

ON COMPUTER VISION

A Minimal Solution for Non-Perspective Pose Estimation from Line Correspondences

Gim Hee Lee (gimhee.lee@nus.edu.sg)

National University of Singapore

Objective

Given:

- 1. Three 2D-3D lines correspondences $l_{c_i} \leftrightarrow L_{W_i}, \forall i = 1, 2, 3$.
- 2. l_{c_i} are seen respectively by three cameras F_{C_i} , $\forall i = 1, 2, 3$ and L_{W_i} is defined in a fixed world frame F_W .
- 3. F_{C_i} are rigidly fixed together with known camera intrinsics K_i and extrinsics $T_{C_i}^G$, $\forall i = 1, 2, 3$.

Find: The pose of the multi-camera system with respect to the fixed world frame, i.e. relative transformation (R_G^W, t_G^W) that brings a point defined in the multi-camera reference frame F_G to the fixed world frame F_W .

Fig.1. An illustration of the non-perspective pose estimation problem from line correspondences.

Note: In general, the minimal case for non-perspective pose estimation can be three 2D-3D line correspondences from a multi-camera system made up of either two or three cameras.

NP3L: 3-Line Minimal Solution

Solving for R_W^G

• Since U^TV is zero for any Plücker line $[U^T \ V^T]^T$, u_C is parallel to U_C , and $R_W^C = R_G^C R_W^G$, from $L_C \leftrightarrow l_C$ we get

$$u_C^T R_G^C R_W^G V_W = 0. (2)$$

- Rewrite Eq. (2) into ar = 0. a is a 1×9 matrix from known variables u_C^T , R_G^C and V_W , and r is a 9-vector from the unknown rotation matrix R_W^G .
- Given three 2D-3D line correspondences in the minimal case, we get Ar = 0 where A is a 3×9 matrix from $a_j, \forall j = 1, 2, 3$. Right null-space of A gives

$$r = \beta_1 b_1 + \beta_2 b_2 + \beta_3 b_3 + \beta_4 b_4 + \beta_5 b_5 + \beta_6 b_6. \tag{3}$$

• Setting $\beta_6 = 1$ and enforcing the orthogonality constraint on the rotation matrix formed by r, we get a system of 10 polynomial equations in terms of the unknowns $\beta_1...\beta_5$:

$$f_j(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5) = 0, \quad j = 1, 2...10,$$
 (4)

which can be solved with Gröbner basis to get eight solutions.

Solving for t_W^G

• Since U_C and u_C are parallel, from $L_C \leftrightarrow l_C$ we get

$$\lambda u_C = \left(R_G^C R_W^G \mid \left[R_G^C t_W^G + t_G^C \right]_{\times} R_G^C R_W^G \right) \begin{pmatrix} U_W \\ V_W \end{pmatrix}. \tag{5}$$

- Taking cross-product of u_C on both sides to get rid of the unknown scalar value λ and with three 2D-3D line correspondences, we get Bt = 0.
- Solution of the unknown $t = [t_{Wx}^G t_{Wy}^G t_{Wz}^G 1]^T$ is given by the right null-space of B which is made of known variables variables $R_G^C, t_G^C, R_W^G, u_C, U_W$ and V_W .

NPnL: ≥ 3 Line Correspondences

• For $n \geq 3$ 2D-3D line correspondences, A and B are $n \times 9$ and $2n \times 4$ matrices. The solution steps remain the same as the minimal case.

Special Cases

- One Camera: becomes the perspective pose estimation problem when all line correspondences are seen by only one camera. Camera extrinsics (R_G^C, t_G^C) vanishes and we directly solve for the camera pose (R_W^C, t_W^C) without any change to the algorithm.
- Parallel 3D Lines: minimal case where two or all the three 3D lines are parallel. Rank of matrix A drops below 3 and R_W^G cannot be solved. Fortunately, we can prevent this degenerate case by omitting parallel lines.

Plücker Line Representation

- 2D-3D line correspondence $l_C \leftrightarrow L_W$.
- P_a^W , P_b^W : end-points of 3D line L_W .
- p_a , p_b : end-points of 2D line l_C .

Fig.2. A 2D-3D line correspondence represented as Plücker lines.

- Plücker representation of a 3D line segment in the world frame is a 6-vector $L_W = \begin{bmatrix} U_W^T & V_W^T \end{bmatrix}^T$ computed from the 3D line end-points P_a^W, P_b^W .
- L_W can be expressed in the camera reference frame F_C as follows:

$$L_C = \begin{bmatrix} U_C^T & V_C^T \end{bmatrix}^T = \mathcal{T}_W^C L_W = \begin{pmatrix} R_W^C & \lfloor t_W^C \rfloor_{\times} R_W^C \\ 0_{3\times 3} & R_W^C \end{pmatrix} L_W, \tag{1}$$

- $R_W^C = R_G^C R_W^G$ and $t_W^C = R_G^C t_W^G + t_G^C$, where (R_G^C, t_G^C) is the known camera extrinsics and (R_W^G, t_W^G) is the unknown pose of the multi-camera system.
- Plücker representation of the 2D line correspondence is a 6-vector $l_C = \begin{bmatrix} u_C^T & v_C^T \end{bmatrix}^T$ computed from the 2D line end-points p_a, p_b .

Reprojection Error for RANSAC

- P_a^C , P_b^C : end-points of 3D line transformed into camera frame.
- \tilde{p}_a , \tilde{p}_b : reprojection of P_a^C , P_b^C onto the image.
- \hat{p}_a , \hat{p}_b : camera matrix normalized 2D line end-points.

Reprojection Error: $e = \frac{d_a + d_b}{2(\|\hat{p}_b - \hat{p}_a\|)}$

Fig.3. An illustration of reprojection error from a 2D-3D line correspondence.

Results

Simulations (Non-Perspective):

References

Zhang et. al.: Robust and efficient pose estimation from line correspondences, ACCV 2012.

Mirzaei et. al.: Globally optimal pose estimation from line correspondences, ICRA 2011.

Dataset 02

Simulations (Perspective):

Real Data (Non-Perspective):

Table 1: Average errors from the multi-camera systems emulated with 3, 5, 10, 20 and 25 cameras from datasets 01 and 02 respectively.

	Dataset	# of Cameras						
		3	5	10	20	25		
	01 (R Error)	0.0119	0.0051	0.0041	0.0032	0.0034		
	02 (R Error)	0.0562	0.1600	0.1381	0.2166	0.2778		
	01 (<i>t</i> Error)	0.0886	0.0465	0.0256	0.0289	0.0262		
	02 (t Error)	0.0380	0.0459	0.0700	0.0747	0.0900		

Real Data (Perspective):

Table 2: Comparisons of errors from our algorithm, Zhang $et.\ al.$ and Mirzaei $et.\ at.$ for one camera.

Dataset	Zhang $et. al.$		Mirzaei et. at.		Ours	
Dataset	R Error	t Error	R Error	t Error	R Error	t Error
01	0.3016	0.1988	0.3733	0.2015	0.0155	0.0195
02	0.0698	0.0407	0.0186	0.0229	0.0369	0.2549