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Abstract We describe a novel quadrotor Micro Air Vehi-
cle (MAV) system that is designed to use computer vision
algorithms within the flight control loop. The main contri-
bution is a MAV system that is able to run both the vision-
based flight control and stereo-vision-based obstacle detec-
tion parallelly on an embedded computer onboard the MAV.
The system design features the integration of a powerful
onboard computer and the synchronization of IMU-Vision
measurements by hardware timestamping which allows tight
integration of IMU measurements into the computer vision
pipeline. We evaluate the accuracy of marker-based visual
pose estimation for flight control and demonstrate marker-
based autonomous flight including obstacle detection using
stereo vision. We also show the benefits of our IMU-Vision
synchronization for egomotion estimation in additional ex-
periments where we use the synchronized measurements for
pose estimation using the 2pt+gravity formulation of the
PnP problem.

Keywords Micro aerial vehicles · Quadrotor · Computer
vision · Stereo vision

1 Introduction

We introduce a novel quadrotor MAV system, the PIX-
HAWK MAV (Fig. 1), which is specifically designed to be
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a research platform for computer vision based flight con-
trol and autonomous flight using computer vision. The main
contribution is a MAV system that is able to run both the
vision based flight control and stereo vision based obstacle
detection parallelly on an embedded computer onboard the
MAV. The system integrates a computing board that is pow-
erful enough to handle all image processing and flight con-
trol processes onboard onto a small scale quadrotor MAV.
The proposed flying system carries up to 6× the compu-
tation power of comparable systems of the same size, e.g.
Achtelik et al. (2011). With the possibility of performing all
computational processes onboard without the requirement
for a constant data link to a ground station, our design brings
the vision of a fully autonomous quadrotor MAV signifi-
cantly closer.

A key feature of our system is the hardware IMU-camera
synchronization. This allows us to measure the USB image
transmission delays in our system precisely. As a result, we
are able to do visual pose estimation with the synchronized
IMU measurements with improved efficiency and robust-
ness. This algorithm is evaluated and compared to a vision
only marker based pose estimation algorithm. A stereo vi-
sion based obstacle detection system is integrated onto our
MAV system. The stereo computer vision system produces a
depth map that gives detailed information about the obstacle
as compared to other sensors such as infrared or sonar.

We demonstrate the capabilities of the system in the
conducted experiments. We perform autonomous waypoint
based flights using only vision and compare the accuracy of
the vision pose estimation with Vicon groundtruth. In addi-
tion, we compare the vision-only pose estimation to a com-
bined IMU-Vision pose estimation using the 2pt+gravity
PnP algorithm (Kukelova et al. 2010). Lastly, we show the
functionalities of our stereo vision obstacle detection mod-
ule.

http://dx.doi.org/10.1007/s10514-012-9281-4
mailto:lm@inf.ethz.ch
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Fig. 1 PIXHAWK Cheetah Quadrotor

All our hardware and software designs are made open-
source and are published on our web page1 with the goal to
create an open research platform for the community.

1.1 State-of-the-art

This paper extends our previous work described in Meier
et al. (2011). We give more detailed descriptions and eval-
uations of the system, in particular the analysis of the
USB image transmission delays. We also add a compari-
son of a combined IMU-vision pose estimation algorithm
(2pt+gravity (Kukelova et al. 2010)) to vision-only pose es-
timation. In addition, we show fully autonomous onboard
computer vision based waypoint navigation using visual
markers and demonstrate the integrated vision based obsta-
cle avoidance system.

Much of the previous research in autonomous unmanned
aerial vehicles (UAVs) has been based on large UAVs in the
weight range of 10–20 kg. UAVs of this size are able to carry
an extensive sensor suite, e.g. LIDAR, Radar, camera system
and powerful onboard computers. Impressive results have
been shown in terms of autonomous take-off, landing and
navigation as well as obstacle avoidance (Conte and Doherty
2008; Saripalli et al. 2002; Johnson et al. 2005; Bosch et al.
2006; Scherer et al. 2008; Proctor et al. 2006; Kanade et
al. 2004; Hrabar and Sukhatme 2009). Specific adaptations
to the algorithms and sensor hardware are needed to apply
these results to small scale MAVs under 1.5 kg.

Recent works successfully demonstrated the use of small
LIDAR sensors on such small scale MAVs for mapping and
autonomous flight (Hofiann et al. 2004; Roy et al. 2010;
Dryanovski et al. 2011; Shen et al. 2011; Bachrach et al.
2010; Fowers et al. 2007). However, pure vision based au-
tonomous flight control and mapping for small scale MAVs
has yet to reach the same level of maturity as with LIDAR

1www.pixhawk.ethz.ch.

sensors. One of the first works in visual MAV control was
done by Kemp (2006). He used an a-priori generated 3D
model of the flight area and 2D-3D edge matching to com-
pute the MAV pose. He demonstrated on-spot hovering of
an MAV. The MAV only carried a small analog camera with
wireless image transmission. All processings were done off-
board.

More recently, Blösch et al. (2010) described visual au-
tonomous flight using an Asctec Hummingbird and a down-
ward looking camera. A visual SLAM algorithm was run-
ning off-board on a standard PC. The images of the on-board
camera are streamed to the PC using a USB cable phys-
ically connected to the MAV thus limiting the autonomy.
Control input was sent back to the MAV via a radio link. In
their paper, they demonstrated on-spot hovering and way-
point following over a 10 m trajectory. To ensure enough
visual features for SLAM, their testbed was covered with
textured posters. The off-board visual SLAM computed po-
sitions at varying frame rates between 15–30 Hz. An exten-
sion of Blösch et al. (2010) was described by Achtelik et
al. (2011). They replaced the Asctec Hummingbird with a
bigger model, the Asctec Pelican, and equipped it with an
Intel Atom onboard computer. This allowed them to run a
modified version of the visual SLAM of Blösch et al. (2010)
on-board with a frame rate of 10 Hz. However, this modi-
fication severely limits the size of the environment that can
be mapped. They also described a position controller and
successfully demonstrated closed-loop position control with
only visual feedbacks. In addition, they demonstrated on-
spot hovering in an indoor and outdoor setting. However, the
vision based flight control used up all the processing power
of the embedded computer, leaving none for the other pro-
cesses, e.g. obstacle avoidance.

Williams et al. (2011) used line and point features for vi-
sual flight control of a MAV. They described three types of
flight patterns: traversing, hovering and ingress. In their ex-
periments, they computed the MAV trajectory offline using
previously captured images on a desktop PC for the different
flight patterns.

An approach for higher level navigation implemented on
a Parrot AR.Drone was described by Bills et al. (2011). The
commercially available Parrot AR.Drone comes with a for-
ward and downward looking camera and the capability of
onboard on-spot hovering making the system easy to use.
However, the system is closed and has no payload capabil-
ity. It is only possible to stream the images of the camera
using Wi-Fi and control it with Wi-Fi. In their work, Bills et
al. controlled the direction of movement of the MAV from
perspective cues obtained from images and from classifica-
tion of the environment. This allowed the MAV to follow
corridors and even make turns. However, there was no no-
tion of a metric map and the image processing is completely
done off-board on a desktop PC.

http://www.pixhawk.ethz.ch
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The image processing can be greatly simplified with the
use of artificial markers. Artificial markers were used by
Eberli et al. (2011) for hovering, take-off, and landing. They
described the use of one circular marker to compute the po-
sition and pose of the MAV. In their experiments, the MAV
was connected via USB cable to a ground station and the
image processing was done off-board on a desktop PC.

A different approach by Li et al. (2011) showed hovering,
take-off and landing of an Asctec Hummingbird equipped
with an Intel Atom onboard computer. They described the
use of an active LED marker pattern. In their approach, the
flight control was done on-board. They demonstrated hov-
ering over a marker pattern which was mounted on top of a
ground robot and as a result, the MAV was able to follow
the trajectory of the ground robot.

A similar approach was described by Wenzel et al.
(2011). They demonstrated hovering, take-off, and land-
ing of an Asctec Hummingbird using a marker platform
mounted on top of a ground robot. The marker pattern was
made of IR LED’s and the MAV’s position was computed
from a Wii-mote sensor fitted to the MAV. The Wii-mote
sensor performs hardware image processing and directly
outputs the point coordinates of the detected pattern. The
final pose computation was then directly done on the low-
level controller of the MAV.

Substantial existing research relies on outside-in-tracking
of the MAV, e.g. by means of a Vicon motion capture sys-
tem, to measure the vehicle position (Heng et al. 2011;
Mellinger and Kumar 2011; Mellinger et al. 2010; Ducard
and D’Andrea 2009). These works mainly focus on low-
level control problems or higher-level tasks assuming prior
knowledge of the MAV positions and use off-board control.

The PIXHAWK MAV system design itself is an alter-
native to commercially available MAVs, such as Asctec
MAVs,2 MicroKopter,3 MicroDrones4 or Parrot AR.Drone.5

The hardware design is quite similar to commercially avail-
able MAVs. However, while most of the systems have a
closed control architecture, our system is primarily designed
as a research platform, and therefore, has an open control ar-
chitecture that provides easy access to all the low level mea-
surements and readily accepts control inputs from higher-
level on-board computers. In contrast to the commercial
products, our system is an open source and open hardware
design, which allows researchers to adapt every single detail
as needed. Many commercially open-source systems either
only allow users to modify a part of the software or to re-
place the complete software stack or explicitly do not allow
the modification and reuse. This requires users to completely

2www.asctec.de.
3www.mikrokopter.de.
4www.microdrones.com.
5ardrone.parrot.com.

rebuild the whole software stack, while our approach is to al-
low incremental improvements and specializations based on
an initial state. Together with the software architecture, the
ground control and operator software, and the easy to use
marker based localization, the PIXHAWK system is a great
testbed for MAV research.

1.1.1 Comparison of PIXHAWK quadrotor platform (mid
2011)

Table 1 shows the difference between different quadrotor
platforms. While the autopilot capabilities of the PIXHAWK
quadrotor are similar to another competitive systems, the on-
board computational speed, RAM and solid-state disk inter-
faces are unmatched in the MAV domain. A “–” stands for
not present, a “x” for present and “o” for partially present.
While the power consumption of the Core 2 Duo onboard
computer is substantially higher than the alternatives, its per-
formance is up to 6× better than the Atom computer which
consumes 11 W. The maximum consumption of 27 W does
not substantially contribute to the overall consumption of the
quadrotor, which is about 150–180 W only for the motors
and about 200 W in total with all electronics and onboard
computer.

1.1.2 Comparison of MAVCONN middleware in
MAV-specific features

Table 2 compares different middlewares. As MAVCONN
uses internally LCM as transport layer, all features available
in LCM are retained in MAVCONN. As LCM is a trans-
port layer and not a full robotic middleware, it optimally
combines with MAVCONN to a full solution for MAVs.
Our middleware adds a layer on top of LCM, providing the
MAVLink message format and interfaces to peripherals such
as radio modems or USB machine vision cameras. The main
difference to ROS is the distributed communication model
without central server and the capability to fully commu-
nicate over radio links when needed. No message rewrit-
ing is necessary to communicate with MAVLink-enabled
IMUs or a ground control station. MAVCONN thus resem-
bles the upper layers of ROS, while LCM is a substitute for
the ROS communication layers. MAVCONN is intended for
a different application scenario as ROS and focuses more
on small-scale system where different electronic modules
are not interfaced by ethernet (in contrast to large ground
robots), but often employ simple RS-232 serial communica-
tion. ROS requires in this scenario to rewrite ROS messages
in a serial format, while MAVCONN messages can be di-
rectly passed between UDP and serial transport layers. This
allows to use one generic bridge process to bridge between
different transport media, in contrast to ROS which requires
one customized bridge process per type of serial peripheral.

http://www.asctec.de
http://www.mikrokopter.de
http://www.microdrones.com
http://ardrone.parrot.com
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Table 1 Comparison of
PIXHAWK hardware platform
with common systems

System PIXHAWK Asct. Pelican AR.Drone Mikrokopt. Arducopt.

CPU CORE 2 Duo Intel Atom ARM9 ARM9 –

CPU cores 2 1 1 1 –

CPU MHz 1.86 GHz 1.2 GHz 468 MHz 90 MHz –

RAM 2 GB 1 GB 128 MB 96 KB –

Peak consumption 27 W 11 W 1 W 0.2 W –

USB ports 7 7 1 1 –

PCIe ports 0 1 0 0 –

S-ATA ports 1 0 0 0 –

UARTs 4 2 0 2 –

Autopilot ARM7 ARM7 PIC24 ATMega ATMega

AP MHz 60 MHz 60 MHz 24 MHz 16 MHz 16 MHz

AP RAM 32 KB 32 KB 8 KB 96 KB 8 KB

3D Gyro x x x x x

Accelerometer x x x x x

Compass x x – x x

Open HW x – – – x

Open SW x o o o x

Typ. max. weight 1.5 kg 1.5 kg 0.6 kg 1.5 kg 1.5 kg

Typ. prop. diam. 10′′ 10′′ 7′′ 10′′ 10′′

Table 2 Comparison of
MAVCONN middleware with
LCM and ROS. MAVCONN is
based on LCM and adds a top
layer specific to MAV
applications on it

Software name MAVCONN LCM ROS

Type MAV Middleware RT Comm. Library Robot Middleware

Message format x – x

Ground control avail. x – –

Radio modem support x – –

Serial comm support x – –

UDP support x x x

UDP transport layer LCM LCM ROS

UDP latency 100–1100 µs 100–1100 µs 500–1100 µs

Stereo triggering x – –

IMU sync x – –

Also other management functions, such as the parameter
server, are decentralized in MAVCONN and support Linux
processes and microcontrollers with the same API.

2 System design

The PIXHAWK design includes a powerful onboard com-
puter which makes it possible to run high-level tasks, in
particular visual localization, onboard the MAV. The sys-
tem design is depicted in Fig. 2. Visual localization, ob-
stacle detection, and planning are implemented on the on-
board high-level flight computer, an Intel®Core™2 Duo.
The visual localization module computes the full 6-DOF
pose of the MAV (see details in Sect. 3). The stereo ob-
stacle detection module computes real-time disparity maps

from the front-looking stereo pair (see Sect. 4). The output
of the stereo module can be used for obstacle avoidance by
the planning module. The planning module currently imple-
ments waypoint following. Both the attitude and position
controllers are implemented on a low-level real-time con-
troller (see Sect. 5 for state estimation). The position con-
troller takes as input both the poses from visual localization
and the setpoints generated from the planner. For MAV con-
trol, the attitude measurements and the vision pose estimates
need to be synchronized. In our system, the synchronization
is solved by using the IMU to hardware-trigger the cameras
and timestamp the measurements.

2.1 Vision-IMU synchronization

Data from different sensors, in particular from multiple dig-
ital cameras, is synchronized by an electronic shutter sig-
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Fig. 2 The PIXHAWK
quadrotor system design. The
powerful onboard computer
enables high-level tasks such as
visual localization, obstacle
detection, and planning to run
onboard. Position and attitude
estimation are implemented on a
low-level real-time controller

Fig. 3 System delays. Initially, the camera shutters are triggered by
the inertial measurement unit. The first 19.5 ms after closing the shut-
ter (outdoors after 0.3 ms, indoors after 2–5 ms) are consumed by the
USB transfer of the image from the camera to the volatile memory of
the onboard computer. To support multi-process computer vision, the
image is transported to different processes via shared memory in RAM

through the image hub software interface of MAVCONN. Processing
the image in Linux requires between 5 ms for ARToolkit and several
seconds for large-scale localization and mapping approaches. USB and
UART transfer delays are only observable with hardware triggering;
otherwise, they remain unknown

nal, and assembled into a timestamped sensor message. IMU
sensor data, for example, absolute attitude and angular rates,
is available as part of the image metadata. Images are trans-
mitted over the USB bus to the camera process, while the
IMU measurements and the shutter timestamp are delivered
via a serial interface. Image transmission from the cameras
to main memory via USB takes approximately 16–19 ms
(where the time differs slightly for each image), while the
transmission of the shutter timestamp from the IMU to main
memory via serial/MAVLink takes approximately 0.1–2 ms.
As it is guaranteed that the IMU data arrives earlier than
the image, the camera process can always deliver images
labeled with IMU metadata via the middleware to subscrib-
ing processes. Figure 3 shows the contributions of individ-
ual processing steps to the overall system delay. The trans-
fer time of the image content from the camera module over
USB 2.0 is substantial where fast localization techniques are
concerned.

3 Visual position estimation

As the PIXHAWK middleware provides a precise time base,
a standard textbook estimation and control pipeline was

proven to perform well for autonomous flight. Figure 2
shows the localization and control architecture. Images are
read from the camera at 30 Hz and the position is estimated
at the full camera rate, using additional inertial information.
The current position is then used by the onboard mission
planner to determine the desired position. The current and
the desired positions are fed back to the position estimation
and control software module running on the ARM7 autopi-
lot controller.

3.1 ARTK+ localization

We use a localization test bed that uses markers with
an adapted implementation of ARToolkit+ (Wagner and
Schmalstieg 2007) for the localization. The marker positions
are encoded in a global world map with the 6D position and
orientation of each marker. By extracting the marker quad-
rangle, the global marker position can be estimated. The
correct orientation on the quadrangle plane and the marker
ID are encoded by a 2D binary code inside each marker.
An example of a larger marker setup is shown in Fig. 4.
However, the system itself is not dependent on this partic-
ular approach—any kind of localization algorithm can be
used. The main benefit of using ARToolkit+ in the test bed
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Fig. 4 Flight environment with
the ARToolkit markerboard on
the floor

Fig. 5 Relation of gravity
vector and camera angles. The
right-fronto parallel view is
obtained by rotating the image
plane by the roll and pitch
angles

setup is its relatively low delay (5–10 ms), its robustness
with respect to suboptimal lighting conditions, and the high
robustness to motion blur. It is therefore very suitable for
system testing and validation.

3.2 Vision-IMU fusion

The inertial measurement unit can be exploited to increase
the robustness and accuracy of the vision-based localiza-
tion. There are classical IMU-vision fusion methods but all
these methods expect covariance estimates of the vision po-
sition data, which is prone to errors due to outliers in feature
matching. A more promising method is to directly include
the IMU data in the vision estimation during the outlier fil-
tering and position estimation.

If the accuracy of the IMU-estimated vertical direction
is better than the pure vision estimate, the IMU-estimated
vertical direction can be used by the vision algorithm to im-
prove the localization accuracy. Figure 15 shows that the lo-
calization accuracy increases when using two points and the
known vertical from the inertial data instead of four points.

In the case of the 2-point algorithm (Kukelova et al. 2011),
the calculation steps for the pose estimation are significantly
simplified when substituting parts of the four-point equation
with the IMU roll and pitch (see Fig. 5 for the geometric re-
lation where the image plane is aligned with the surface nor-
mal formed by the gravity vector). This speeds up RANSAC
which is typically used to filter out outlier matches between
image features. Hence, the benefits of directly combining
IMU and vision are, depending on the methods used, im-
proved accuracy and computation time.

Since the roll and pitch angles of the camera are known
through the inertial measurement unit, the lines connecting
the camera center and the 3D points seen by the camera can
be rotated to compensate for roll and pitch. The equation
for projecting image points into the homogeneous camera
space and rotating the rays is given in (1); the same oper-
ation is also depicted in Fig. 5. The pixel coordinate u is
projected with the inverse camera matrix K−1 into the nor-
malized homogeneous coordinate space. This ray is then ro-
tated by the roll and pitch with the rotation matrix formed by
multiplying the rotation matrices around the roll and pitch
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Rφθ . The resulting ray in homogeneous coordinates is now
fronto-parallel with respect to the ground plane.

u′ = RφθK
−1u (1)

The resulting fronto-parallel view has only x, y and ψ

as free parameters. Kukelova et al. provided a closed-form
solution to localize from two points and the known vertical
direction by solving for x, y, z and ψ . By applying this algo-
rithm in a least squares sense on the ARToolkit correspon-
dences, we obtain the final position output, since φ and θ

are already known. Figure 15 shows that the solution of the
vision-IMU 2-point algorithm outperforms in terms of ac-
curacy the 4-point algorithm used in ARToolkit+. Both al-
gorithms operate on the same set of visual correspondences
based on the ARToolkit+ corners.

In addition, for any non-global vision-based localization
approach, the IMU information can provide the gravity vec-
tor and heading to be used as the global reference. This is
especially important for loop closure in SLAM where global
attitude information can facilitate loop detection and reduce
convergence into local minimas. This also explains the ad-
vantage of storing the absolute attitude in image metadata
rather than the attitude relative to the previous frame. Us-
ing the absolute attitude, it is always possible to extract the
relative orientation between any pair of images.

3.3 Outlier removal

The obtained position vector x, y, z and ψ is filtered with a
4×1D block Kalman filter in the next step; this implies that
the filters are parameterized with an error model of the com-
puter vision approach. As IMU and vision both estimate the
3-DOF attitude of the helicopter, this redundant data can be
used to detect and remove position outliers produced by the
localization step. Any erroneous vision measurement will
not only contain a wrong position estimate but also a wrong
attitude estimate because of the projective dependency of
the position and attitude. Position outliers can therefore be
rejected based on the comparison of roll and pitch estimates
from the IMU and from the visual localization. Notice the
effect on position outliers when including the IMU data into
the vision estimation in Fig. 15. The variance of the position
estimate is reduced by a significant amount such that there
is no need for subsequent outlier removal.

4 Stereo obstacle detection

The front looking stereo camera allows us to get depth infor-
mation in both indoor and outdoor environments, and with
depth information, we can reliably detect obstacles in the
MAV’s vicinity, and compute their locations. By running

stereo processing algorithms onboard the MAV, we demon-
strate the ability of the onboard computer to handle compu-
tationally intensive tasks which would otherwise be not pos-
sible on typical MAVs equipped with single-core processors.
In our stereo processing pipeline, we compute disparity data
from stereo image pairs, and subsequently, compute a point
cloud which is used to update a 3D occupancy map. We de-
termine a cell to be an obstacle if its occupancy probability
exceeds a preset threshold, which in our case, is 0.5. If an
obstacle is observed to be within the safety clearance of the
MAV, an alert message is published. Any planning module
that receives this alert can either perform an emergency stop
or take evasive maneuvers.

4.1 Point clouds from stereo

With each stereo image pair, we rectify both images, and use
a block-matching stereo correspondence algorithm to build a
dense 640 × 480 disparity map. Subsequently, we compute
the depth to the points in the scene relative to the camera
coordinate system:

z = bf

d
(2)

where d is the disparity. Differentiation of (2) with respect
to d yields:

�z = bf

d2
�d (3)

�z denotes the resolution of the range measurement corre-
sponding to d . To avoid spurious range measurements due
to small disparities, we set the minimum disparity:

dmin =
⌈√

bf �d

�z

⌉
(4)

In our case, we choose conservative values of �z = 0.25
and �d = 0.5. With these values, the maximum range of our
stereo camera with a baseline of 5 cm and a focal length of
645 pixels is 4 m.

We compute the 3D coordinates of each pixel relative to
the camera coordinate system:⎡
⎣xc

yc

zc

⎤
⎦ = z

f

⎡
⎣1 0 −cx

0 1 −cy

0 0 f

⎤
⎦

⎡
⎣i

j

1

⎤
⎦ (5)

where z is the depth associated with the pixel, (cx, cy) are
the coordinates of the principal point of the camera, f is
the focal length, and (i, j) are the image coordinates of the
pixel. The values of cx , cy , and f , together with the stereo
baseline b are obtained from an one-time calibration.

We then find the world coordinates of each point:⎡
⎣xw

yw

zw

⎤
⎦ = i

wH c
iH

⎡
⎣xc

yc

zc

⎤
⎦ (6)
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where i
wH is the homogeneous transform from the world

frame to the IMU frame and is estimated by the visual odom-
etry, and c

iH is the homogeneous transform from the IMU
frame to the camera frame and is estimated using the InerVis
calibration toolbox (Lobo and Dias 2007).

5 State estimation and control

The state estimation is run on the low-level controller to sat-
isfy the real-time requirements of the system. In addition,
this allows us to compensate for the loss of either visual lo-
calization data or the complete onboard computer connec-
tion. In the case of such a catastrophic event, the system per-
forms an open-loop safety landing maneuver. To synchro-
nize inertial data and vision estimates, the IMU maintains a
buffer of attitude measurements corresponding to the last n

image frames. Once the IMU receives a vision position esti-
mate, it reads out the buffered sensor values, and performs a
state estimator update.

5.1 Discrete Kalman estimation

After the outlier rejection, the remaining positions are more
conformant to the normal distribution, and thus, allow the
use of a simple discrete Kalman filter. As the dynamics of a
quadrotor are only loosely coupled in the x, y and z direc-
tions (Bouabdallah and Siegwart 2007), the dynamics can be
modeled as three independent dimensions. As the yaw angle
taken from computer vision is of much better accuracy and
resolution in indoor settings compared to the yaw angle from
a magnetometer due to iron structures in the building, the
yaw angle is taken as the fourth independent dimension for
filtering. Given this quadrotor dynamic model, the Kalman
filter is designed as a block of 4×1D Kalman filters with
the position and speed as states. The Kalman filter assumes
a constant speed model, and takes the position estimate as
input. The estimated velocity is critical in damping the sys-
tem, as the only physical damping is the air resistance on
the horizontal plane which is insignificant at the hovering
and low-speed conditions the system is typically operating
in. The states of the four Kalman filters are:

xk =
[
x

ẋ

]
yk =

[
y

ẏ

]
zk =

[
z

ż

]
ψk =

[
ψ

ψ̇

]

We estimate the current state of the vehicle xk which is
modeled by

xk = A · xk−1 + wk−1

Where the dynamics matrix A models the law of motion,
xk−1 is the previous state and wk−1 the process noise.

A =
[

1 �t

0 1

]

This motion is measured at certain time steps where the
measurements are expressed as the gain H times the current
state plus the measurement noise v.

zk = H · xk + vk

The speed in the model will therefore only be changed
by measurements, and assumed constant during prediction.
From this formulation, it is already obvious that varying
time steps can be handled by the filter as long as they are pre-
cisely measured. As this filter does not include the control
input matrix B , the filter assumes a constant speed model
which is a valid approximation if the filter update frequency
is fast enough with respect to the change of speed of the
physical object. Because the PIXHAWK system provides a
precise time base, the filter uses the measured inter-frame
interval as the time difference input δt . If measurements
are rejected as outliers, the filter only predicts for this it-
eration, and compensates in the next update step for the then
longer time interval. This allows the system to estimate its
egomotion for up to about 500 ms and recover from several
dropped camera frames.

5.2 Position and attitude control

The current and the desired positions are fed back to the po-
sition estimation and control software module running on
the ARM7 autopilot controller. The autopilot calculates the
desired attitude, and controls the attitude using its onboard
inertial sensor suite. The x- and y-positions are controlled
with the angle of attack of the collective thrust vector by
setting the desired pitch angle for x and the desired roll an-
gle for y. The z-position can be controlled with the compo-
nent of the collective thrust collinear to the gravity vector.
The yaw angle can finally be controlled by the difference
of rotor drag of the clockwise (CW) and counter-clockwise
(CCW) rotor pairs. As the discrete Kalman filter contributes
a smooth position and speed estimate with little phase delay,
the controller can be designed as a standard PID controller
implemented as four independent SISO PID controllers for
x, y, z, and yaw, as in Bouabdallah et al. (2004). Attitude
control is implemented following the standard PID based at-
titude control approach for quadrotors using one PID con-
troller for each of the roll, pitch, and yaw. The craft is actu-
ated by directly mixing the attitude control output onto the
four motors.

6 Micro air vehicle and middleware

Off-board processing effectively makes the MAV dependent
on the external processing unit, and severely limits the safety
and operation range of the vehicle. Our system brings the
multi-process architecture and onboard processing capabili-
ties from the 20–100 kg class to vehicles with around 1.2 kg
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Fig. 6 Quadrotor components

liftoff weight. In contrast to systems using local stabilization
approaches on specialized microcontroller hardware (Parrot
AR.Drone), the system is geared towards global localiza-
tion and autonomous exploration of unknown environments
using stereo vision. The presented initial results show that
with a 30 Hz frame rate, our system consumes 10% of the
maximum CPU load (5 ms processing time per frame) for
autonomous marker based flight and 40–60% load (20 ms
processing time per frame) for stereo-based obstacle avoid-
ance, which leaves enough capacity for future work. Since
the onboard computer offers two CPU cores, onboard par-
allel localization and mapping is within reach. GPS and, to
a large extent, laser-based systems can offer a deterministic
processing time to fuse the sensor data into the localization.
In contrast, computer vision has varying, and in compari-
son, often longer processing times, depending on the image
content. Therefore, the estimation and control steps cannot
assume a fixed interval length �t and a fixed processing de-
lay �p. Instead, they must use the actual timestamp of all
measurements to calculate the correct latency. Thus, all data
in our system is timestamped with a resolution in the order
of microseconds. This data includes images from multiple
cameras, the system attitude, acceleration data, and baro-
metric data.

6.1 Stereo head

For the stereo head, the middleware supports 2 Point Grey
Firefly MV or MatrixVision Bluefox cameras that respec-
tively capture 640 × 480 and 752 × 480 grayscale images at
up to 60 Hz. The camera interface allows additional camera
models to be supported. However, since there is no standard
for trigger-support among different camera module manu-
facturers, it is necessary to implement a small interface class
in the middleware for each camera type. The camera pair is
rigidly mounted with a baseline of 5 cm on a carbon com-
posite frame as shown in Fig. 6. The hardware trigger pro-
vided by the IMU enables synchronous capture of images
from both cameras; this synchronous capture is crucial for
accurate estimation of stereo disparity.

6.2 Mechanical structure and flight time

Our custom mechanical design (Fig. 6) effectively protects
the onboard processing module in case of a system crash,
and the fixed mounting of the four cameras allows inter-
camera and camera-IMU calibration. Our system comes in
two sizes, one optimized for very small indoor environ-
ments, and one standard size. As the processing board and
up to four cameras represent a relatively large payload of
400–800 g for the small diameter of 0.55 m (0.70 m for the
larger version) of the quadrotor, the overall system structure
has been optimized for low weight. It consists of lightweight
sandwich material with composite plates and an inner layer
made of Kevlar. Each of the four motors with 8′′ or 10′′ pro-
peller contributes a maximum of 450–600 g thrust, enabling
the system to lift a 400 g payload at a total system weight
of 1.0–1.2 kg, including the battery. This allows a continu-
ous flight time of 7–9 minutes with 8′′ propellers and 14–
16 minutes with 10′′ propellers. The propulsion consumes
150–180 W for hovering, while the onboard computer con-
sumes only 27 W peak. Therefore, flight time is governed
by the weight of the system.

6.3 Flight and processing electronics

The PIXHAWK Cheetah quadrotor design was built from
scratch for onboard computer vision. With the exception of
the commercial off-the-shelf (COTS) motor controllers and
cameras, all electronics and the mechanical frame are cus-
tom designed (Fig. 7). First, the payload consisting of the
pxCOMEx processing module and up to four machine vi-
sion cameras (PointGrey Firefly MV USB 2.0 or MatrixVi-
sion Bluefox), was selected. The system design then fol-
lowed the requirements of onboard computer vision. The
onboard electronics consists of an inertial measurement unit
and autopilot unit, pxIMU, and the onboard computer vision
processing unit, pxCOMEx.
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Fig. 7 Onboard sensors and
avionics with electronic buses

Fig. 8 From left to right:
pxIMU Autopilot, pxCOMex
image processing module,
microETXExpress Core 2 DUO
1.86 GHz module

6.3.1 Autopilot unit

The pxIMU inertial measurement unit/autopilot board
(Fig. 8, left part) provides 3D linear acceleration (ac-
celerometer, ±6 g), 3D angular velocity (±500 deg/s), 3D
magnetic field (± milligauss), barometric pressure (130–
1030 hectopascal (hPa)) and temperature. The onboard
MCU for sensor readout and sensor fusion as well as po-
sition and attitude control is a 60 MHz ARM7 microcon-
troller. It can be flashed via an USB bootloader, and stores
settings such as PID parameters in its onboard EEPROM.
It provides the required I2C bus to the motor controllers,
additional GPIOs, ADC input, and other peripherals. It is
interfaced via UART to the computer vision processing unit,
and it operates at a maximum update rate of 200–500 Hz.

6.3.2 Image processing unit

The processing unit is the core piece of the system and
consists of a two-board stack. The pxCOMEx base board
(Fig. 8, middle) provides the USB and UART peripherals
to interface machine vision cameras, communication equip-
ment and the pxIMU module. It can accept any micro COM
express industry standard module. Currently, a Kontron etx-
Express module with Intel®Core™2 Duo 1.86 GHz and
2 GB DDR3 RAM is used (Fig. 8, right), but future upgrade
options include Intel®Core™i7 CPUs. It has 4× UART, 7×

USB 2.0 and 1× S-ATA 2.0 peripheral options. The typ-
ical onboard setup consists of 4× PointGrey Firefly MV
monochrome cameras, 1× USB 2.0 802.11n WiFi adapter,
and 1× S-ATA 128 GB SSD with more than 100 MB/s write
speed. The pxIMU unit, the GPS module, and the XBee ra-
dio modem are connected via UART to the processing unit.
With a weight of 230 g including cooling and only 27 W
peak power consumption, the processing unit can be easily
lifted by a wide range of aerial systems, and not limited to
the quadrotor presented here.

6.4 Aerial middleware and message format

Existing middleware solutions for ground robotics include
ROS (Quigley et al. 2009), CARMEN (Montemerlo et al.
2003) and CLARAty (Volpe et al. 2001). CARMEN and
CLARAty have paved the way for standardized robotics
toolkits, but their use has declined with the wide adoption
of ROS. Although ROS has been used on MAVs, all of these
toolkits assume an Ethernet network to all connected nodes.
However, MAV onboard-networks typically include no Eth-
ernet device, but several devices connected via serial links
and USB. As these toolkits do not scale down to this link
type, every packet has to be transcoded by bridge processes.
Therefore, we propose a new communication protocol and
architecture that can be transparently used on different hard-
ware links and which minimizes the system complexity.
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Fig. 9 MAVCONN Network
showing different physical links
using the MAVLink protocol

As shown in Fig. 9, the PIXHAWK Linux middleware
consists of several layered software components. This ar-
chitecture allows us to use the different base communi-
cation layers (ROS and LCM), and provides a convenient
high-level programming interface (API) to the image distri-
bution server. MAVLink messages from the IMU and the
ground control station can also be directly received by any
process. We rely on the Lightweight Communication Mar-
shalling library (LCM) as the base middleware, as it was
shown in Huang et al. (2010) that LCM outperforms ROS
in low-latency applications. Another benefit is the increased
robustness of the overall software architecture when using
LCM, as no central server exists and our communication
over MAVLink is mostly stateless. This eliminates a sin-
gle point of failure (the ROS central node), and also elim-
inates possible protocol lockups in stateful implementations
(as in many ROS nodes). Our system can however still bene-
fit from ROS software packages, such as the ROS Kinect in-
terface, by using our ROS-MAVCONN bridge process that
routes between the two software packages.

The mission and control architecture of the presented
robotics toolkit is based on a lightweight protocol called
MAVLink, which scales from serial to UDP links. It serves
also as a communication protocol between the flight com-
puter (pxIMU) and the onboard main computer (pxCOMex/
pxOvero). As MAVLink is used on all communication links
including the downlink to the operator control unit, it is par-
ticularly important that this protocol scales down to very low
bandwidth links, and allows the use of several links in paral-
lel. In turn, this parallel use allows several redundant links,
which in our case, are long-range XBee radio modems and
802.11n Wifi (UDP). MAVLink has a small 8-byte overhead
per packet, allows routing on an inter-system or intra-system
level, and has in-built packet-drop detection. Due to the
low overhead, it is both suitable for UDP and UART/radio
modem transport layers. The efficient encoding also allows
protocol execution on microcontrollers. These properties al-
low the building of a homogeneous communication architec-
ture across the PIXHAWK system. The MAVLink sentences

are generated based on an XML protocol specification file
in the MAVLink format. The code generator ensures well-
formed messages, and generates C89-compatible C-code for
the message packing and unpacking. This allows fast and
safe extensions, and changes to the communication proto-
col, and ensures that no implementation errors will occur
for new messages. Our current implementation supports the
use of the Lightweight Communication Marshalling Library
(LCM) and the Robot Operating System (ROS) as transport
layers.

While we use MAVLink to send system states and control
commands, we do rely on a separate shared memory imple-
mentation of an image hub. This component allows sharing
of images of all cameras with an arbitrary number of Linux
processes and with the least overhead possible.

6.5 Mission management

A core part of the autonomous flight is the onboard mis-
sion management logic, which allows the system to au-
tonomously follow a flight plan or to perform simple tasks,
such as sweeping a region of interest. The user can specify
these missions in the open-source QGroundControl opera-
tor control unit. It is a C++ application using the Nokia
Qt toolkit. Communication with the MAV is based on the
MAVLink protocol and transported either via UART/radio
modem or via WiFi/UDP. QGroundControl covers the whole
operational spectrum of an autonomous MAV; it can graph
and log system data in real-time, and it provides 2D and 3D
moving maps for the flight operation.

Figure 10 shows a typical operator setup: a 3D mov-
ing map displaying the waypoint locations, the safety/home
location, and the MAV trail (red ellipsoid, simulated for
visualization). By interfacing to Google Earth, up-to-date
imagery data and 3D models of buildings are available to
QGroundControl. The bottom part of the window shows the
waypoint list. The operator can either edit the waypoint list
or drag the waypoint icons in the 3D interface. The instru-
ment on the top right displays the MAV list with one system
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Fig. 10 QGroundControl
displaying the current waypoints
and trajectory of the system

being active. The circular instrument below shows the con-
troller state (no information available, thus crossed out) and
nearby obstacles (no close obstacles present). The gauge in-
struments can be easily configured by the user to visualize a
subset of sensor values received by the GCS.

7 Experiments and results

We conduct experiments to evaluate the image transmission
delays in the MAV system, the visual localization without
and with the vision-IMU 2-point algorithm, and the stereo
obstacle detection, and discuss the results.

7.1 Image transmission delays

Computer vision algorithms can exploit synchronized atti-
tude and vision data to increase accuracy and robustness.
Since machine vision cameras have a delay in the tens of
milliseconds range due to USB/Firewire transfer time and
operating system scheduling delays,the best solution is to
synchronize the camera to the inertial measurement unit
with a hardware shutter. Figure 11 shows the USB trans-
fer delays (red, bottom curve), the USB and shared mem-
ory interface delay (green, middle curve), and the total cam-
era shutter to control output delay (blue, top). The measure-
ments show that the overall delay is in the same range as the

interval between two captured images (36 ms for the pre-
sented localization). This applies to a system with low and
high CPU loads (both cores at maximum load).

7.2 Visual localization

We perform two experiments to determine the localization
accuracy of our ARToolkit+ localization without and with
the vision-IMU 2-point algorithm described in Sect. 3.2. In
our experiments, we use ground truth data from a Vicon mo-
tion tracking system; the ground truth data is provided at a
rate of 50 Hz and is very precise with <1 mm error. The ob-
jective of the experiments is two-fold: to quantitatively mea-
sure the ARToolkit+ localization error relative to the Vicon
groundtruth, and to examine whether the 2-point algorithm
improves the localization accuracy by using vision-IMU fu-
sion. To be able to localize the helicopter with the described
vision system during the whole flight, ARToolkit+ mark-
ers were laid out on the floor in the flight area as shown in
Fig. 4.

In each experiment, we use our operator control software,
QGroundControl, as shown in Fig. 12 to set relevant param-
eters for MAV software components, monitor the MAV’s
status, send commands to the MAV, and preset waypoints
for autonomous flight.

Furthermore, in each experiment, the MAV executes an
autonomous flight; at the beginning and end of the flight,
open-loop takeoff and landing are performed respectively,
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Fig. 11 Measured system
delays. Top: Total round-trip
time from the moment the
camera is triggered by the IMU
until the moment the image is
transfered to the onboard
computer, vision is computed,
state estimation is run and the
motor controllers are set to the
updated value. Middle: Trigger
to vision process delay. Bottom:
USB transfer delay. The spikes
in the processing time are
mostly attributed to the
scheduling of the computer
vision processes, as these results
were obtained on a non-RT
Linux system

Fig. 12 QGroundControl view
with live image streaming from
the helicopter using MAVLink
over UDP. The live view on the
left shows the rectified and
depth images from the stereo
camera setup

using in the control loop only the estimated state of the MAV
without any external position or attitude reference. During
the flight, the MAV uses the localization output to follow
the preset waypoints.

7.2.1 Experiment 1—autonomous waypoint following

In the first experiment, Fig. 13 shows the localization results
using the ARToolkit+ localization without the 2-point algo-

rithm. The plot shows a flight around a rectangular path and

two crossings. The solid black line shows the planned flight

path; the vertical line in the top left corner of the figure indi-

cates takeoff while the vertical line in the bottom left corner

indicates landing. The grey spheres indicate the waypoints;

the radius of each sphere equals the acceptance radius within

which the waypoint is marked as reached. The blue asterisks

represent the position estimates computed by the unfiltered
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Fig. 13 Trajectory of an
autonomous flight using
unfiltered ARToolkit+
localization (asterisks)
including takeoff and landing
plotted together with the Vicon
groundtruth (crosses) and
planned path (solid line and
spheres are the planned
waypoints)

visual localization, and the red crosses represent the Vicon
ground truth.

It is observed in Fig. 13 that the ARToolkit+ localization
output without the 2-point algorithm closely follows the Vi-
con ground truth, but is subject to frequent large errors. This
is because the localization output is computed purely based
on vision, hence making it extremely sensitive to errors from
the extracted image features. A small error in the position of
the extracted image feature would translate into a large error
in the localization output, thus explaining the frequent large
errors.

7.2.2 Experiment 2—comparison of IMU-aided
localization

The quadrotor autonomously flies a similar trajectory as in
Fig. 13. The flight control is based on the ARToolkit local-
ization without using the IMU, and the state estimation is
done with an attitude observer filter and four independent
1D Kalman filters for x, y, z and yaw. In our vision-IMU 2-
point algorithm, we first compute the 2D image features that
correspond to the 4 corners of each ARTK marker in full
view in the image; example 2D image features are shown
as black circles in Fig. 14. We then establish 2D-3D corre-
spondences through identification of the marker IDs and re-
trieval of the 3D coordinates of the identified markers from
the ARToolKit+ configuration file. We use the same set of
2D-3D correspondences to compute the pose estimates for
the ARToolKit+ localization without and with the 2-point
algorithm.

Fig. 14 An example of image features (black circles) extracted from
the 4 corners of ARToolKit+ markers

Figure 15 shows a comparison of the localization out-
put from the ARToolkit+ localization without and with our
2-point algorithm as shown in red and blue respectively;
the Vicon readings are shown as groundtruth in green. It
is observed from Fig. 15 that the localization output with
our 2-point algorithm is significantly smoother and more
accurate than that without the 2-point algorithm; the 2-
point localization output coincides more closely to the Vi-
con ground truth and is not subject to large jumps which oc-
cur for the localization without the 2-point algorithm. This
is due to the additional roll and pitch information from the
IMU which helps to reduce the sensitivity of the localiza-
tion process to errors arising from the extracted image fea-
tures.
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Fig. 15 (Color online) Position
estimates from ARToolKit+
localization without (in red) and
with (in blue) the 2-point
algorithm. The Vicon
groundtruth is shown in green

Fig. 16 Left: Left stereo image.
Middle: Colorized point cloud.
Right: Same point cloud colored
by distance from the MAV

In both experiments, the helicopter hovered shortly above
the landing position until it reached a steady hovering state,
and then landed. It can be observed that there are signifi-
cant cross-track errors between the actual and planned flight
paths. As our focus is not on precise path following, our
MAV system is equipped with basic PID position and atti-
tude controllers which are not optimally tuned. Furthermore,
the localization output does not reflect the actual position of
the MAV, and therefore, deviations from the planned flight
path are expected.

7.3 Stereo obstacle detection

We carry out an experiment in which the MAV flies au-
tonomously along preset waypoints. We show a visualiza-
tion of the stereo processing at one point of time; Fig. 16
shows an image from the left camera of the stereo rig, the
resulting 3D point cloud computed from the corresponding
stereo frame, and the same point cloud colored by distance
from the MAV. In the latter two images, the MAV is shown in
green. Figure 17 shows the occupancy map that corresponds
to the stereo frame depicted in Fig. 16.

The MAV publishes alert messages if it detects obstacles
within a safety clearance of 0.75 m. To test this functionality,
we put obstacles (plant, person, cardboard) along one side of

Fig. 17 The occupancy map corresponding to the frame in Fig. 16.
Obstacle cells in the map are marked as boxes

the flight path and closer than the pre-set safety clearance.
Figure 18 shows the outcome of the test flight; the flight
trajectory is shown in blue, while the locations where the
MAV published alert messages are marked with red circles.
These alert messages could be used by a planning algorithm
to change the flight plan.
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Fig. 18 Autonomous test flight
with obstacles. Circles mark the
locations where the MAV
published alert messages (when
obstacles are detected within the
MAV’s safety clearance of
0.75 m). The flight trajectory is
shown as solid line

Table 3 Breakdown of computational time for on-board stereo pro-
cessing using 640×480 stereo images (1.86 GHz Intel®Core™2 Duo)

Process Average computational time

Image rectification 5 ms

Disparity mapping 29 ms

Point cloud generation 1 ms

Occupancy mapping 50 ms

Total 85 ms

The breakdown of computational time for the stereo pro-
cessing on-board the MAV is described in Table 3.

8 Conclusions and future works

The PIXHAWK system is a flexible and computationally
strong research platform for autonomous micro air vehicles.
This system design, especially with a fast onboard com-
puter, is currently unmatched in the class of small-scale
MAVs. The hardware IMU-vision synchronization and pre-
cise timestamping allows the fusion of IMU and vision in-
formation without the need to estimate and take assump-
tions about the delays. Our results show that fusing vision
and IMU information in the proposed way can improve the
accuracy of the camera pose estimation, and thus, the over-
all flight performance. Our platform provides a basic setup
for autonomous flight using ARTK+ markers. At the same

time, the system can interface with the stereo cameras, and
provide a depth map for obstacle detection.

Our overall system design has proved useful as a research
platform, and is intensively used in our group and in several
other international research labs.

In future work, we will make use of the powerful on-
board computer to do computationally-intensive visual lo-
calization with natural features, and autonomous exploration
and mapping. Our communication architecture, in particular
the MAVLink protocol, supports MAV-to-MAV communi-
cation. In addition, we want to exploit this architecture in
the direction of distributed localization and distributed map-
ping of swarms of MAVs.
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