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IntrOdUCtion — Putting Eq (2) into Fge from Eq (1), we get the generalized essential e Planar constraint: Non-PerSpective Pose Estimation

matrix with Ackermann motion.
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e Objectives: Use images from a calibrated multi-camera system, 1i.e. ] o | _ n_ 1 : 5 ! | _2q2 8 p y (5) e Objective
known intrinsics and extrinsics parameters mounted on a self-driving car 0 0 p SH 59 C?Sg — Smeﬁ 0 14 ¢? ()q Oq 1+ g2 T g Given: A set of three 3D points (X1, X2, X3) defined in Fyy seen by ar-
to: O 2 0 5 —F (E)OS 2 Slg COCS (1) § i il - bitrary cameras on the multi-camera system and their corresponding 2D
Eoc = |PPM 2 P93 3 where ¢ = tan(£), hence cos(f) = =% and sin(f) = =% . image coordinates (x1,x2,T3).
1. Generate a map, which we called the sparse map, that consists of the G cosf —sinf 0 0 C C (3) ! (3) (6) I+¢° (6) 1447 > (71,22, 3)
egq—motions of the car and 3D points from the structures in the sinf cos 0 0 S : e Putting Eq (5) into Eq (1) and with three Pliicker correspondences, we Find: The rigid transformation R and t that brings the multi-camera
environment. 0 0 1 0 C 0 get a system of three polynomial equations in the form of: frame F~ into the world frame Fyy . . \, .
2. Estimate the pose of the car with respect to a given sparse map . . . y . | X |
. . ) : ’ — Putting Eq (3) into Eq (1) and with two Pliicker line correspondences, we e 3D points are defined as the Pliicker coordinates: 0, A,
which is also known as non-perspective pose estimation. oet a system of two polynomial equations in the form of: a12q° + arxq + asx + a1yq” + asyq + agy + arq® +agq+ag =0  (6) X L \ e )
- .
e Grobi - Our self-driving car equipped with wheel odometer, GPS/INS for 0 0 , , . . e . X7 = qi X q; + Nig; (7)
oround truth, and four fisheye cameras looking front, left, right and rear. acosf + bsin ) + cp cos 5 + dp sin 5 +e=0 (4) e lhe systein of polynomial equations is solved with the “Hidden Variable . o | seem
e Resultant” method. where \; 1s the depth of the point X ,LG along the i
Right Camer Rear C ‘
,;‘ . ear\imera a,b,c,d and e are coefficients computed from the Pliucker line. e This gives a 6-degree polynomial that can be solved with the Companion Plucker line .
| — A . o | - y matrix. e Using the preservation of distances between the o
o - T;QIS leads to the minimal solution of .?)—degree polynomial with v = sin” 3 3D points in Fyy and Fg, we get three constraints in the three unknown
> where the yaw angle 6 can be solved in closed-form. e Results depth (A, Az, A3) [5]:
£ Pose-graph (red) and 3D scene points (blue) after pose-graph optimization
L 3 > _ grap P pose-graph op
Front Camera - W ﬁ_:‘_) Left Camera A’)/ T B/y T ny +D =0 overlaid on the satellite image. kll)\% + (k12)\2 + le))\l T (k14)‘3 T k15)\2 - k16) =0 (8&)
W ( 3 A, B,dC’ anc;l D Za;re the coeflicients computed from the Plicker line corre- i kot A3 + (kaoz + kog) A1 + (1@4)\% + kas Az + kog) = 0 (8b)
- _ spondence [ <> [’. > o
Wheel Odometry 3 e— k31>‘% (k32>‘3 k33))‘2 (k34)\§ k35)\3 k36) =0 (8C)
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— The metric scale p can be solved by back-substitution.
P Y e The system of polynomial equations is solved using the “Sylvester Resul-

= go- Motion Estimation o Results (i'“; \ . ' tant” variable elimination method.

Correspondence /

Top view of trajectory and 3D map points after pose-graph loop-closure A L . . .
e Generalized Camera Model and full bundle adjustment compared with GPS/INS ground truth. A * Eliltiiilves a 8-degree polynomial that can be solved with the Companion
Relative pose R and t of a multi-camera system can be solved from the 3 - . & -
Generalized Epipolar Constraint defined in [1]: | Lot —epsns | e Results:
] ] Localization results (Left). Results from frames with < 20 correspon-
l/;l; LR lii = 0 (1) Degenerate Case and Its Solution dences are discarded. Plots showing the distribution of the translational
&0 and rotational errors against GPS/INS ground truths (Right).
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where Eqgc is the generalized essential matrix. [ <> [’ are point cor-
respondences represented as 6-vector Pliicker lines. E = |t|« R is the
conventional essential matrix.

o Existing Works and Their Limitations

Linear algorithm [1] requires 17-point correspondences and minimal prob- Loo p-c losure Constraint
lem |2] gives 64 solutions, which are computationally expensive for RANSAC.
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Inter-Camera

e Our Solution: Ackermann Constraint [3] e Frrors from ego-motion estimation accumulate and eventually lead to c, Corespondence References
e ICR loop-closure errors. :
» Coop A — T'wo parameters - relative yaw angle 6 e Figure shows an example of loop-closure error. T o Scale cannot be estimated from the 2-point and S—Point a%gorithr.ns when % E ggess,, ‘iUSintg Hllari}sf Cla]f.leras ta,s ol e.”, (fVPR 2?.03 1 relat b
' / %0 and scale p — 2-point minimal problem. Pose-graph (red) does not coincide at revisited the multi-camera system undergoes pure translation while having only - L ”ewemus €t. at, LOIULIons 1o miimalt geerallzed relative pose prob-
g # places. intra-camera correspondences. lems”, OMNIVIS 2095 S o | |
vagcrm 3. G.H. Lee et. al, “Motion estimation for a self-driving car with a generalized
/ N Vi "cosl  —sinf O 08 0y e Problem: Loop-closure constraints (green) do e We use an additional inter-camera correspondence to circumvent the scale camera’, CVPR 2013.
Cu K p P.#6/2 »— |sing 9 . .Y (2) not follow Ackermann constraint. ol | problem in the degenerate case for the ego-motion estimation. 4. G.H. Lee et. al, “Structureless pose-graph loop-closure with a multi-camera
0.1 s O I g S o | system on a selt-driving car”, IROS 2013.
[ I —— 0 0 1 0 ¢ Solution: Relax Ackermann to planar constraint, xim e We drop the loop-closure constraints in the rare cases of pure translational 5. G.H. Lee et. al, “ Minimal solutions for pose estimation of a multi-camera
= - i.e. three parameters - x,y,# — 3-point minimal problem [4]. alignment during loop-closure. system”, ISRR 2013.




