CS5238 Monthly Project Report

October, 2002
Stochastic Algorithms

For

Multiple Sequence Alignment
Hugo Willy

Li Qiu Xiang

Pavandip Singh Wasan

Vinsensius Berlian Vega S N
Introduction

Multiple sequence alignment deals with the problem of determining the best overall alignment for a set of sequences. It has been said that multiple sequence alignment is one of the cornerstones of computational molecular biology. Applications of multiple sequence alignment are numerous, including: Identification of conserved region and consensus sequence, detection of point mutations, construction of phylogenetic trees, and prediction of secondary and tertiary structures, to name a few. MSA has also been widely used in conjunction with categorization and clustering of genes/proteins.

The problem of aligning multiple sequences can be defined more formally as follow:

Problem Definition: Given a set of k strings S={S1, S2, …, Sk}, find an alignment such that the number of aligned symbol is optimal. That is to say, find {S1’,…,Sk’}, where Si’ is an extension of Si by inserting or padding gaps/spaces, such that forall i,j |Si’| = |Sj’| and forall i,j i ≠ j,
[image: image1.wmf])

,

(

j

i

S

S

sim

¢

¢

å

 is maximized. Note that sim(X,Y) is some sequence similarity function defined for sequences X and Y.
In this project, we shall focus our attention to the class of stochastic algorithm for aligning multiple sequences. Stochastic algorithm is a class of algorithm that involves probabilistic variables or non-deterministic steps. It can also been seen as having an inherent random nature. Algorithms that fall under this class commonly have the characteristic of maximizing the probability of a random event given an objective function.

Such property is particularly appealing in the context of molecular biology, since (due to the limitation of today's science) many phenomena are ascribed to random or, at best, probabilistic process. It would only be natural then to try to model such system using a stochastic algorithm.

In aligning multiple sequences, it is assumed that differences among the sequences arose from mutations during evolution, both of which are largely random processes in themselves. Stochastic MSA algorithms attempt to model such behaviour to guide the alignment of the sequences.

We have identified two types of stochastic algorithms that have been successfully applied to the MSA problem, namely Hidden Markov Model and Genetic Algorithm.

HMM-based Multiple Sequence Alignment Algorithms

Introduction
Hidden Markov Model is based on what is known in the statistics arena as Markov process. In a Markov process, a system is thought as having a set of finite states. Associated with this set of states is a set of probabilities of moving from one state to another. In an n-order Markov, such transition is dependent on n previous states. Each state can produce an output, governed by some probability distribution. A simplifying assumption that the output of a state is independent of previous/other states is generally made. Under the Hidden Markov Model, only the outcome sequences of the states, not the sequence of the state, is visible to an external observer.

A Hidden Markov Model can be represented by a triplet
[image: image2.wmf])

,

,

(

B

A

P

, where:

·
[image: image3.wmf]}

{

i

p

=

P

: denotes the vector of the initial state probabilities, i.e. the probability that an instance starts at state i.

·
[image: image4.wmf]}

{

ij

a

A

=

: denotes the state transition matrix, i.e. the probability of moving from state i to state j.

·
[image: image5.wmf]}

{

jk

b

B

=

: denotes the confusion (or emission) matrix, i.e. the probability of outputting k given that the current state is j.

Using a Hidden Markov Model predominantly revolves around solving three kinds of problems:

a) Evaluation Problem is the problem of determining the probability that a given HMM
[image: image6.wmf])

,

,

(

B

A

P

=

l

 generates a sequence of output
[image: image7.wmf]T

o

o

o

O

,

,

,

2

1

L

=

. That is, to put it formally, determine
[image: image8.wmf]}

|

{

l

O

p

 given O and λ.
A brute force approach would take
[image: image9.wmf])

(

T

N

O

time, where N is the number of states and T is the length observed output. The commonly used algorithm to solve this is the Forward Algorithm which takes
[image: image10.wmf])

(

2

T

N

O

 time, which is linear with respect to T (as in the real world application where the HMM is fixed).
b) In the Decoding Problem, we are to find the most probable sequence of hidden states given some observations O and a model λ. This problem entails identifying the sequence of hidden states that were responsible for generating the observed output.
The Viterbi Algorithm was designed to solve this problem. It is formulated as a dynamic programming algorithm and has a time complexity of
[image: image11.wmf])

(

NT

O

.
c) The final and most challenging problem is the Learning Problem. Here, the problem is to take a sequence of observations (from a known set), known to represent a set of hidden states, and fit the most probable HMM; that is, to determine the ([image: image12.png]

,A,B) triple that most probably describes what is seen.
Two main criteria for solving this are the Maximum Likelihood (ML) criterion and the Maximum Mutual Information (MMI) Criterion. The Baum-Welch algorithm is a popular iterative algorithm that tries to find the optimum model using the ML criterion.
Application to Multiple Sequence Alignment

In trying to solve a problem using HMM, one would need to define the basic structure of the HMM. For the problem of Multiple Sequence Alignment, [Krogh et al, 1994] proposed to use what they called profile HMM.

In a profile HMM, there are 5 types of states: Start, End, Match, Insert, and Delete. A profile HMM consists of exactly one start and one end states, which signify the start and the end of a sequence. Between them, there are repetitions of the triple state {match, insert, delete}, which -as implied by the names- model the three possible situations in sequence alignment. The number of repetitions denotes the length of the model, which can be interpreted as the expected length of conserved sequences in the final alignment.

The start, end, and delete states are silent; i.e. they produce no output, whereas each of the Match and Insert states produces an output (amino acid residue or nucleotide) based on a probability distribution specified in the Emission Matrix associated to it.
A typical profile HMM configuration can be seen below:

[image: image13]

[image: image14]
Multiple sequence alignment can now be rephrased as a HMM problem as follow:

Given a set of k sequences S={S1,…, Sk},

· First, determine
[image: image15.wmf]l

¢

 that maximizes
[image: image16.wmf]å

=

k

i

S

p

1

)

|

(

l

 , i.e.
[image: image17.wmf]å

=

=

¢

k

i

S

p

1

)

|

(

max

arg

l

l

l

· Next, for each Si, determine the most probable sequence of hidden states in the model
[image: image18.wmf]l

¢

 that produces Si. Using this sequence of hidden states, construct Si' (roughly, the match states indicate columns of aligned residues, while insert and delete states represent adding gaps in other sequences or current sequence).

Analysis and Performance
Note that the first step is in fact the Learning problem in the general HMM, one can thus readily use the Baum-Welch algorithm which takes
[image: image19.wmf])

(

max

a

Nkl

I

O

, where Imax is the maximum number of iteration set for the Baum-Welch, N is number of states in the model, and la is the average length of the k input sequences.

Each iteration in the second step runs the Viterbi algorithm to find the most probable sequence of hidden state. Step 2 would then take
[image: image20.wmf])

(

a

Nkl

O

. Thus, the overall algorithm would take
[image: image21.wmf])

(

max

a

Nkl

I

O

.
A drawback of HMM, as reported in [Thompson et al, 1999], is that it can’t weed out outliers/noises and need a sizeable training set. Nevertheless, it is considerable much faster than other non-stochastic methods (a typical learning converges in less than 10 iterations).
GA-based Multiple Sequence Alignment
Introduction

Genetic algorithms (GAs) introduced by John Holland [Holland, 1975] are stochastic methods based on the concept of biological evolution and genetics. GAs operate on chromosome-like data structures (e.g. strings of bit) that encode possible solutions of the problems [Jong, 1988], and apply reproduction/breeding and mutation operators to generate new chromosomes in a search space. Then, based on the principle of survival-of-the-fittest, chromosomes with good performance are selected through selection operator.

GA is a form of evolutionary computation which strongly stresses recombination as the driving force of evolution. The structure of a typical genetic algorithm can be described as follows [Spears et al, 1993]:

0 (t;

initialize population(s) (P(t);

evaluate(P(t));

REPEAT until solution is found

t+1 (t;

selection(P(t-1)) (B(t);

breeding(B(t)) (R(t);

mutation(R(t)) (M(t);

evaluate(M(t));

survival(M(t),P(t­1)) (P(t);

END REPEAT;

Where:

s is a random generator seed;

t represents the generation;

P(t) is the population at generation t;

B(t) is the buffer of parents at generation t;

R(t) are the offspring generated by recombining or cloning B(t);

M(t) are the offspring created by mutating R(t)

After creating the buffer of parents by a selection procedure, members of the buffer are randomly chosen for breeding. Breeding may be carried out by recombination, when genetic material of two individuals is exchanged, or by cloning, when an individual is simply copied. In the sequence, the generated offspring are mutated and evaluated. Finally, a survival step may be implemented to replace the current population with the offspring. The details are described briefly below.

Selection is the competition among individuals of the population to become parents of the next generation. A good selection procedure should exert sufficient selective pressure to boost evolution by favoring those individuals with better performance. However, it should not favor highly fit individuals excessively, since early in the search the fitness variance is high, and a group of super individuals may quickly mate and multiply, preventing an adequate exploration of the search space.

Recombination, the distinguishing feature of genetic algorithms, is the mechanism by which genetic material of different individuals is combined to create offspring. The theoretical foundation of GAs is based on the assumption that highly fit individuals can be built by assembling good small blocks of alleles (building blocks [Holland, 1975; Goldberg, 1989]). The objective is to allow the exchange of genetic material between parents, in order to exchange building blocks, create new ones, and possibly not destroy good ones in the process. It is usually carried out by a crossover operator.

Mutation is a secondary operator, used to introduce lost or new genetic material, and to keep genetic diversity in the population. Mutation implements a random change in the value of one or more genes. For example, in a bitstring chromosomes mutation can be implemented by flipping a bit. Mutation is applied to the offspring created by recombination and, similarly to crossover, the number of mutation operations is determined by a mutation probability.
Genetic Algorithms for Multiple Sequence Alignment

To successfully apply GA on MSA, one would need to map the potential solutions (i.e. alignments) into a representation/data structure that could be easily manipulated (in terms of recombination and mutation). On top of that, a proper evaluation function or objective function should be defined, which in this case is related to the overall alignment score of the sequences. In one sense, we can see that GA for MSA somewhat model a brute force approach of trying numerous possible solution in a somewhat guided-randomized manner. Here we shall discuss briefly two GA-based methods to align multiple sequences.

SAGA

SAGA [Notredame et al, 1996] is derived from the simple genetic algorithm described by Goldberg [Goldberg, 1989]. The method involves evolving a population of alignments in a quasi evolutionary manner and gradually improving the fitness of the population as measured by an objective function, which in this case is simply the multiple alignment score. SAGA uses an automatic scheduling scheme to control the usage of 22 different operators for combining alignments or mutating them between generations. The overall structure of SAGA is shown in Figure 2 below.

The population considered is made of alignments, that is to say each individual is in fact an actual alignment, not just a representation of it. Initially, a generation zero (G0) is randomly created. To go from one generation to the next, children are derived from parents that are chosen by some kind of natural selection, based on their fitness as measured by the objective function (i.e. the better the parent, the more children it will have). To create a child, an operator is selected that can be a crossover (mixing the contents of the two parents) or a mutation (modifying a single parent). In each cycle, the size of the population is kept constant. Each operator has a probability of being chosen that is dynamically optimized during the run.

These steps are repeated iteratively. In each iteration, new pieces of alignment appear due to mutations and are recombined by the crossovers. The selection ensures that the good pieces survive and the dynamic setting of the operators helps the population to improve by creating the children it needs. Following this simple process, the fitness of the population is increased until no more improvement can be made.

[image: image22.jpg]

[image: image23]
Performance

According to [Notredame et al, 1996], SAGA has good performance and efficiency in the majority of data sets of highly similar sequences with long lengths. The reported quality is close to the alignments of MSA and CLUSTALW, the widely used software for multiple sequence alignment based on the tree-based algorithm. In aligning short amino acid sequences, it produces better quality results with high scores compared to CLUSTALW. SAGA, however, needs to be improved to suit less similar sequences.

Zhang’s and Wong’s algorithm
In Zhang’s and Wong’s algorithm [Zhang and Wong, 1997], sequence alignment is performed in two steps: identifying matches and identifying mismatches (insertions, substitutions, and deletions).

Pre-alignment

The first stage takes in the sequences to be aligned and generates the (near) optimal pre-alignment. A pre-alignment is an alignment that contains only matches. Only matches are considered, since matches are considered the most important part of an alignment. Pre-alignment can thus be viewed as a (good) starting point to build the final overall alignment. Note that since it only contain matches, pre-alignment is generally shorter than the final alignment.

To arrive at the (near) optimum pre-alignment, [Zhang and Wong, 1997] employs a genetic algorithm. The problem of finding pre-alignment is converted to a search problem in the pre-alignment space. [Zhang and Wong, 1997] defines the genetic string as a string of match blocks, where a match block is in turn defined as a contiguous columns of matched columns. Number of matched columns of a string signifies the fitness of the string. Here we can readily see that the GA would try to get as many matched columns as possible.

Construction of alignment from pre-alignment

Having determined the fittest pre-alignment, the algorithm would then map the original set of sequences into the pre-alignment. Missing columns would then be considered as a mismatch, and an evaluation function is used to guide the handling of mismatches (i.e. whether to assign substitution, insert, or deletion).

Analysis and Performance

[Zhang and Wong, 1997] showed that the algorithm takes
[image: image24.wmf])

)

((

2

n

l

O

a

 time and
[image: image25.wmf])

(

max

n

l

l

O

a

 space, where la denotes the average length of the n input sequences and lmax denotes the maximum length of the input sequence. In terms of effectiveness, it produces alignments of very similar quality as CLUSTALW in terms of the number of matches and the scores, while taking a considerably lesser time to run.

Remarks

From the stochastic methods discussed earlier, we observed that stochastic algorithm is somewhat suited for aligning a set of similar sequences with sufficient number of sequences. This characteristic can be explained by the nature of stochastic algorithm which makes use of statistical attributes of the input. It seems that the design of the above discussed algorithms have been guided by the assumption that the given a set of sequences contains “truthful” sequences that could be aligned with the rest. It is imperative that the users must be made aware of this key assumption, as many might try to use Multiple Sequence Alignment to detect outliers. The inclusion of noises/outliers in the basic assumption of the algorithm design is an open problem for the stochastic algorithms.
Despite of the above shortcomings, the overall performance of the algorithms has been shown to be at least as good as other algorithms. Further, they generally run faster.
References

D. Goldberg. Genetic algorithm in search, optimization and machine learning. AddisonWesley, Reading, Massachusets, 1989.
J. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, Michigan, 1975.

K. D. Jong, Learning with genetic algorithms: An overview, In Machine Learning , 3, 121-138 (1988)
R. Hughey and A. Krogh, Hidden Markov models for sequence analysis: Extension and analysis of the basic method, CABIOS 12(2): 95-107, 1996

A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, Hidden Markov models in computational biology: Applications to protein modeling. Journal of Molecular Biology, 235:1501--1531, February 1994
C. Notredame, and D. G. Higgins, SAGA: sequence alignment by genetic algorithm, Nuc. Acids Res., 24(8), 1515-1524(1996)
W. Spears, K. Jong, T. B¨ack, D. Fogel, and H. Garis. An overview of evolutionary computation. In Proceedings of the European Conference on Machine Learning,1993

Thompson, J.D., Plewniak, F. and Poch, O. A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Research, 27: 2682 – 2690, 1999
C. Zhang, and A. K. C. Wong, A genetic algorithm for multiple molecular sequence alignment, Comput. Applic. Biosci., 13(6), 565-581(1997).
i4

i3

i2

i1

End

m4

d4

m3

d3

m2

d2

m1

i0

d1

Start

Figure 2. Layout of the SAGA algorithm: (a) Initial population (G0), (b) One generation cycle (Gn). The cycle continues until the terminal conditions are met. P1 n to Pm n indicate parents in generation n, C1 n+1 to Cm n+1 indicate their children. Parents and children are alignments. Bold boxed alignments selected to survive unchanged from one generation to the next. OP is a randomly chosen operator.

Figure 1. A typical profile HMM.

_1095684766.unknown

_1095714548.unknown

_1095747432.unknown

_1095832917.unknown

_1095833449.unknown

_1095832857.unknown

_1095832875.unknown

_1095747467.unknown

_1095715384.unknown

_1095685413.unknown

_1095685822.unknown

_1095685027.unknown

_1095678922.unknown

_1095684385.unknown

_1095684546.unknown

_1095679388.unknown

_1095678766.unknown

_1095678798.unknown

_1095667402.unknown

