stage 3: O(xk3n+xkn?) time

= Total time: O(xk3n +xkn?) time.

= Assuming x=0(1), we have
= Runing time: O(k®n+kn?) time.

= Note: The time complexity we got is a bit different
from MUSCLE analysis since MUSCLE assumes the
length of the alignment is (k+n) instead of n.
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