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In this paper, we propose a novel formulation to solve the pose estimation problem of a calibrated multi-camera system. The
non-central rays that pass through the 3D world points and multi-camera system are elegantly represented as Plücker lines. This
allows us to solve for the depth of the points along the Plücker lines with a minimal set of 3-point correspondences. We show
that the minimal solution for the depth of the points along the Plücker lines is an 8 degree polynomial that gives up to 8 real
solutions. The coordinates of the 3D world points in the multi-camera frame are computed from the known depths. Consequently,
the pose of the multi-camera system, i.e. the rigid transformation between the world and multi-camera frames can be obtained
from absolute orientation. We also derive a closed-form minimal solution for the absolute orientation. This removes the need for
the computationally expensive Singular Value Decompositions (SVD) during the evaluations of the possible solutions for the depths.
We identify the correct solution and do robust estimation with RANSAC. Finally, the solution is further refined by including all
the inlier correspondences in a non-linear refinement step. We verify our approach by showing comparisons with other existing
approaches and results from large-scale real-world datasets.

I. INTRODUCTION

The pose estimation problem of a multi-camera system
refers to the problem of determining the rigid transformation
between the world frame and multi-camera frame, given a set
of 3D points defined in the world frame and its corresponding
2D image points. In contrast with a single camera that has
a single center of projection, the multi-camera system is an
imaging sensor where light rays passing through the 3D world
points and camera are non-central, i.e. the light rays do not
meet at a single center of projection. An advantage of the
multi-camera system is that it provides the flexibility to be set
in a configuration which gives a maximum coverage of the
environment. The solution to the pose estimation problem of
a multi-camera system has important applications in robotics
such as finding the initial camera pose estimates in structure-
from-motion (SfM) / visual Simultaneous Localization and
Mapping (SLAM), geometric verification and place recogni-
tion for loop-closures, and visual localization of a robot with
respect to a given map that contains visual descriptors. Figure
1 shows our robotic car platform and the images from the
multi-camera system mounted on it.

The fact that the light rays from a multi-camera system do
not meet at a single center of projection means that all the clas-
sical approaches [7], [21], [17] for solving the perspective pose
problem cannot be used. An alternative approach has to be
proposed to handle the non-central nature of the multi-camera
system. In addition, it is important that the proposed approach
is a minimal solution and requires minimal correspondences
that makes it efficient to be used within robust estimators such
as RANSAC [6] (see Section V for more details).

In this paper, we proposed a novel formulation to solve
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(a)

(b)

Fig. 1. (a) Our robotic car platform with a multi-camera system made up
of 4 separate fish-eye cameras looking front, rear, left and right (cameras are
embedded in the car logos and side mirrors). (b) Sample images from the 4
cameras.

the pose estimation problem of a multi-camera system. In
particular, we adopt the representation of non-central light
rays from a multi-camera system with the Plücker line coor-
dinates from existing works [20], [16], [13], [14] for relative
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motion estimation of the multi-camera system. We show that
this allows us do a two-step approach for solving the pose
estimation problem - (a) solve for the unknown depth of the
points along the Plücker lines and (b) compute the multi-
camera pose from the known depths with absolute orientation
[7], [11]. We show that with a minimal number of 3-point
correspondences, it leads to an 8 degree polynomial minimal
solution that yields up to a maximum of 8 real solutions for
the unknown depths. Each of these possible solutions of the
depth is used to compute the coordinates of the 3D world
points in the multi-camera frame. The known 3D points in
the multi-camera frame are used to compute the pose of the
multi-camera system using absolute orientation.

The standard approach for solving the absolute orientation
requires an expensive step of SVD and it is inefficient to per-
form the SVD multiple times to evaluate all the possible solu-
tions of the depths. We circumvent this problem by deriving an
efficient minimal solution for the absolute orientation, which
allows us to compute the rigid transformation between the
world and multi-camera frames from 3-point correspondences
in closed-form without the need for SVD. Once we have
obtained all the possible solutions for the rigid transformation,
we compute the depths of all the other 3D world points.
This allows us to choose the correct solution within a robust
estimator such as RANSAC. Finally, the solution is further
refined by including all the inlier correspondences in a non-
linear refinement step that minimizes the reprojection errors
(see Section VI for more details). We verify our approach
by showing comparisons with other existing approaches and
results from large-scale real-world datasets.

II. RELATED WORKS

The method proposed by Chen et al. [3] is most related
to our method. In this work, they proposed a 3-point mini-
mal solution and N-point solution to the multi-camera pose
estimation problem. Similar to our method, their proposed
solution is also a two-step approach. First, the coordinates
of the 3D points in the multi-camera frame are determined.
The 3D points in the multi-camera frame are determined by
solving three distance parameters defined on the rays that
passes through the 3D points. Next, the rigid transformation
between the 3D points in the world and multi-camera frames is
solved by absolute orientation. The formulation in the first step
resulted in two 8 degree polynomials where a total of up to
16 real solutions are computed by root finding. In comparison,
our method resulted in only one 8 degree polynomial that
gives up to 8 real solutions, which has the advantage of less
computational time needed to identify the correct solution.
Another drawback of [3] is that the representations of the rays
used to define the distance parameters breaks down when the
three rays are respectively lying on parallel planes and in the
case of linear pushbroom cameras [8] (see Section IV-C for
more details). As a result, an alternative representation has
to be made. In contrast, our representation of the rays as the
Plücker lines is holistic and does not require any alternative
formulation in any case. In addition, we also derive an efficient
closed-form minimal solution for absolute orientation.

In [18], Nister proposed a formulation that directly solves
for the rotation and translation parameters. His formulation
gives an 8 degree polynomial minimal solution. This method
is of special interest as the coefficients for the equation system
can be computed with a low number of computations making
it a fast method. He also proposed the use of Sturm sequencing
for root finding and stated that the execution times is in
the order of microseconds. The method is evaluated with
simulations and compared to the single camera case. Similar
to Nister’s method, our method also ends up with an 8 degree
polynomial minimal solution, which can also be solved with
the Sturm sequencing to achieve the same execution time.
Despite the computational efficiency, as also noted in [12],
the derivation of Nister’s method is not intuitive and requires
laborious geometry and algebraic reasonings.

Kneip et al. presented that most recent work on pose
estimation using a multi-camera system in [12]. In this work,
the authors presented a 3-point minimal solution and N-point
solution. They first solved for the rotations and point depths
with a Gröbner Basis [4] solver followed by solving for the
translation. They showed simulation experiments, comparisons
to single camera perspective pose methods and a real-world
visual odometry experiment using a two-camera setup. The
exact process of solving the pose estimation problem with
the Gröbner Basis approach is a black-box process which is
not described in detail in [12]. Hence, Kneip’s method cannot
be reproduced easily. In comparison, our method is based on
several algebraic equations which are intuitive and easy to
implement. They mentioned that the generated solution from
the Gröbner Basis solver has a length of 8000 lines of code and
the execution time in the order of milliseconds. This makes
it slower than Chen’s, Nister’s and our methods which solve
an 8 degree polynomial that can be done in the order of
microseconds as noted in Nister’s paper [18].

In contrast to the minimal solvers for the pose estimation
problem of the multi-camera system, there also exist linear [5]
and iterative N-point [22], [23] solutions. The linear solution
needs 6 or more point correspondences and thus less efficient
in RANSAC [6] compared to our minimal solution which
requires only 3 point correspondences. Since the iterative N-
point solutions involves computationally expensive iterations,
they are usually used to refine the pose estimation after all the
inlier point correspondences have been found by RANSAC
coupled with a minimal solution.

We adopt the Plücker lines representation for a multi-camera
system from existing works on motion estimation [20], [16],
[13], [14], [15]. However, it is important to note that we adopt
the Plücker lines representation to solve the multi-camera pose
estimation problem, which is a completely different problem
from the multi-camera motion estimation problem in [20],
[16], [13], [14], [15]. The objective of multi-camera motion
estimation is to compute the relative transformation between
two multi-camera frames given the 2D-2D image point corre-
spondences, while the multi-camera pose estimation problem
ask for the rigid transformation between a given world frame
and the multi-camera frame given the 2D image point to 3D
world point correspondences. To the best of our knowledge,
no other work has adopted the Plücker lines representation to
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solve the multi-camera pose estimation problem.

III. PROBLEM DEFINITION
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Fig. 2. Illustration of the pose estimation problem for a multi-camera system.

Figure 2 shows an illustration of the pose estimation prob-
lem of the multi-camera system. It is made up of multiple
cameras denoted by (C1,C2,C3) that are rigidly fixed onto a
single body. Note that we show only 3 cameras in Figure 2 but
our proposed method works for any multi-camera system that
has any number of cameras. Our method also works even if
there was only 1 single camera (see perspective case in Section
IV-C). We denote the reference frame of the multi-camera
system and the world frame as FG and FW . The intrinsics
and extrinsics of the respective cameras are assumed to be
known from calibration [10], [9] and are denoted by Ki and
TCi = [RCi tCi ; 0 1] with respect to the multi-camera frame
FG, where i = 1,2,3. The pose estimation problem of a multi-
camera system is defined as follows:

Definition 1. Given a set of three 3D points defined in FW
denoted by (X1,X2,X3) that are seen by arbitrary cameras on
the multi-camera system and their corresponding 2D image
coordinates denoted by (x1,x2,x3), find the rigid transforma-
tion R and t that brings the multi-camera frame FG into the
world frame FW .

IV. MULTI-CAMERA POSE ESTIMATION

Find 
Unknown Depths

Absolute 
Orientation

Express Rays as 
Plücker Lines

Three 2D-3D 
Correspondences R, t

Fig. 3. Our formulation for the pose estimation of the multi-camera system.

Figure 3 shows an illustration of our formulation for pose
estimation of the multi-camera system. We first express the
rays that join the respective three 2D-3D correspondences
as Plücker line coordinates with respect to the multi-camera
frame FG (see Section IV-A for more details). Next, we solve

for the unknown depths associated with each of the Plücker
line using our minimal solution that leads to an 8 degree
polynomial giving up to 8 real solutions (see Section IV-B for
more details). Lastly, we compute the coordinates of the 3D
points in the multi-camera frame FG with the known depths
and solve for the rigid transformation R and t between the
world and multi-camera frames using our efficient minimal
solution of absolute orientation in closed-form (see Section
IV-D for more details).

A. Plücker Line Representation

We saw in Section I that the main problem with a multi-
camera system is the absence of a single projection center for
the camera. Following [20], we remove the need for a single
projection center by representing the rays that pass through
the 3D world points and the multi-camera system as Plücker
line coordinates expressed in the multi-camera frame FG. The
Plücker line is a 6-vector li = [qT

i , q′Ti ]T where i = 1,2,3 as
shown in Figure 2. qi = RCi x̂i is the unit direction of the ray
expressed in the multi-camera frame FG, where x̂i = K−1

i xi is
the normalized image coordinate of the point xi. The closest
point from the Plücker line to FG is given by qi×q′i as shown
in Figure 2 and it is the point that forms a perpendicular
intersection on the Plücker line from the multi-camera frame
FG. q′i is defined as the cross product q′i = tCi×qi. Any point
XG

i that is expressed in the multi-camera frame FG is given by

XG
i = qi×q′i +λiqi (1)

where λi is the depth of the point XG
i along the Plücker line,

i.e. the signed distance from qi×q′i to XG
i . Note that λ always

has to be positive for the 3D point to appear in front of the
camera.

B. Minimal Solution for Depths

The distances di j where (i, j) ∈ {(1,2),(1,3),(2,3)} be-
tween the 3D points Xi in the world frame FW shown in Figure
2 have to be the same as the distances between the 3D points
XG

i in the multi-camera frame FG , i.e.

||Xi−X j||2 = ||XG
i −XG

j ||2 (2)

where (i, j) ∈ {(1,2),(1,3),(2,3)}. By making use of the
preservation of the 3D point distances given by Equation 2
and the Plücker line equation from Equation 1, we get three
constraints

||Xi−X j||2 = ||(qi×q′i +λiqi)− (q j×q′j +λ jq j)||2 (3)

where (i, j)∈ {(1,2),(1,3),(2,3)} with three unknown depths
λ1, λ2 and λ3 from the Plücker lines. Expanding and rearrang-
ing the unknowns in Equation 3, we get

k11λ
2
1 +(k12λ2 + k13)λ1 +(k14λ

2
2 + k15λ2 + k16) = 0 (4a)

k21λ
2
1 +(k22λ3 + k23)λ1 +(k24λ

2
3 + k25λ3 + k26) = 0 (4b)

k31λ
2
2 +(k32λ3 + k33)λ2 +(k34λ

2
3 + k35λ3 + k36) = 0 (4c)
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where k are the coefficients made up from the known Plücker
line coordinates qi and q′i, and 3D world points Xi. We drop
the full expressions of the coefficients for brevity. Using the
Sylvester Resultant [4] to eliminate λ1 from Equations 4a and
4b, we get a polynomial f (λ2,λ3) = 0, which is a function
of only λ2 and λ3. We do another Sylvester Resultant on
f (λ2,λ3) = 0 and Equation 4c to eliminate λ2, we get an
univariate 8 degree polynomial dependent on only λ3.

Aλ
8
3 +Bλ

7
3 +Cλ

6
3 +Dλ

5
3 +Eλ

4
3 +Fλ

3
3 +Gλ

2
3 +Hλ3 + I = 0

(5)
where A,B,C,D,E,F,G,H and I are coefficients made up from
k from Equation 4. The roots of Equation 5 can be obtained
from the eigen-values of the Companion matrix [4] made up
of the coefficients. A maximum of up to 8 real roots can be
obtained for λ3. As suggested in [18], a more efficient way to
solve for the roots of the 8 degree polynomial is by using the
Sturm sequences.

λ2 can be found by back-substituting λ3 in Equation 4c.
After completing the square on Equation 4c and making λ2
the subject, we get

λ2 =
1
2a

(−b±
√

b2−4ac) (6)

where a = k31, b = k32λ3 +k33, c = k34λ 2
3 +k35λ3 +k36. Sim-

ilarly, λ1 can be found by back-substituting λ2 into Equation
4a which takes similar form as Equation 6 after completing
the square and making λ1 the subject. A total of up to 32 (i.e.
8×2×2) solution triplets of λ1, λ2 and λ3 can be obtained. A
solution triplet is discarded if any one of the λ s is an imaginary
or negative value. A further step to disambiguate the solutions
is by doing a redundancy check on λ1 using Equation 4b. The
solution pairs of λ2 and λ3 should produce consistent λ1 from
both Equations 4a and 4b. Any solution pair of λ2 and λ3
which produces λ1 with discrepancy from Equations 4a and
4b is discarded. In our simulations, we observed that these
disambiguation checks are capable of reducing the maximum
number of solutions to two for most of the time. All the other
existing 2D-3D point correspondences are used to identify
the correct solution within RANSAC, i.e. the correct solution
yields the highest number of inliers in RANSAC.

C. Special Cases

In this section, we look at six special cases for the
multi-camera pose estimation problem, where the first five
special cases are mentioned in [3]. In particular, we compare
the similarities and differences between the existing methods
and our method under these six different cases.

Case 1: Partially Parallel. Two out of the three light rays
are parallel in this case as illustrated in Figure 4. This means
that two of the unit directions must be equal, i.e. q1 = q2 6= q3.
From Figure 4, we can see that the constraint for Plücker lines
1 and 2 in Equation 4a becomes

λ2 = λ1 + c12 (7)

l3 

l2 

l1 

FG 

q1 = q2 

)'()'( 221112 qqqq 

X3 

X2 

X1 

12

2112 XXd 

2

12

2

1212  dc

2

1

Fig. 4. Illustration of the partially parallel case.

where

c12 =
√
||X1−X2||2−||(q1×q′1)− (q2×q′2)||2 (8)

is a known value from the Plücker lines [qT
1 , q′T1 ]

T and
[qT

2 , q′T2 ]
T , and distance between the 3D points (X1, X2).

Applying the Sylvester Resultant for variable elimination on
the system of polynomial formed by Equations 7, 4b and 4c,
we get a 4 degree univariate polynomial minimal solution
in term of λ3 that can be solved in closed-form. Similar 4
degree polynomial minimal solution was obtained for Chen’s
and Nister’s methods.

l1

l2

l

F
G

l3

Fig. 5. Illustration of the perspective case.

Case 2: Perspective. The three light rays pass through a
common center of projection in the perspective case, i.e. all
the 2D-3D correspondences are from one single camera in
the multi-camera system. Let us choose the camera reference
frame FG to be the center of projection as illustrated in Figure
5. This implies that the camera extrinsics become tC1 = tC2 =
tC3 = 0 and RC1 = RC2 = RC3 = I. Substituting these values into
Equation 3, we get the following system of polynomials

κ11λ1 +κ12λ1λ2 +κ13λ2 = 0 (9a)

κ21λ1 +κ22λ1λ3 +κ23λ3 = 0 (9b)

κ31λ2 +κ32λ2λ3 +κ33λ3 = 0 (9c)

where κ are the coefficients made up of the known normal-
ized image coordinates. Applying the Sylvester Resultant for
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variable elimination, we get a 4 degree polynomial minimal
solution that can be solved in closed-form. This result is
similar to Chen’s and Nister’s method, and the P3P solution
for a perspective camera [7]. Note that a 4 degree polynomial
is obtained even if the reference frame was not chosen as the
center of projection of the camera.

l1 
l2 

l3 

Fig. 6. Illustration of the parallel plane case.

Case 3: Parallel Plane. This is the case where the three
light rays lie on three different planes that are parallel to each
other as shown in Figure 6. It is important to note that these
light rays however do not have the same unit direction, i.e.
q1 6= q2 6= q3 from the Plücker lines. It can be observed that
the constraints from our method in Equation 3 does not break
down. In contrast, the representations of the rays used by
Chen et al. [3] to define the distance parameters cannot be
used in the case where all the three rays respectively lie on
parallel planes. As a result, an alternative representation has
to be made.

l1 
l2 

l3 

FG 

Line of Motion 

Fig. 7. Illustration of the linear pushbroom case.

Case 4: Linear Pushbroom. There is only one camera in
the case of linear pushbroom [8]. As illustrated in Figure 7,
the camera moves through a straight line of motion with a
known speed and takes images at regular intervals. Hence, the
transformations between any three camera locations (similar
to the extrinsics of a multi-camera system) are known and
the rays that observed unique 3D world points from these
locations lie on parallel planes. This implies that the linear
pushbroom case is the same as the parallel plane case where
our method does not break down. In comparison, an alternative
representation has to be made for Chen’s method.

FG 

q1 = q2 = q3 

l1 

l2 
l3 

Fig. 8. Illustration of the orthographic case.

Case 5: Orthographic. For orthographic projection, all the
light rays are parallel. Hence, all the unit directions of the
Plücker lines are equal, i.e. q1 = q2 = q3. Each pair of parallel
lines forms a constraint similar to Equation 7 and we get the
following system of polynomials.

λ2 = λ1 + c12 (10a)

λ3 = λ1 + c13 (10b)

λ3 = λ2 + c23 (10c)

where c12 is defined in Equation 8. Similarly, c13 and c23 are
also known values defined in similar form as Equation 8. An
infinite number of solutions exist for λ1, λ2 and λ3 from the
system of polynomials. Intuitively, we can move the multi-
camera system anywhere along the direction of the parallel
light rays and the constraints are still fulfilled, hence infinite
solutions. This degeneracy is independent of the formulation
and holds for all works [3], [18], [12], [5], [22], [23] on pose
estimation for the multi-camera system.

FG 

l1 

l2 

l3 

Fig. 9. Illustration of the partially parallel case.

Case 6: Partially Perspective. In this case, two of the three
light rays pass through a common center of projection, i.e. two
of the 2D-3D correspondences are from one single camera
in the multi-camera system. An example of the partially
perspective case is shown in Figure 9. Let us choose the
camera reference frame FG to be at the center of projection of
the two rays with a common center of projection. As a result,
the extrinsics become tC1 = tC2 = 0, tC3 6= 0, RC1 = RC2 = I and
RC3 6= I. Substituting these values into Equation 3, we get the
following system of polynomials
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κ11λ1 +κ12λ1λ2 +κ13λ2 = 0 (11a)

k21λ
2
1 +(k22λ3 + k23)λ1 +(k24λ

2
3 + k25λ3 + k26) = 0 (11b)

k31λ
2
2 +(k32λ3 + k33)λ2 +(k34λ

2
3 + k35λ3 + k36) = 0 (11c)

where the coefficients κ and k are formed from the Plücker line
coordinates. Equation 11a, which is similar to the constraints
from the perspective case, is from the two perspective rays.
Equations 11b and 11c are similar to the general case con-
straint in Equation 4. We get a 8 degree univariate polynomial
in terms of λ3 after applying the Sylvester Resultant on the
system of polynomials. This shows that our method, similar to
[3], [18], works even when two of the 2D-3D correspondences
are from one single camera in the multi-camera system.

D. Minimal solution for Absolute Orientation

Absolute Orientation can be solved using the methods
from [11], [7]. However, these methods require a computation-
ally inefficient step of SVD that becomes an overhead when
it is used numerous times within RANSAC to compute all
the hypothesis solutions. We present a minimal solution that
allows us to compute the absolute orientation in closed-form
without the need for SVD. The proposed method computes
the transformation R and t to align the two point sets P and
Q consisting of three correspondence 3D points as shown in
Equation 12.

Pi = RQi + t, i = 1,2,3 (12)

First, two local frames FM and FN are defined on the point
sets P and Q respectively. The origins of the local frames are
defined on the first points, i.e. P1 and Q1. We can now write
the transformed points in the newly defined local frames FM
and FN as Mi = Pi−P1 and Ni = Qi−Q1. Next, we define the
x-axis of each local frame to pass through the second point
respectively, i.e. M2 and N2. The x-axis of FM and FN can be
aligned by applying the following transformations

M2 =

M2x
M2y
M2z

= RM

‖M2‖
0
0

 , N2 =

N2x
N2y
N2z

= RN

‖N2‖
0
0


(13)

where RM and RN are unknown rotation matrices that align
the two x-axis. Here, we only describe the steps to solve for
RM since RN can be computed in an analogous fashion. Since
the alignment of the x-axis only involves two rotations around
the y- and z-axis, RM can be written as

RM = RMzRMy =

 ce − f de
c f e d f
−d 0 c

 (14)

where c and d are sine and cosine of the rotation angle around
the y-axis, and e and f are sine and cosine of the rotation angle
around the z-axis. Putting Equation 14 into Equation 13, we
get the following three constraints

‖M2‖ce−M2x = 0 (15a)
‖M2‖c f −M2y = 0 (15b)
−M2z−‖M2‖d = 0 (15c)

where d can be calculated directly from Equation 15c and c
can then be computed with the Pythagoras identity. e and f can
be solved by substituting c into Equations 15a and 15b. The
full expressions for solving a,b,c and d are given as follows

d =
−M2z
‖M2‖

, c =
√

1−d2, e = M2x
‖M2‖c

, f = M2y
‖M2‖c

(16)

Finally, we apply RM and RN to align the x-axis of both point
sets. The new sets of transformed points are given by

Ui = RT
MMi, Vi = RT

NNi, i = 1,2,3 (17)

The last step is to find the remaining rotation RV around the
x-axis which would complete the alignment of the two local
frames FM and FN . This gives the constraint in Equation 18
which can be expanded into three independent constraints in
Equations 19a-19c.

U3 = RVV3 =

1 0 0
0 a −b
0 b a

V3 (18)

V3x−U3x = 0 (19a)
V3ya−U3y−V3zb = 0 (19b)
V3za−U3z−V3yb = 0 (19c)

where a and b are sine and cosine of the rotation angle.
U3 = [U3x U3y U3z]

T and V3 = [V3x V3y V3z]
T . We do variable

elimination on Equations 19b and 19c to solve for a which
can be back-substituted to solve for b. The full expressions
for a and b are

a =
U3yV3y +U3zV3z

V 2
3y +V 2

3z
(20a)

b =
−U3y +V3ya

V3z
(20b)

In comparison to the methods proposed in [11], [7], our
method does not enforce orthogonality in the rotation matrix.
Hence, in the presence of noise, the constraints from Equation
19 cannot be satisfied and the orthogonality property of the
rotation matrix RV is lost. Since a = cosθ and b = sinθ ,
where θ is the rotation angle around the x-axis, we enforce
orthogonality on RV by making

a←

{
min(1,a), if a≥ 0
max(−1,a), if a < 0

(21)

and
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b←

{
|sin(cos−1(a))|, if b≥ 0
−|sin(cos−1(a))|, if b < 0

(22)

Finally, the full transformation R and t is given by

R = RT
NRV RM, t =−RP1 +Q1 (23)

It is important to note that our method trade-off robustness for
efficiency, i.e. our method without using SVD is faster but it
is not a least-squares estimate. This means that the accuracy
from our method deteriorates in the presence of very high
noise. Nonetheless, our simulation results in Section VII-A
show that the accuracy of our method is comparable to [11]
up to 1 pixel noise in the 2D image features. 1 pixel noise is
usually the upper bound for many image feature detectors such
as SURF [2]. Moreover, we shall see in the next section that
image features with very high noise are removed as outliers
in the RANSAC process.

V. ROBUST ESTIMATION

Outlier 2D-3D point correspondences are rejected from
our proposed method using RANSAC [6]. We compute the
reprojection errors of all the 2D-3D point correspondences
based on the hypotheses generated from random sets of
unique 3-point correspondences. The hypothesis that yields
the highest inlier count, i.e. highest number of 2D-3D point
correspondences with the respective reprojection error lower
than a given threshold, is chosen as the correct solution. As
defined in [6], the number of RANSAC iterations needed is
given by η = ln(1−p)

ln(1−wn) , where p is the probability that all
selected correspondences are inliers, w is the probability that
any selected correspondence is an inlier and n is the number
of correspondences needed for the hypothesis. Assuming that
p = 0.99 and w = 0.5, a total of 35 iterations are needed for
our 3-point algorithm, i.e. n = 3. In contrast, the linear 6-
point algorithm [5] where n = 6 would require 293 iterations.
The efficiency in having less iterations within RANSAC
highlights the importance of using the minimal number of
point correspondences.

Each hypothesis generated by RANSAC often give rise
to more than one real solution from solving the polynomial
equation in Section IV-B. We do additional iterations within
RANSAC to check the inlier count for each of these solutions
from each hypothesis, where the correct solution gives the
highest inlier count. It is therefore desirable to have the
minimal solution to keep the number of additional RANSAC
iterations low. The number of additional RANSAC iterations
for our method is halved compared to Chen’s method [3] since
our method has a minimal solution up to 8 real solutions while
Chen’s method yields up to 16 real solutions.

VI. NON-LINEAR REFINEMENT

We further refine the estimated pose R and t by minimizing
the total reprojection errors from all the inlier point corre-
spondences found from RANSAC. The cost function is given
by

argmin
R,t

∑
i

∑
j
||π(Pi,X j)−xi j||2 (24)

where xi j is the 2D image point with X j as its 3D point
correspondence and seen by the ith camera Ci that makes up the
multi-camera system. π(.) is the camera projection function
that projects a 3D point onto the 2D image. Pi is the camera
projection matrix given by

Pi = Ki[RT
Ci

RT −RT
Ci
(RT t + tCi)] (25)

where Ki is the camera intrinsics, RCi and tCi are the camera
intrinsics as defined in Section III. The minimization of
Equation 24 is done with the Google Ceres solver [1] using
the Levenberg-Marquardt algorithm.

VII. RESULTS

We evaluate our proposed multi-camera pose estimation
algorithm with both simulations and large-scale real-world
datasets.

A. Simulations

Accuracy and Stability Comparisons: We compare the accu-
racy and stability of our algorithm with Nister’s [18], Chen’s
[3] and Kneip’s [12] algorithms based on the simulation
setup suggested in [21]. The simulated multi-camera system
is made up of 4 separate cameras looking front, rear, left
and right with no overlapping field-of-views. Note that the
chosen camera configuration and simulated rays are free from
the parallel ray degeneracy mentioned in Section IV-C. The
absolute orientation used in Chen’s method is from [7] while
the minimal solution proposed in Section IV-D is used in
our method. To make a fair comparisons of the accuracy and
stability of the algorithms, we do not apply RANSAC and
non-linear refinement in the simulations.

We randomly generate a ground truth camera pose within
a given range of [-3 3] m for (x,y,z) and [-0.1 0.1] rad
for all angles, i.e. roll, pitch and yaw. We also randomly
generate three 3D world points within a given range of [-
50 50] m for (x,y,z). The image coordinates are found by
reprojecting the 3D points into the respective camera where
it is visible. We corrupt the image coordinates with noise
ranging from 0 to 1 pixel with a 0.1 pixel interval. The
pose of the camera in the world frame is computed based
on the corrupted image coordinates using the four algorithms.
Following [21], we compute the relative translational error as
2||test−tgt ||/(||test ||+ ||tgt ||) where test and tgt are the estimated
and ground truth translations. The relative rotational error
is computed as the norm of the Euler angles from RestRT

gt
where Rest and Rgt are the estimated and ground truth rotation
matrices.

Figures 10(a) and 10(b) shows the plots of the average
relative translational and rotational errors from 500 random
trials per image coordinate noise level. It can be seen that
the errors from both Chen’s and our algorithms are lower
than Nister’s and Kneip’s algorithms. The results imply that
the two-step approaches, i.e. Chen’s and our algorithms,
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Fig. 10. Average (a) translational (no units) and (b) rotational (radians) errors
from 500 random trials at different pixel noise levels using Nister’s [18],
Chen’s [3], Kneip’s [12] and our algorithms. Note that a large part of the
translational error for Nister’s method is hidden behind the translational error
for Kneip’s method.

that solves for the depths and absolute orientation are less
susceptible to the influences of noise compared to Nister’s
direct approach and Kneip’s Gröbner basis method. It
was mentioned in Section IV-D that our minimal solution
for absolute orientation is not a least-squares solution
and therefore less robust to noise. Nonetheless, from the
simulation results, we observe that the estimation errors from
our algorithm is only marginally higher than Chen’s algorithm
that used the absolute orientation from [7]. The estimation
errors from our algorithm also remain relatively low with
increasing pixel noise.

Time Efficiency of Minimal Solution for Absolute Ori-
entation: We compare the time efficiency of our minimal
solution for absolute orientation proposed in Section IV-D with
the standard approach that requires SVD [7], [11]. Figure 11
shows the error bar (means and standard deviations) plot of
the running times needed for our minimal solution for absolute
orientation and the SVD approach proposed in [7], [11] over
pixel noises in the range of 0 to 1 pixel at an interval of
0.1 pixel. Similar to the accuracy and stability comparison
simulations, for each pixel noise, we randomly generate 500
ground truth camera pose within a given range of [-3 3] m
for (x,y,z) and [-0.1 0.1] rad for all angles, i.e. roll, pitch and
yaw. We also randomly generate three 3D world points within
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Fig. 11. Comparison of the running times from our absolute orientation
minimal solution and [7].

a given range of [-50 50] m for (x,y,z). The times recorded on
Figure 11 are the mean (with standard deviations) times taken
from the minimal and SVD absolute orientation respectively,
after the computation of the depths of the points along the
Plücker lines using the method proposed in Section IV for
all the 500 trials under each pixel noise. It can be seen from
the error bar plot in Figure 11 that the computation with our
minimal solution for absolute orientation is on the average
about 2.5 times faster than the standard SVD approach. It
is also interesting to note that the standard deviations of the
running time from our minimal solution is smaller than the
SVD approach.

FG 

1m 

1m 

1m 

1m 

Fig. 12. Simulated camera setup for studying the effects of calibration errors.

Effects of Calibration Errors: We study the effects of extrin-
sics calibration errors on our proposed minimal solutions for
multi-camera pose estimation in simulations. Again, similar to
the accuracy and stability comparison simulations, we study
the effects of calibration errors with a simulated multi-camera
system that is made up of four cameras looking front, rear,
left and right. Each of the cameras is perfectly aligned in its
respective viewing direction and fixed at 1 m away from the
multi-camera reference frame as illustrated in Figure 12. We
simulate random camera poses within a given range of [-3 3]
m for (x,y,z) and [-0.1 0.1] rad for all angles, and 3D world
points within a given range of [-50 50] m. For each set of
randomly simulated camera pose, we project the 3D world
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points onto the camera image to get the correspondent 2D
image coordinates. The 2D image coordinates and the 2D-
3D correspondences are kept fixed during the simulation. We
check the effects of the calibration errors in the translation and
rotation components separately.
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Fig. 13. Pose estimation errors in the presence of (a) translation and (b)
rotation calibration errors.

Figure 13(a) shows a plot of the mean translation and
rotation errors in the pose estimation from 500 trials per
calibration error over a range of up to 10 cm at an interval of
1 cm in all translation components, i.e. (x,y,z). No rotation
calibration errors are added. The translation and rotation
errors are the norm of the respective relative translation
and rotation (Euler angles) between the estimated pose
and ground truth. Figure 13(b) shows the plot of the mean
translation and rotation errors in the pose estimation from
500 trials per calibration error over a range of up to 1 degree
at an interval of 0.1 degree in all rotation components, i.e.
Euler angles. No translation calibration errors are added. It
can be observed that the translation and rotation errors are
sufficiently low for both translation and rotation calibration
errors. The pose estimation errors are also slightly higher
over the 1 degree rotation calibration error interval compare
to the 10cm translation calibration error interval.

Perspective Case Comparisons: The special case of perspec-
tive rays mentioned in Section IV-C is important because it
corresponds to the perspective pose estimation problem of a
single camera. We compare the accuracy of our algorithm
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Fig. 14. Mean (a) translational and (b) rotational errors from our method and
[17] for the perspective case.

in this degenerate case with the perspective pose estimation
algorithm for a single camera from [17]. Figures 14(a) and
14(b) show the mean translation and rotation errors from 500
trials per pixel noise over the range of 0 to 1 pixel at an interval
of 0.1 pixel. It can be observed that the mean translation and
rotation errors from our method is consistently lower than the
pose estimation algorithm for a single camera [17].

B. Real Datasets

Figure 1(a) shows our car platform with 4 fish-eye cameras
looking front, rear, left and right with minimal overlapping
field-of-views used to collect the datasets for testing our
algorithm. The GPS/INS system is also available for ground
truth. Figure 1(b) shows 4 sample images from the respective
cameras. Figures 15(a) and 16(a) shows two areas for testing
our algorithm. TestArea01 and TestArea02 are car parks
besides an office building and a supermarket, and covers an
area of approximately 140×280m and 160×150m respectively.
We collect two datasets separately from each of the test area,
i.e. 2×2 datasets - one for building a map and the other for
testing our pose estimation algorithm on the map in each test
area. To build the maps, we extract the SURF [2] features,
and triangulate the 3D points based on the GPS/INS readings.
We apply bundle adjustment (implemented with Google Ceres
solver) on the GPS/INS poses and triangulated 3D points to
get the final maps. The maps also contains all the 2D-3D
correspondences of the SURF and 3D points. The blue dots
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Fig. 15. (a) Localization results for TestArea01. Results from frames with
< 20 correspondences are discarded, i.e. regions where estimated poses are
not shown. (b) Plots showing the distribution of the translational and rotational
errors against GPS/INS ground truths.

on Figures 15(a) and 16(a) are the 3D points from the maps
after bundle adjustment.

The green trajectories on Figures 15(a) and 16(a) are the
GPS/INS ground truth readings from the second datasets for
testing our pose estimation algorithm on both areas. A total of
2500 and 2100 frames are used for testing. We first create a
vocabulary-tree [19] with all the SURF features from the map.
For every frame from the test dataset, we extract the SURF
features, and query for the frame from the map with the highest
similarity score with the vocabulary-tree. We obtain the 2D-3D
correspondences of the test and map frames by matching the
SURF features. Finally, we compute the pose of the test frame
in the map with our multi-camera pose estimation algorithm.
Note that a frame refers to a set of 4 images from all the
cameras. The red dots on Figures 15(a) and 16(a) are the
estimated poses with our algorithm with at least 20 2D-3D
correspondences. An average of 60 correspondences are found
between each camera image and the map for both datasets.
It can be seen that the poses estimated from our algorithm
follows the GPS/INS ground truth closely. Figures 15(b) and
16(b) show the distributions of the translational and rotational
errors. We can see that the error distributions are sufficiently
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Fig. 16. (a) Localization results for TestArea02. Results from frames with
< 20 correspondences are discarded, i.e. regions where estimated poses are
not shown. (b) Plots showing the distribution of the translational and rotational
errors against GPS/INS ground truths.

low. We observe that the pose estimates with higher errors are
from images with number of correspondences closer to the
threshold, i.e. 20. It is also important to note that we make the
assumption that the GPS/INS reference frame is identical to
the multi-camera reference frame. The bi-modal distribution
from the rotation error in Figure 15(b) is probably due to
the slight imprecision of this assumption. The translational
error is computed as ||test − tgt || where test and tgt are the
translations from the pose estimation and GPS/INS ground
truth. The rotational error is computed as the norm of the
Euler angles from RestRT

gt where Rest and Rgt are the rotation
matrices from the pose estimation and GPS/INS ground truth.

VIII. CONCLUSION

We showed a new formulation to solve the pose estimation
problem of a multi-camera system. Our formulation is intuitive
and easy to implement. It is based on the Plücker line coordi-
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nates which solves the pose estimation problem in two steps -
(a) solve for the depth and (b) solve for the rigid transforma-
tion with absolute orientation. We showed that the depths can
be solved with a minimal number of 3-point correspondences
and leads to an 8 degree polynomial minimal solution. We
identified a degenerate case for our method in the case of
orthographic projection. We also derived an efficient analytical
closed-form minimal solution for the absolute orientation. Our
method is verified with both simulations and large-scale real-
world datasets from a robotic car platform.
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