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Abstract— In this paper, we propose a method to compute the
pose-graph loop-closure constraints using multiple non/minimal
overlapping field-of-views cameras mounted rigidly on a self-
driving car without the need to reconstruct any 3D scene
points. In particular, we show that the relative pose with
metric scale between two loop-closing pose-graph vertices can
be directly obtained from the epipolar geometry of the multi-
cameras system. As a result, we avoid the additional time
complexities and uncertainties from the reconstruction of 3D
scene points which are needed by standard monocular and
stereo approaches. In addition, there is a greater flexibility
in choosing a configuration for the multi-camera system to
cover a wider field-of-view so as to avoid missing out any
loop-closure opportunities. We show that by expressing the
point correspondences between two frames as Plücker lines and
enforcing the planar motion constraint on the car, we are able
to use multiple cameras as one and formulate the relative pose
problem for loop-closure as a minimal problem which requires
3-point correspondences that yields up to six real solutions. The
RANSAC algorithm is used to determine the correct solution
and for robust estimation. We verify our method with results
from multiple large-scale real-world data.

I. INTRODUCTION

In the recent years, pose-graph Simultaneous Localization

and Mapping (SLAM) has been a subject of intensive re-

search [1]–[4] because of the enormous simplification and

speed-up to the SLAM problem. Essentially, pose-graph

SLAM represents the SLAM problem as an undirected graph

where the vertices are the predicted robot poses and the edges

are the observed constraints between any two robot poses.

The simplification and speed-up of the SLAM problem

are achieved by marginalizing out all the 3D scene points

from the pose-graph. The errors between the predicted and

observed robot poses are minimized with solvers such as the

Levenberg-Marquardt algorithm. The predicted robot poses

represented by the vertices are usually obtained from wheel

or visual odometry readings and the constraints represented

by the edges connecting consecutive vertices are the relative

poses between the vertices. The constraints between non-

consecutive vertices are from loop-closures and play an

important role in mitigating the errors accumulated from

large drifts of the wheel or visual odometry in the pose-

graph.

Loop-closure opportunities are detected with the aid of the

camera and vocabulary-tree [5] which returns the similarity

scores between the image taken at the current robot pose

Fig. 1. Our car equipped with a multi-camera system with minimal
overlapping field-of-views and GPS/INS system for ground truth.

and all the images took from previous robot poses. A geo-

metric verification using, for example, the 5-point RANSAC

algorithm [6] is applied to the list of loop-closure candidate

with the top similarity scores. The candidate image pair with

the highest inlier count and inlier count exceeding a given

threshold is taken to be the loop-closure image pair. The

loop-closure constraint between the two robot poses associ-

ated with the loop-closure image pair is usually computed

by first retrieving the 3D scene points followed by solving

the Perspective-n-Point (PnP) problem [7] for monocular

cameras or the absolute orientation problem [8] for stereo

cameras. It is essential to reconstruct the 3D scene points

for the recovery of the metric scale between the relative pose

since it is well known that the metric scale cannot recovered

with pure epipolar geometry [9] of a monocular camera. The

need for the 3D scene points to compute the relative pose

with metric scale for the loop-closure constraint however

introduces additional time complexities and uncertainties

which contradicts the idea of simplification and speed-up

by marginalizing out 3D scene points in pose-graph SLAM.

In addition, a single monocular or stereo camera usually

has limited field-of-view thus missing out on some potential

loop-closing opportunities.

In this paper, we propose a multi-camera system with

non/minimal overlapping field-of-views on a car for loop-

closure. We show that the relative pose with metric scale for

the loop-closure constraint can be computed directly from

the epipolar geometry of a multi-camera system without the

need to reconstruct any 3D scene points. In particular, we

adopt the generalized epipolar constraint (GEC) proposed by

Pless [10]. The GEC expresses the point correspondences as



Plücker lines which turns the epipolar geometry of a multi-

camera system to be in a similar structure as a single monoc-

ular camera (see Section III for more details). 17- or 16-point

correspondences are needed to solve linearly for the relative

pose with metric scale in [10], [11] which made it inefficient

to be used within RANSAC [12] for robust estimation. We

show that by enforcing the planar motion constraint of a car,

we are able to formulate the relative pose with metric scale

problem as a minimal problem which requires only 3-point

correspondences to solve for the 3 degree-of-freedoms on a

plane. The low number of point correspondences (3-point)

makes it possible for robust estimation with RANSAC. We

solve the system of polynomials from the minimal problem

with the Hidden Variable Resultant and Companion Matrix

methods [13]. A maximum of up to six real solutions can

be found and the correct solution gives the highest number

of inliers from RANSAC. We do a final estimate of the

loop-constraint by doing a least-squares estimate using the

linear algorithm from [11] with all the inliers found from

RANSAC. Finally, we close the loops by doing a robust

pose-graph optimization [14] with all the loop-constraints.

We verify our algorithm with results from multiple large-

scale real-world data.

Figure 1 shows our car equipped with four fish-eye cam-

eras and a GPS/INS system for ground truth. It is important

to note that our method is not restricted to the camera

configuration shown in Figure 1 but works for any arbitrary

non-degenerated [11] multi-camera configurations. We chose

this camera configuration based on the maximal coverage it

provides.

II. RELATED WORKS

Pless [10] first proposed the idea of the generalized camera

model where a single epipolar constraint known as the

generalized epipolar constraint (GEC) is used to describe the

relative motion of a multi-camera system over two different

frames. In this work, Pless showed that the problem of

the absence of a single camera projection center can be

circumvented by expressing the point correspondences as

the Plücker lines and this allows any arbitrary frame to be

chosen as the reference frame for the multi-camera system.

In addition, the use of the Plücker lines also made it possible

to formulate the GEC in the same structure as the epipolar

constraint for a single camera. The so-called generalized

essential matrix (GEM) is a 6 × 6 matrix with 18 unique

entries. This means that a total of 17-point correspondences

are needed to solve for the GEM linearly. Sturm showed

similar derivations in [15]. Both works are however largely

theoretical and showed only results from simulated data. The

high number of point correspondences needed for the GEC

prevented efficient use of the method within RANSAC for

robust estimation with real-world data.

In [11], Li et al. did further research on the GEC by

identifying the degenerated cases for locally-central general-

ized camera. A locally-central generalized camera is a multi-

camera system where frame-to-frame point correspondences

are matched locally in each of the respective camera that

made up the multi-camera system. This differs from the

general case where the matching of the frame-to-frame point

correspondences over different cameras is possible. Li et al.

showed that the rank of the GEC drops from 17 to 16 for the

locally-central generalized camera because a null motion is

always a solution to the GEC. He further showed that the null

motion is always the solution found from the Singular Value

Decomposition (SVD) approach [9] to solve the locally-

central generalized camera GEC linearly. He proposed a

new linear method which avoids the degenerated null motion

solution and showed that the same approach can also be used

to find the solution for the axial and locally-central-and-axial-

cameras which exhibit the same degeneracy. Their approach

needed 16-point correspondences which also inhibited it

from being used within RANSAC for robust estimation. They

showed results from a small-scale dataset collected with a

Point-Grey ladybug camera in a controlled laboratory envi-

ronment where point correspondences were chosen manually.

Stewénius et al. solved the minimal problem for the

GEC in [16] with the Gröbner basis [13]. The minimal

problem uses 6-point correspondences to solve for the 6

degree-of-freedom in the GEC which made it possible for

robust estimation within RANSAC. The approach however

involved solving a system of polynomials that yields up

to 64 real solutions. The high number of solutions made

their approach computationally inefficient and tedious to

determine the correct solution within RANSAC. In contrast,

our method uses 3-point correspondences and yields up to

only six real solutions. They showed results from a RANSAC

implementation of the 6-point algorithm on synthetic data but

not on any real-world data.

More recently, we showed in our previous work [17] that

by incorporating the Ackermann motion model into the GEC,

we are able to solve for the relative motion between two

consecutive frames from the multi-camera system mounted

on a car as a minimal problem. 2-point correspondences are

needed to solve for the 2 degree-of-freedom - yaw angle

and scale from the Ackermann motion model. The low

number of point correspondences needed to solve the GEC

made it possible for very efficient robust estimation within

RANSAC. The approach was verified with results from large-

scale dataset collected from a multi-camera system mounted

on a car. However, the approach does not work for finding

the relative pose between two loop-closure vertices in the

pose-graph since the Ackermann motion constraint would be

violated. In contrast, in this paper we relax the Ackermann

motion constraint to a planar constraint with 3 degree-of-

freedom - x, y and yaw where the additional degree-of-

freedom allows the computation of the loop-closure con-

straints.

III. GENERALIZED CAMERA MODEL

Our work on finding the loop-closure constraint with a

multi-camera system is based on the generalized camera

model. We briefly describe the concept of the generalized

camera model and the GEC in this section which is needed

to understand the remaining paper. More details can be found
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Fig. 2. Illustration of a multi-camera system mounted on a car.

in [10], [15]. Figure 2 shows an illustration of a multi-camera

system mounted on arbitrary locations on a car. The multi-

camera system consists of individual cameras denoted by Ci

and an arbitrary chosen reference frame denoted by V . We

denote the intrinsics and extrinsics of the cameras with Ki

and [RCi
, tCi

], and the normalized image coordinate of a

point xij is given by x̂ij = K−1
i xij . The problem of the

absence of a single camera projection center for the multi-

camera system is circumvent by expressing the image point

as a 6-vector Plücker line given by

lij = [uT
ij , (tCi

× uij)
T ]T (1)

where lij describes a ray that passes through the camera

center Ci and an image point xij seen by the camera. The

unit direction of the ray expressed in the reference frame V

is given uij = RCi
x̂ij . Notice that lij for all cameras are

now unanimously expressed in the same reference frame V

and this results in the GEC given by

l
′T
ij

[
E R

R 0

]

︸ ︷︷ ︸

EGC

lij = 0 (2)

where l
′T
ij and l

T
ij are the point correspondences between

frames V ′ and V expressed as Plücker lines. EGC is the

generalized essential matrix which consists of the relative

rotation matrix R and the essential matrix E which is the

same essential matrix from the epipolar geometry of a single

camera. The relative translation t can be obtained from the

decomposition [9] of E = ⌊t⌋xR.

IV. STRUCTURELESS LOOP-CLOSURE

Figure 3 shows the system overview for our structureless

loop-closure framework with the multi-camera system. We

form the pose-graph by computing the visual odometry

[17] with every new coming image. Alternatively, the wheel

odometry can also be used. The images are used to create a

database with the vocabulary-tree [5] and the current image

is matched against the database for a list of visually similar

loop-closure candidates. We compute the point correspon-

dences for all the loop-closure candidates and used them

in our 3-point RANSAC algorithm to compute the relative

poses for all the loop-closure candidates. The candidate with

the highest inlier count and inlier count that exceeds a given
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Fig. 3. System overview for our structureless loop-closure framework.
Structureless loop-closure is possible because our 3-Point RANSAC com-
putes the relative pose with metric scale directly from the image correspon-
dences of the multi-camera system.

threshold passes the geometric verification test is selected

as the loop-closure constraint. A final estimate of the loop-

closure constraint is done by doing a least-squares estimate

using the linear algorithm from [11] with all the inliers.

Finally, we do the robust pose-graph optimization based on

[14] to close the loops. The robust pose-graph optimization

is done to remove the detrimental effects of the outlier loop-

closure constraints caused by the wrong recognitions from

the vocabulary-tree in highly similar scenes. Note that the

whole process is done without the need to reconstruct any

3D scene point and this is possible because our 3-Point

RANSAC is derived from the epipolar geometry of the multi-

camera system which directly allows the computation of

the relative pose with metric scale based on only image

correspondences.

A. Pose-Graph Formation and Place Recognition

The edge constraints that link consecutive vertices in the

pose-graph are obtained from relative poses estimated with

generalized visual odometry described in our previous work

[17]. Alternatively, the wheel odometry readings can also be

used. These relative poses are concatenated together to get

the global poses which are represented by the vertices in the

pose-graph. Loop-closure opportunities for edges that link

non-consecutive vertices in the pose-graph are obtained from

a vocabulary-tree [5] based place recognizer. The vocabulary-

tree based place recognizer consists of the training and query

phases. In the training phase, a vocabulary tree is trained

offline with SURF features [18] extracted from a set of given

training images. In the query phase, the acquired images are

assigned unique IDs and are inserted into the vocabulary-tree

database in the form of an inverted file for efficient retrieval.

The database is queried with the SURF features extracted

from every incoming image and the output of the query is a

list of image IDs ranked according to their similarity scores

with the query image. The list of database images with the

top similarity scores is selected as the list of loop-closure

candidates. It is important to note that we maintain only one

vocabulary-tree for all the cameras from our multi-camera

system. We do so by assigning unique image IDs given by



imageID = frameID × n + cameraID, where n is the total

number of cameras in the multi-camera system.

B. 3-point Minimal Solution

Our multi-camera system is mounted on a car which can

be assumed to be moving on a plane or at least locally planar

between two loop-closing poses. Hence, we are able to write

the relative transformation [R, t] between two loop-closing

frames V ′ and V as

R =
1

1 + q2





1− q2 −2q 0
2q 1− q2 0
0 0 1 + q2



 , t =





x

y

0



 (3)

where q = tan( θ2 ), hence cos(θ) = 1−q2

1+q2
and sin(θ) = 2q

1+q2

according to the double-angle trigonometry identities. θ is the

yaw angle. We do this trigonometric identity substitution to

get rid of the difficulties in dealing with sines and cosines in

the system of equations. Putting the relative transformation

[R, t] from Equation 3 into the generalized essential matrix

EGC from Equation 2, we get

EGC =














0 0 y 1−q2

1+q2
−2q
1+q2

0

0 0 −x 2q
1+q2

1−q2

1+q2
0

2xq−y(1−q2)
1+q2

2yq+x(1−q2)
1+q2

0 0 0 1
1−q2

1+q2
−2q
1+q2

0 0 0 0
2q

1+q2
1−q2

1+q2
0 0 0 0

0 0 1 0 0 0














(4)

which is the generalized essential matrix with the planar

constraint. Dropping the camera and image point indices i

and j for brevity, we get the GEC with planar constraint

from Equations 2 and 3 which is given by

a1xq
2 + a2xq + a3x+ a4yq

2 +

a5yq + a6y + a7q
2 + a8q + a9 = 0

(5)

where

a1 = −uyu
′

w − uwu
′

y, a2 = 2uwu
′

x

a3 = uwu
′

y − uyu
′

w, a4 = uxu
′

w + uwu
′

x

a5 = 2uwu
′

y, a6 = uxu
′

w − uwu
′

x

a7 = tcx(uyu
′

w + uwu
′

y)− tcy(uxu
′

w + uwu
′

x)−

tcz(uxu
′

y − uyu
′

x) + t′cx(uyu
′

w + uwu
′

y)−

t′cy(uxu
′

w + uwu
′

x) + t′cz(uxu
′

y − uyu
′

x)

a8 = 2(tczuxu
′

x − tcxuwu
′

x − tcyuwu
′

y + tczuyu
′

y +

t′cxuxu
′

w − t′czuxu
′

x + t′cyuyu
′

w − t′czuyu
′

y)

a9 = tcx(uyu
′

w − uwu
′

y)− tcy(uxu
′

w − uwu
′

x) +

tcz(uxu
′

y − uyu
′

x)− t′cx(uyu
′

w − uwu
′

y) +

t′cy(uxu
′

w − uwu
′

x)− t′cz(uxu
′

y − uyu
′

x)

Here, t′c = [t′cx, t
′

cy, t
′

cz]
T , tc = [tcx, tcy, tcz]

T , u′ =
[u′

x, u
′

y, u
′

w]
T and u = [ux, uy, uw]

T , are the camera centers

and the rays that connect the respective camera centers

and image point with respect to the respective loop-closing

frames V ′ and V defined in Section III. We solve for

the 3 unknowns x, y and q in Equation 5 as a minimal

problem which requires 3-point correspondences and we get

the following system of polynomials

a1xq
2 + a2xq + a3x+ a4yq

2 + (6a)

a5yq + a6y + a7q
2 + a8q + a9 = 0

b1xq
2 + b2xq + b3x+ b4yq

2 + (6b)

b5yq + b6y + b7q
2 + b8q + b9 = 0

c1xq
2 + c2xq + c3x+ c4yq

2 + (6c)

c5yq + c6y + c7q
2 + c8q + c9 = 0

where b and c are the coefficients from the additional

two point correspondences with similar definition as the

coefficient a. The Hidden Variable Resultant method [13] is

used to solve for the unknowns in the system of polynomials.

We write the system of polynomials from Equation 6 into

the form of

β(q)X = 0 (7)

where β(q) is given by





a1q
2 + a2q + a3 a4q

2 + a5q + a6 a7q
2 + a8q + a9

b1q
2 + b2q + b3 b4q

2 + b5q + b6 b7q
2 + b8q + b9

c1q
2 + c2q + c3 c4q

2 + c5q + c6 c7q
2 + c8q + c9





(8)

and

X =
[
x y 1

]T
(9)

We know from Linear Algebra that since β(q) is a square ma-

trix, Equation 7 has a non-trivial solution when det(β(q)) =
0. This gives a six degree polynomial in terms of q.

Aq6 +Bq5 + Cq4 +Dq3 + Eq2 + Fq +G = 0 (10)

where the coefficients A, B, C, D and E are made up of the

coefficients from Equation 6. We drop the full expressions

for brevity. The roots of Equation 10 can be obtained from

the eigen-values of the following Companion matrix [13]











0 0 0 0 0 −G
A

1 0 0 0 0 −F
A

0 1 0 0 0 −E
A

0 0 1 0 0 −D
A

0 0 0 1 0 −C
A

0 0 0 0 1 −B
A











(11)

A maximum of up to six real eigen-values (i.e. six real roots

to q) can be obtained from the Companion matrix and the

correct solution is determined by checking the number of

inliers within the RANSAC (see Section IV-D) loops. We

solve for the yaw angle as θ = 2tan−1(q). With q known,

x can now be solved with

x = −
d6q

4 + d7q
3 + d8q

2 + d9q + d10

d1q4 + d2q3 + d3q2 + d4q + d5
(12)

which is obtained by eliminating y from Equations 6a and

6b. Here, d is made up of the coefficients from Equation 6.



We show only the full expression of d10 which has a special

property in the degenerated case (see Section IV-C).

d10 = −a9b6 + b9a6 (13)

Finally, y can be solved by back-substitutions of x and q into

Equations 5. We also verified with the Gröbner basis [13] that

six solutions is the minimal solution for our parametrization

and choice of the coordinate system of the problem.

C. Degenerated Case
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Fig. 4. Illustration of a degenerated case for the GEC.

Figure 4 shows an illustration of the degenerated case for

the GEC. It happens when all the selected 3-point correspon-

dences are matched locally over the same respective camera

over the loop-closing frames V ′ and V , and the yaw angle

is zero, i.e. q = 0. In this case, we observe that the camera

centers stay the same over the two frames, i.e. t′c = tc,

hence the first and last three terms of the coefficient a9 from

Equation 5 cancel out, i.e. a9 = 0. Similarly, b9 = 0 and

c9 = 0. We immediately see from Equation 13 that the

coefficients d10 = 0, and Equation 12 becomes d5x = 0.

This means that x and y cannot be uniquely identified.

We observed experimentally that it is very rare for the

yaw angle θ to be exactly or very close to zero during loop-

closures for the degeneracy to happen and the overall pose-

graph will not be affected by omitting the loop-closure op-

portunities when the yaw angle is zero. Hence, we disregard

the solution of q = 0 and do geometric verifications for all

other solutions from q 6= 0 when t′c = tc. Note from Equation

5 that q = 0 is always one of the solutions when t′c = tc
since a9 = 0. In this case, no loop-closure opportunities exist

if the solution from q 6= 0 with the highest inlier count does

not pass the geometric verification test. As noted in [11], the

solution does not have any scale ambiguity if it exists.

D. Robust Estimation

We reject outlier point correspondences by putting our

3-point algorithm within RANSAC [12]. Similar to our

previous work [17], we do this by checking the Sampson

error [9] for each point correspondence in the respective

camera where the essential matrices can be computed from

the hypotheses of the relative motion R and t between the

loop-closing frames V ′ and V , and the extrinsics TCi
of

the camera. We also determine the correct solution from

the multiple solutions of the 3-point minimal problem by

counting the number of inlier within RANSAC. The correct

solution gives the highest number of inliers.

The number of iterations m needed in RANSAC is given

by m = ln (1−p)
ln (1−υn) where n is the number of correspondences

needed to form the hypothesis, p is the probability that all

selected features are inliers and υ is the probability that any

selected correspondence is an inlier. Assuming that p = 0.99
and υ = 0.5, a total of 34 iterations are needed for our 3-

point algorithm which is a significant improvement in terms

of computational efficiency compared to the 6-point, 16-point

and 17-point algorithms which need 292, 301802 and 603606

iterations respectively.

V. RESULTS

(a) (b)

(c) (d)

Fig. 5. Images from the four cameras with fish-eye lens on the car. (a)
Front, (b) Rear, (c) Left, (d) Right.

We implement our structureless loop-closure algorithm on

the multi-camera system mounted on the car shown in Figure

1. Our multi-camera system consists of four cameras with

fish-eye lens looking front, rear, left and right. Figure 5

shows an example of the images captured from the cameras.

We calibrate the intrinsics of the fish-eye cameras with [19]

and the extrinsics are provided by the car manufacturer.

The full pipeline which includes formation of the pose-

graph, place recognition, 3-Point RANSAC and geometric

verification is running at approximately 8 fps on a Intel

Core2 Quad CPU @ 2.40GHz × 4 with 4G of memory

and GeForce GTX 285 GPU. The run-time can be further

optimized by replacing the GPU SURF features that we

are currently using with a more efficient feature such as

ORB [20]. We implement the robust pose-graph optimization

with the Google Ceres solver 1. We show results from three

datasets - (1) ParkingGarage01, (2) ParkingGarage02 and

(3) Campus01. The pose-graphs of ParkingGarage01 and

ParkingGarage02 are formed from wheel odometry and the

1http://code.google.com/p/ceres-solver/
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Fig. 6. Pose-graph of the ParkingGarage01 dataset from wheel odometry (red) before pose-graph optimization. Comparison on the total loop-closure
edges (green) found from (a) a forward looking monocular camera and (b) our multi-camera system.

pose-graph of Campus01 is formed from visual odometry

[17].

Fig. 7. Pose-graph for ParkingGarage01 dataset after pose-graph optimiza-
tion (red) compared with trajectory from GPS/INS (blue) overlaid on the
satellite image.

Figures 6 and 7 show the results of our algorithm on

the ParkingGarage01 dataset. This dataset consists of a total

of 12000 frames, i.e. 12000 × 4 images from all the four

cameras covering approximately 3.5km of trajectory around

a parking garage. The trajectory make a total of 4 outer and

6 nested loops. We process the dataset at a 3 frames interval

and the pose-graph is formed with the wheel odometry read-

ings (red). Figure 6 shows a comparison of the total number

of loop-closure edges (green) detected by the monocular

front camera in Figure 6(a) and the multi-camera system

in Figure 6(b) before pose-graph optimization. Our multi-

camera system successfully detected 1352 loop-closure edges

which is more than twice the total of 652 loop-closure edges

detected by the monocular front looking camera. We compute

the loop-constraints with metric scale with our algorithm

without the need to reconstruct any 3D scene points which

is impossible for the monocular camera. Figure 7 shows

the pose-graph after pose-graph optimization. We show the

accuracy of the pose-graph after pose-graph optimization by

plotting it with the GPS/INS ground truth overlaid on the

satellite image. It can be seen that the pose-graph after pose-

graph optimization follows the GPS/INS ground truth very

closely. Note that we use the robust pose-graph optimization

[14] to remove the detrimental effects of outliers and noise.

Figures 8 and 9 show the results of our algorithm on the

ParkingGarage02 dataset. This dataset consists of a total of

7084 frames, i.e. 7084 × 4 images from all the four cameras

covering approximately 1km of trajectory around a parking

garage (a different parking garage from the ParkingGarage01

dataset). The trajectory made a total of 1 outer and 7 nested

loops. Similar to the ParkingGarage01 dataset, we process

the dataset at a 3 frames interval and form the pose-graph

with the wheel odometry readings (red). Figure 8 shows a

comparison of the total number of loop-closure edges (green)

detected by the monocular front camera in Figure 8(a) and

the multi-camera system in Figure 8(b) before pose-graph

optimization. Our multi-camera system successfully detected

642 loop-closure edges which is more than twice the total

of 309 loop-closure edges detected by the monocular front

looking camera. We noticed that most of the additional loop-

closure edges that were detected from our multi-camera

system came from frames where the current frame and loop-

closure frame are facing opposite directions. In these cases,

the monocular front camera which has a limited field-of-

view would not be able to detect any loop-closure. Note that

this would also be true for a stereo camera. Figure 9 shows

the pose-graph after pose-graph optimization. Similar to the

ParkingGarage01 dataset, we show the accuracy of the pose-

graph after pose-graph optimization by plotting it with the

GPS/INS ground truth overlaid on the satellite image. It can
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Fig. 8. Pose-graph of the ParkingGarage02 dataset from wheel odometry (red) before pose-graph optimization. Comparison on the total loop-closure
edges (green) found from (a) a forward looking monocular camera and (b) our multi-camera system.

be seen that the pose-graph after pose-graph optimization

follows the GPS/INS ground truth very closely.

Fig. 9. Pose-graph for ParkingGarage02 dataset after pose-graph optimiza-
tion (red) compared with trajectory from GPS/INS (blue) overlaid on the
satellite image.

Figures 10 and 11 show the results of our algorithm on

the Campus01 dataset. This dataset consists of a total of

4460 frames, i.e. 4460 × 4 images from all the four cameras

covering approximately 900m of trajectory along a stretch of

road within the ETH campus. The trajectory made a total of 6

loops in the shape of “∞”. We process all the 4460 frames

and form the pose-graph with visual odometry (red) from

multi-camera based on our previous work [17]. Note that the

visual odometry based on [17] is also computed without the

need to reconstruct any 3D scene points. Figure 10 shows a

comparison of the total number of loop-closure edges (green)

detected by the monocular front camera in Figure 10(a)

and the multi-camera system in Figure 10(b) before pose-

graph optimization. Our multi-camera system detects 2258

loop-constraints while the front-looking monocular camera

detects 2098 loop-constraints. In this case, the high number

of loop-constraints detected by the front-looking camera is

because most of the loop-closure paths are facing the same

directions. Figure 11 shows the pose-graph after pose-graph

optimization. Since we do not have the GPS/INS ground

truth for this dataset, we do triangulation for the 3D scene

points from the poses obtained after pose-graph optimization

and overlaid these points on the satellite image to show the

accuracy. It is important to note that these 3D scene points

are purely for visualization of the accuracy of our algorithm

and they are not used at all in the computation of the loop-

closure constraints.

VI. CONCLUSION

In this paper, we proposed an algorithm to compute the rel-

ative pose with metric scale between two loop-closing pose-

graph vertices directly from the epipolar geometry of a multi-

cameras system with non/minimal overlapping field-of-views

mounted on a self-driving car without the need to compute

any 3D scene points. As a result, we avoid the additional

time complexities and uncertainties from the reconstruction

of 3D scene points which are needed by standard monocular

and stereo approaches. We derived the minimal solution

which requires 3-Point correspondences and showed that

our 3-Point minimal solution can be implemented efficiently

with RANSAC for robust estimation. We also showed that

the greater flexibility in choosing a configuration for the

multi-camera system to allow wider field-of-views resulted

in finding more loop-closure constraints as compared to a

single front-looking camera. We evaluated our algorithm with

multiple large-scale datasets and the results clearly showed

the viability of our algorithm.
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