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Abstract— We propose an algorithm to estimate the relative most commonly used algorithm for a calibrated camera.
camera pose using four feature correspondences and one However, the 5-point algorithm is not always guaranteed to
relative rotation angle measurement. The algorithm can be paya 5 stable estimation. On a vehicle with a forward-logkin

used for relative pose estimation of a rigid body equipped lati timati . difficult for th
with a camera and a relative rotation angle sensor which can camera, relatve pose estimation Is more dimcult for the

be either an odometer, an IMU or a GPS/INS system. This 9-point algorithm compared to a side-looking camera. The
algorithm exploits the fact that the relative rotation angles of main difficulties are the lower stability of the algorithmrfo

both the camera and relative rotation angle sensor are the sae  forward motion compared to sideways motion, and the larger
as the camera and sensor are rigidly mounted to a rigid body. depth of features seen by a front camera which makes the

Therefore, knowledge of the extrinsic calibration betweenthe timation | te. Read find di .
camera and sensor is not required. We carry out a quantitatie estimation less accurate. keaders can find some discussion

comparison of our algorithm with the well-known 5-point and ~ @bout the performance of the 5-point algorithm in [4], [5].
1-point algorithms, and show that our algorithm exhibits the  To improve the estimation accuracy, research has focused

highest level of accuracy. on exploiting extra information from other sensors or from
specific motion models. For example, [7] obtains two rotatio
angles from the IMU, and uses a 3-point algorithm to esti-
Vehicle platforms equipped with a camera and either amate the relative pose of a micro aerial vehicle. This method
odometer, IMU, or yaw rate sensor have been widely usa@quires that the extrinsic calibration between the camera
in the areas of computer vision, robotics, and automatand the IMU is known. In [8], a novel 1-point algorithm is
control. For years, research has focused on using these lgwreposed. The algorithm assumes that the vehicle follows th
cost sensors to localize the vehicle as well as reconstnect tgeneral Ackermann steering model. The 1-point algorithm
vehicle’s environment. This research is also referred to &san compute stable relative pose estimates very quickly;
visual SLAM in robotics. however, it requires the camera to be located along the
One key step of visual SLAM is to estimate the relativerear axis of the vehicle. In [9], another 3-point algorithm
camera pose between each frame pair. One commonly ugegroposed for relative pose estimation. This method uses a
method is feature-based estimation in which a subset gtneralized camera but only applies to 3-DoF planar motion.
image feature correspondences is selected to estimate théf the vehicle platform has either an odometer or GPS/INS
fundamental matrix or essential matrix between two framesystem, and its pose with respect to the camera’s frame is
The relative rotation and translation can then be extractdthown, we can directly obtain the camera’s relative pose
from the matrix. A series of “n-point” (n-correspondencesjrom the odometer posdf, as H 'H,H, where H is
algorithms has been proposed for this objective. If the camethe transform between the camera and odometer frames.
has unknown intrinsics, the fundamental matrix can bElowever, in practice, estimating is not easy. This problem
estimated by the 8-point algorithm or 7-point [1] algorithm is known as the hand-eye calibration [10], [11]. Moreover,
If the camera has calibrated intrinsics, either the 6-poirdccurate estimation of relative transforms, hand-eydali
[2], [3] algorithm or 5-point [4], [5], [6] algorithm can tion algorithms require accurate visual odometry estiomati
be used to compute the essential matrix. Based on theBkis visual odometry estimation also requires featureetdas
algorithms, robust estimation methods such as RANSA@lative pose estimation algorithms such as the 5, 6, 7, and
or LMedS are used to generate the best estimate from8apoint algorithms.
set of point correspondences containing both inliers and Our approach is similar in spirit to [7], [8], [9]; in this
outliers. The performance of “n-point” algorithms is sifini paper, we propose an algorithm to improve the relative pose
cantly affected by the quality of the feature correspondsncestimation using relative rotation angle measurements. Th
detected from images. It is well-known that an algorithmalgorithm uses four feature point correspondences found
using fewer point correspondences requires fewer itaratiofrom an image pair and one rotation angle from any relative
for robust estimation. For the case of a calibrated camleea, trotation sensor such as an odometer, IMU, or GPS/INS.
minimal solution requires 5 point correspondences to soiMa the algorithm, the camera can be mounted anywhere on
for the 5-DoF relative pose. In [4], [5], the 5-point algbrit  the platform; the advantage is that no extrinsic calibratio
shows the best estimation performance compared to the i6-required. Since the rotation angle sensor readings are
point, 7-point, and 8-point algorithms. For visual SLAM andvery stable and accurate in general, the proposed algorithm
structure-from-motion problems, the 5-point algorithnthie  significantly improves the accuracy of relative pose edésa

I. INTRODUCTION



compared with existing methods. have

The rest of the paper is organized as follows. Section ge =q 1qsq
Il establishes notations and formulas used in the proposed 0 9
method. Section Il presents the formulation of the 4- = (cos§ — (@i + yj + zk) sin 5) .

point relative pose problem, and section IV presents two
algorithms to solve the problem. The performance of the (COS% + (250 + ysj + zsk)sin%) )
algorithm is studied in section V; we use simulations to 2 2
compare our results with those from the 5-point algorithm,

and quantify the algorithm’s improvement over the 5-point

algorithm. Furthermore, the algorithm is compared with th@vhere@ and
5-point and 1-point algorithms on two real-world datasetg
obtained with our vehicle platform.
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(z,y,2)" is the rotation angle and rotation axis
f a quaternion;. Consider the real part of., asq'®®. By

C

some simple deduction, we can obtain

0
| s
Il. PRELIMINARIES ge? = cos > (6)

Image points from the first and second frames are denotsinceqs™ = cos & by definition, the relative rotation angles
by homogeneous vectors; = (z1,y1,1)7 and ps 6. and @, are equal. This means that the relative rotation

(22,92, 1)T respectively. The intrinsic matrix of the camera@ndle reading from the sensor can be directly used as the
relative rotation angle of the camera without knowing the

is denoted ad<. Since the proposed algorithm requir&s e
to be known, we hereby assume thatandp, are always €XtInsics.

premultiplied by K 1. I1l. PROBLEM FORMULATION

Denote R aqd t as the relative rotation and trapslation_ Substituting (4) into (1), we express the essential magix a
between the first and second frame. The essential mate nction of the rotation angle, rotation axis and trafisiat

corresponding taR andt¢ can be denoted as
E(0,r,t) = [t]x (cosI + (1 —cos®)rr' + sinO[r] )

E=[t]xR 1) _ _ _ @)
wherer is a 3D unit vector and is assumed to have unit
where[t]« denotes the skew symmetric matrix: norm since it is up to scale. With the assumption that we
know 6 from the sensor reading, the number of DoFs for
0 —t3 t the relative camera pose is reduced from 5 to 4. By using 4
]y = tsy 0 _— @) image point correspondences, we can solverfand¢ for
—ty 1 0 the minimal case.

Thus, we form the equation system for solving for the

An ideal image point corresponden@® , p2) satisfies the relative camera pose:

constraint: Py EO,rt)pi =0 fori=1234 (8)
p2' Ep1 =0 3) Ir* =1 9)
_ | _ - 12 =1 (10)
Rodrigues’ rotation formula Given a 3D unit rotation h B T oand t — T ,
axis vector = (r,,ry,7,)' and a rotation anglé, it is easy w kere ro= (rery,rs)l Andt = (to,ty,t:) " are six
to find the corresponding rotation matrix using Rodriguesun nowns.
rotation formula. IV. SOLUTION

T ) Solving polynomial systems for minimal problems in
R(0,7) = (cosO)I + (1 —cosO)rr' + (sinf)[r]x  (4) computer vision has become a focus of recent research.
However, for an equation system with a high degree and

where! is a3 x 3 identity matrix. many unknowns, it is often difficult to obtain an efficient
Theorem The relative rotation angle of the camera andtlosed-form solution. The equation system (8) includes 4
that of the relative rotation sensor are equal. cubic polynomials with the highest monomial in the form of

This is a known fact for rigid motion. Denote the relativet,r,r., wherex denotes any arrangement af,'‘ ¢/, * 2. (9)
motion of the rotation sensor d& andt,, and the transform and (10) are two quadratic polynomials. Compared with the
between the camera and the sensorRaandt. We know minimal problem for both the 5 and 6-point algorithms, the
that the camera rotation can be denoted?as= R~'R,R, above system has more variables and a higher degree, both
which is independent of the translation. Here, we use thaf which makes it more difficult to solve. In this section, we
guaternion representation to provide a simple proof to shopropose two different solvers for our equation system. The
that the rotation angle aR. and R is the same. Denotg,, first one is a closed-form solution based on the Groebner
q., andq as the corresponding quaternions respectively. Weasis. The second one is an efficient numerical solution.



A. Closed-Form Solver where f} is a polynomial whose terms include, r, and

. . . r.. We can stackf! as a matrix:
The Groebner basis provides a useful technique for solv? K.

ing general polynomial systems. In this paper, we use an tof2 f3 "

automatic solver generator [12] to generate the Groebner Fry,ry,m)t = 23 f2 t”” —0 (12
basis solver for our problem. This generator works by first SR AR I - 4 ty N
generating a series of polynomials from the original proble o ?

Their coefficients are denoted in a coefficient matrix. NextSince we know that is up to scale, the rank of must be

the coefficient ma.trlx is eliminated. An_ a.C“OT‘ matrix €an, This means that the determinant of &lk 3 submatrices
then be formed using elements of the elimination result. Th

X . . X . fust be 0. This is equivalent to the following equations.
eigenvectors of the action matrix consist of solutions t® th q ged

original problem. Taking the 5-point algorithm for example o f3
this involves al0 x 20 coefficient matrix and a0 x 10 action 2 2 f21=0 (13)
matrix. This is similar to the solver used in [5]. SO A

We first simplify our problem by replacing (10) with 2 2 13
t, = 1. This is easy to understand sincés only defined 2o f3 =0 (14)
up to scale. Thus, we remove one unknown and only have Lo fs

five unknownsr = (r,r,,7.)" andt = (t,,t,,1)" and 5 . .
equations (8, 9) to solve. Note that this simplification may Combining (13), (14) and (9), we have a new equation

cause numerical failure if, is extremely small comparing s¥sc§em tha;hg; threelgnknO\;ym§;t;y, r=- (13) gn_d (14),[?6
with ¢, andt,. In practice, this simplification does not cause’ fegreef ' !?Ceh( ) implies at””’.ry’rz) 'San 2De

a numerical failure because even if the camera is moving oy race of a unit Sphere, we parame elg ry, ) n

the zy plane,t. always has some small deviation from seroSPace and use the gradient descent method to find the roots

which is sufficient for the solver to work stably. Directly from a set of initial guesses. This gradient descent-based

solving the system without this simplification can avoid th ethod is inspired by [13], which uses a similar method

problem of numerical failure, but makes the solution muc pr solving the S-point algorithm. Qur initial guesses are
more complex ' drawn from uniform sampling on the surface of a unit sphere.

: - . Note that for the minimal case, there is a small chance that
Inputting the simplified equation systems to the automati . . . .

. > : the correct root is missed in the gradient descent method

solver generator, we obtain a coefficient matrix of size x : : A -

. - : s as mentioned in [13]. We can minimize the probability

290. The action matrix is of siz€0 x 20 which implies the . . ) L
roblem has 20 complex roots. We use all the real roots g%at convergence fails by increasing the number of initial
Eossible solutions forpandt ' guesses. For our implementation, we find that 100 samples

This closed-f ver is el t and ¢ Y are sufficient for convergence to the correct solution for
IS closed-Torm SOIVer IS elegant and €asy 10 US€. HOW™ \ye found out from doing 10000 simulations that the
ever, we point out two drawbacks. Firstly, decomposin

iminati Hicient matrix of Size70 x 290 %robability of missing the correct root is less th&n01. In
or eliminating a coetlicient matrix ot SIze7b x can addition, when the solver is embedded in a robust estimation
be computationally expensive. Secondly, in some extre

th " " b | ber d n??amework, for example, RANSAC, a failure to converge can
cases, the correct root may not be a real number due %tirely be avoided due to the multiple iterations in robust
data noise. This can be illustrated by the following smal

. stimation. In our simulation tests, we did not encounter a
example. Consider the problerfw — 1) = 0.01 where the

. convergence failure.
roots arex = 0.9 andz = 1.1. In the case of noisy data, 9

. After r,, r,, 7. are solved,F’ is then obtained and is
_ 2 _ xZ Y z
there is a case where we solge—1)* = —0.01. Then, the the null vector ofF". Note that multiple roots exist for the

:olc()_t W':L be |: ! ti ?'t}:’ Wh'fh is not a real T‘“”:bler- Ety .equation system, and for each possible solutiot), (r, —t)
aking the real part of the root, we can approximately obtaijy ", 1 qiple solution too.

a real solution. However, for more complicated polynomial
systems, this sometimes can lead to a large deviation of tlle Robust Estimation

estimated result from the actual result. Similarly in the cases of the 5, 6, 7, and 8-point algorithms,

_ a robust estimation framework can be used for the 4-point
B. Numerical Solver algorithm to find the optimal relative pose from a set of both

To avoid the drawbacks of the Groebner basis solver, wigli€er and outlier point correspondences. Taking the wyidel
hereby propose a numerical solver for our problem using thtésed robust estimation framework RANSAC as an example,

gradient descent method. This solver can quickly solve tHB €ach iteration, 4 points are randomly sampled to generate
problem and obtain real roots. hypotheses for the relative camera pose estimate. From

the above discussion, we know that multiple relative pose
hypotheses may exist. By checking the reprojection error
such as the Sampson error for the whole point set, candidate
solutions are rejected until only two candidate solutions)

and (r, —t) remain. One of these two candidate solutions

We reformulate equation (8) as:

fli(rmaryvrz)tz + fQi("’ma"’yvrz)ty + fg(rmaryvrz)tz =0
fori=1,2,3,4 (11)



is rejected by checking if the reconstructed 3D points have 0.025 apig
positive depth. This is also called the cheirality checkdh [ 002 —
In contrast to the 5-point algorithm, the 4-point algorithm

requires a lower number of iterations to achieve the same , 0o

confidence level. Consider a point set with= 50% inliers; s 001

in each iteration, the probability of selecting 4 inliers is
w* = 6.25% while the probability of selecting 5 inliers

0.005

is w® = 3.125%. The number of iterations required for 0 m— . -
RANSAC is ll‘;gll_;’; where n is the number of point

correspondences and is the confidence level. To get anFig. 1. Computation time for the minimal case for the varioaktive
estimate with a confidence level of = 0.99, the 4-point pose estimation algorithms. 4-pt gb stands for the closea-fGroebner

. . . . . T . basis solver. 4-pt nm stands for the numerical solver usiadignt descent.
algorithm requires 71 iterations while the 5-point algwomit

requires 145 iterations. TABLE |

V. EXPERIMENTS EXPERIMENT SETTINGS FOR SIMULATION DATA

A. Implementation Details and Timing Issues 'E)/'initmhal Distance 18
. . ep

We implemented both the Groebner basis solver and Baseline 1
numerical solver for our 4-point algorithm. In the Groebner Image Size 350 x 350
basis solver, we use the sparse QR decomposition implemen- | -Fleld of View 60 _

. . . .. L Error Measurement | Translation deviation angle
tation from the Eigeh library to eliminate the coefficient Error Estmator Cower quartile (minimal case
matrix. In the numerical solver, we use Powell's hybrid Mean (RANSAC case)

; i ; Tests per Noise Leve| 1000 (minimal case)
method from the GNU General Scientific Library (G3L) 100 (RANSAC case)

Powell's hybrid method retains the fast convergence of
Newton’s method but is more reliable. We also implemented
a 5-point algorithm based on the solver in [4]. The 5-

point solver implementation uses the uni-variable poly@m comparisons between the 5, 6, 7 and 8-point algorithms can
solver from the OpenC¥library. The three implementations pe found in [4], [5].

are available onliné. We structure our experiment setup in line with existing

Figure 1 shows the computational times for the two 4-pOiflsearch by using simulation settings such as image size,
solvers and 5-point solver. The measured computational tinfie|q of view, and point distance from [4]. The settings are
is for the minimal case. The reader can easily see that t§ymarized in table | and figure 2. The two algorithms are
closed-form Groebner basis solver is the most computatiogsgieq with forward and sideways motions. The relative pose

ally expensive. The numerical solver is slightly slowerrtha ggimation error is measured by the angle between the ground
the 5-point algorithm. Considering that additional coastts i translation and estimated translation vectors. ®hier

make the relative pose estimation problem more complex, thgessurement is based on the fact that the translation estima
extra computational cost for the numerical solver is smalfjop, is much more sensitive to noise compared to the rotation
the numerical solver is still fast enough for real-time use. estimation; see [14] for details. In general, for both the 4-
We would like to also point out a further optimization for yqint and 5-point algorithms, the rotation error is lessntha
the numerical solver. The computation of the coefficients ig 10 \\e approximate the image feature noise as a zero-mean
(13) and (14) involves a series of extremely large polynomigayssian noise distribution with a varying range of stagdar
als generated by Maple; computing the coefficients take Usyiations. For the minimal case test, four and five point
approximately70% of the computational time incurred by ¢qrrespondences are generated for the 4-point and 5-point
t_he current implementation. We_can reduce thg CompUtati(HFgorithms respectively. For the RANSAC case test, we use
time by re-arranging the terms in the polynomials. 50 point correspondences to run a RANSAC framework to
generate the best estimation. 1000 tests were executed for
each noise level in the minimal case test. 100 tests were
We use simulation data in this section to test the peexecuted for each noise level in the RANSAC test. Figure 3
formance of the 4-point and 5-point algorithms. We do nopots the relative pose error against the standard dewiafio
consider the 6, 7 and 8-point algorithms as the 5-point algéhe feature noise distribution. In figures 3a and 3b, we plot
rithm is known to outperform these algorithms for the casghe lower quartile of the relative pose error at each noisel le
of a calibrated camera. Therefore, in this section, we onligr the minimal case tests. In figures 3c and 3d, we plot the
compare our algorithm with the 5-point algorithm. Detailednean error at each noise level for the RANSAC tests. The
L I _ _ test criterion were selected to be consistent With_thosé]ln_ [
https://bitbucket. org/ei gen/ ei gen/ From the plots, we can clearly see that the 4-point algorithm

2htt p: // www. gnu. or g/ sof t war e/ gsl / . f
3htt p: // opencv. or g outperforms the 5-point algorithm.

“https://sites. googl e.conisite/prclibolfour-point We perform another test to show how the noise from

B. Performance under Noise
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Fig. 3. Translation error in degrees against noise standewétion in pixels. (a) Minimal cases, forward motion. @jnimal cases, sideways motion.
(c) 50 points, forward motion. (d) 50 points, sideways muotio

relative rotation angle measurements influences the 4t-poin
algorithm. We assume here that the relative rotation angle
0 is measured a$l + )¢ by the sensor, where follows

a zero-mean Gaussian distribution. In this test, we select
the standard deviationy values to be 0, 0.02, 0.04, and
0.06. For each of the 4 noise levels, we generate a plot of
translation error against the noise level. We also use the
same settings with the above RANSAC tests except that
the translation direction is arbitrary and the relativeatioin
angle is between-10° and10°. The plot is shown in figure

4. We find that with the erraz smaller than 0.04, the 4-point
algorithm gives a better result than the 5-point algoritim.
practice, the error of the relative rotation angle measerdm
provided by the rotation sensor is much smaller, and hence,
the 4-point algorithm outperforms the 5-point algorithm in
general.

depth

minimal distance

sideway

forward

C. Real-World Performance

Fig. 2. Experiment settings for simulation data. The twohéascameras In thi ti the 4 int al ith ith
mark the locations to which the camera moves with forward siddways n this section, we compare the 4-point algorithm wi

motion respectively. the 5-point and 1-point algorithms which are two well-known
algorithms for relative pose estimation for a vehicle mati.
Here, we use the numerical solver for the 4-point algorithm
as the numerical solver has a significantly shorter compu-
tational time than the Groeber basis solver. Our platform
is a VW Golf outfitted with a camera, odometry and an
iTrace GPS/INS system. The camera is mounted at the front

aa, Bl vanjing odo nofe ) of the vehicle and its intrinsics are calibrated beforehand
12} 06008 In addition, the camera pose with respect to the odometer
and GPS/INS is known. We use these extrinsics to generate
10p 00004 reference camera trajectories from GPS/INS and odometry

o =0

og=0.02 data. The visual odometry generated by the 4-point algorith
assumes no knowledge of the extrinsic calibration between
the camera and relative rotation angle sensor. In following
discussions, we use the words GPS/INS and odometry to
refer to the camera trajectories generated from GPS/INS and
odometry respectively. The plotted trajectories are shiswn
figures 6 and 7. The GPS/INS trajectory is shown with other
L trajectories in each image as ground truth for comparison.
O 0B 030 ey T e e We compare the algorithms on two datasets collected with
our platform. The first dataset is a single loop trajectory
Fig. 4. Translation error in degrees against noise standewifiion in ~ consisting of 2000 keyframes with a keyframe distance of
pixels. The standard deviatiary of the relative rotation angle measurement0.4 m. The second dataset is taken from multiple loops in
noise ranges between 0 and 0.06. 50 points are used to exeRARSAC a more challenging environment; 2800 keyframes are used
scheme for each test. . . .
with the same keyframe distance of 0.4 m. Figure 5 shows the
aerial imagery of the scenes where the datasets are cdllecte
ORB [15] feature correspondences detected from image data

Translation error (deg)




the use of relative rotation measurements narrows down the
space of possible solutions. Similarly, the 4-point altion
outperforms the 1-point algorithm; the assumption by the 1-
point algorithm that the camera lies along the vehicle’s rea
axis is violated. There is room for further optimization of
the implementation in terms of speed.

One limitation of the 4-point algorithm is that if large
instantaneous changes in rotation are observed, we require
the rotation sensor to be synchronized with the camera. Such
synchronization may be difficult to implement.

Our 4-point algorithm can be used for any platform with
a camera and a rotation sensor. For example, our 4-point
algorithm can be used on mobile phones for which computer
vision and augmented reality applications are increagingl
becoming popular. The internal gyroscope sensors provide
relative rotation angle measurements which are similar to
those from odometry and INS. In addition, the 4-point
algorithm is also applicable to robotic systems such asanicr
aerial vehicles which move in 3D space.

The main advantage of the 4-point algorithm is that no

are passed as input into the compared algorithms. We roviéreIOWh:Jdge about the extrinsics is required, and thus, an
P P b 9 . ProVIE trinsic calibration is not needed. This non-requirenoaimnt

the results from the 4-p0|r_1t algorithm using bf)th the hegdmbe extremely useful for hand-eye calibration implemeotedi
from the odometer readings and the rotation angle from

. . : in which rotation angle information can be used to improve
the INS readings. Since we only compare the relative PO3fe visual odometry estimates, and thus, the resulting-hand
estimation results in this paper, the scale informatiomwben ' '
each pair of frames is directly obtained from the GPS/INSY® transform.
data for all the compared algorithms. Furthermore, only the
relative pose between consecutive frames is estimated, and
no bundle adjustment in any form is used. The second author was funded by the DSO National

From the plots, we clearly see that the 4-point algorithnhaboratories Postgraduate Scholarship. In addition vibik
using relative rotation angle measurements from INS daw@as supported in parts by the European Community’s Sev-
generates a trajectory closest to the ground truth. Theidt-poenth Framework Programme (FP7/2007-2013) under grant
algorithm using relative rotation angle measurements frof269916 (V-Charge) and 4DVideo ERC Starting Grant Nr.
odometry data generates a similar trajectory but with mor210806.
drift due to the higher inaccuracy of odometer readings. The
trajectories computed by the 5-point and 1-point algorghm
have larger drifts. For the 5-point algorithm, if the image [1]
feature quality is low, the relative pose accuracy is signif
icantly degraded. For the 1-point algorithm, the trajegtor [2]
is very smooth due to the Ackermann steering assumption;
however, the 1-point algorithm only works as long as thep
camera is located on the vehicle’s rear axis. Our front camer
configuration does not adhere to the rear axis requirement?!
leading to a continuous bias for each frame.

Fig. 5. Aerial imagery of the scenes used for the real-worpeements.
Left: The parking lot where the first dataset with 1400 frarizesollected.
Right: The parking lot where the second dataset with 300@nésa is
collected. The GPS/INS trajectory of the vehicle is plotiedjray.
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