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Abstract— A potential loop-closure image pair passes the
geometric verification test if the number of inliers from the
computation of the geometric constraint with RANSAC exceed
a pre-defined threshold. The choice of the threshold is critical
to the success of identifying the correct loop-closure image
pairs. However, the value for this threshold often varies for
different datasets and is chosen empirically. In this paper, we
propose an unsupervised method that learns the threshold for
geometric verification directly from the observed inlier counts
of all the potential loop-closure image pairs. We model the
distributions of the inlier counts from all the potential loop-
closure image pairs with a two components Log-Normal mixture
model - one component represents the state of non loop-closure
and the other represents the state of loop-closure, and learn
the parameters with the Expectation-Maximization algorithm.
The intersection of the Log-Normal mixture distributions is the
optimal threshold for geometric verification, i.e. the threshold
that gives the minimum false positive and negative loop-
closures. Our algorithm degenerates when there are too few
or no loop-closures and we propose the χ2 test to detect this
degeneracy. We verify our proposed method with several large-
scale datasets collected from both the multi-camera setup and
stereo camera.

I. INTRODUCTION

Loop-closure for Simultaneous Localization and Mapping
(SLAM) refers to the problem of detecting whether the robot
at its current location sees a previously visited location and
the computation of the geometric constraint that relates these
two locations. In the recent years, many works [1]–[5] have
demonstrated the effectiveness of using a camera to do place
recognition for loop-closure detection. These works made
used of the vocabulary-tree [6] that consists of the training
and query phases. In the training phase, the vocabulary-tree
is trained offline with image features such as the SURF [7]
extracted from a given set of training images. In the query
phase, a database is built from the unique IDs assigned to
the query images and the extracted image features according
to the pre-trained vocabulary-tree in the form of an inverted
file for efficient retrieval. The database is queried with the
image features extracted from the current query image and
the output is the image ID from the database with the highest
similarity score. The current query image and the image from
the database with the highest similarity score form a potential
loop-closure image pair.

The selection of the potential loop-closure image pair with
the vocabulary-tree is purely based on the appearance sim-
ilarity between the images and does not take the geometric
relation between the images into account. As a result, an
additional step of geometric verification is taken to determine
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Fig. 1. (a) An example distribution of the all the inlier count from the
geometric verifications. (b) Two components Log-Normal mixture model
and geometric verification threshold learned from the inlier counts. (c)
GPS/INS ground truth distribution of the loop-closure and non loop-closure
inlier counts.

the correctness of each potential loop-closure image pair.
Geometric verification refers to the process of checking the
consistency of the feature correspondences between the im-
age pairs. This is achieved by counting the number of inliers
from the computation of the geometric constraint between
each potential loop-closure image pair with RANSAC [8].
The 5-point [9] and 8-point [10] algorithms are commonly
used to compute the geometric constraint between an image
pair from a monocular camera. Similarly, the absolute ori-
entation algorithm [11] is used for stereo cameras, and the
3-point [5] and pose estimation [12] algorithms for multi-
camera setups. A potential loop-closure image pair with the



number of inliers from the geometric constraint computation
exceeding a pre-defined threshold is selected as the loop-
closure image pair. The choice for this threshold is critical
to the success of identifying the correct loop-closures. A
threshold which is too high results in missing out many
correct loop-closure image pairs while a threshold which is
too low results in many false positives. However, there is no
fixed value for this threshold as it often varies with different
datasets. The value for the threshold is also unknown and
has been chosen empirically in the existing works for visual-
based loop-closures [1]–[5].

In this paper, we propose an unsupervised method that
learns the threshold for geometric verification directly from
the observed geometric verification inlier counts for all
the potential loop-closure image pairs. We observed that
the inlier counts from all the potential loop-closure image
pairs, normalized with the maximum inlier count, can be
approximated with a two components Log-Normal mixture
distribution. An example of the distribution is shown in
Figure 1(a). Each component represents the state of loop-
closure or non loop-closure. The normalized inlier counts
are the observed variables and we use the Expectation-
Maximization (EM) algorithm to learn the hidden variables
representing the parameters of the mixture model, and the
latent variables representing the state of loop-closure or non
loop-closure. The intersection of the Log-Normal mixture
distributions is the optimal threshold for geometric verifica-
tion, i.e. the threshold that gives the minimum false positive
and negative loop-closures. Figure 1(b) shows an example of
the learned model and Figure 1(c) shows the ground truth
from GPS/INS. Our algorithm degenerates when there are
too few or no loop-closures and we propose the χ2 test to
detect this degeneracy. We verify our proposed method with
several large-scale datasets collected from both the multi-
camera setup and stereo camera.

II. UNSUPERVISED LEARNING OF THE THRESHOLD

Let us denote the robot poses as X = [x1, x2, ..., xt]
T

and the N potential loop-closure pose pairs as X =
[..., {xi, xj}n, ..., {xi, xj}N ]. The potential loop-closure
pose pairs X are the pose pairs with the most similar image
pairs detected by the vocabulary-tree, i.e. {xi, xj}n is the nth

pose pair where the query image taken at xi is most similar
to the image at xj from the vocabulary-tree database. Let
L = [l1, l2, ..., lN ] where ln ∈ {0, 1} denote the actual loop-
closure state, i.e. ln = 1 if the correspondence loop-closure
robot pose pair {xi, xj}n is truly a loop-closure pair and vice
versa. We further let V = [v1, v2, ..., vN ] denote the inlier
counts from the geometric verification of all the potential
loop-closure image pairs. Each of the value vn is normalized
with the maximum value from V , i.e. V = V

max(V ) . The
normalization step makes it easier to model the distribution
of the inlier counts since it is now within the range of 0 to
1.

A. Learning Mixture Model Parameters with EM
Assuming that each vn is drawn independently, we can

write the joint probability distribution of L and V as a two
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Fig. 2. Graphical model representing the threshold learning problem.

components Log-Normal mixture model given by

p(V,L|µ,Σ, π) =

N∏
n=1

2∏
k=1

(πklnN (vn |µk ,Σk ))Ln,k (1)

where µ = [µ1, µ2], Σ = [Σ1,Σ2] and π = [π1, π2] are the
means, standard deviations and mixing coefficients of the
Log-Normal mixture model. Note that the mixing coefficients
must sum to 1, i.e. π1 +π2 = 1. Figure 2 show the graphical
model that represents the joint probability p(V,L|µ,Σ, π)
where V is the observed variable, L is the latent variable
and µ, Σ and π are the hidden variables. We shall denote
the hidden variables jointly as φ = [µ,Σ, π]. The task is to
find the hidden variables φ that maximizes the log likelihood
ln p(V |φ) given as

argmax
φ

ln p(V |φ) = argmax
φ

ln{
∑
L

p(V,L|φ)} (2)

which involves marginalizing out the latent variable L. One
way to find the maximum likelihood in Equation 2 is by using
the EM algorithm which iterates between the Expectation and
Maximization steps. In the Expectation step, the posterior
distribution p(L|V, φ′) is computed based on the hidden
variables φ′ computed from the previous Maximization step.
The posterior p(L|V, φ′) is a N × 2 matrix with each entry
given by T (Ln,k), where n = 1, 2, ..., N and k = 1, 2.

T (Ln,k) = p(Ln,k|vn, φ′) =
πklnN (vn |µk ,Σk )∑2
j=1 πj lnN (vn |µj ,Σj )

(3)

The posterior probability T (Ln,k) is used to evaluate the
expectation of the log likelihood of the joint probability
p(V,L|φ) given by

Q(φ, φ′) =
∑
L

p(L|V, φ′) ln p(V,L|φ)

=

N∑
n=1

2∑
k=1

T (Ln,k){lnπk + ln lnN (vn |µk ,Σk )}

(4)

In the Maximization step, we compute the current values of
the hidden variable φ by maximizing the expectation from
Equation 4.

argmax
φ

Q(φ, φ′) (5)

The Maximization step given by Equation 5 can be ex-
pressed in closed-form by setting the partial differentiation
of Q(φ, φ′) with respect to the individual variables in φ to
0 and enforcing the constraint of π1 + π2 = 1. This gives



µk =

∑N
n=1 T (Ln,k) ln (vn)∑N

n=1 T (Ln,k)
(6a)

Σk =

∑N
n=1 T (Ln,k)(ln (vn)− µk)2∑N

n=1 T (Ln,k)
(6b)

πk =

∑N
n=1 T (Ln,k)

N
(6c)

The EM steps are iterated until convergence, i.e. there is
minimal or no more changes to the hidden variables µk, Σk
and πk.

B. Solving for the Threshold

The parameters of the two components Log-Normal mix-
ture distribution which we have solved with the EM al-
gorithm models the distributions of the inlier counts from
the non loop-closure and loop-closure image pairs. The
intersection point vT of the two Log-Normal distributions
defines the point where vn < vT is the region with a
higher probability of non loop-closure, i.e. ln = 0. Similarly,
vn > vT defines the region with a higher probability of loop-
closure, i.e. ln = 1. We solve for the threshold vT by finding
the root of the difference in the two Log-Normal distributions

f(v) = π1lnN (v |µ1 ,Σ1 )− π2 lnN (v |µ2 ,Σ2 ) = 0 (7)

Since f(v) is a non-linear function, we solve for the root
with the Brent’s method [13] which by default uses the less
robust but faster Secant method to iteratively search for the
root and fall back to the slower but more robust Bisection
method if needed. Finally, we compute the threshold for
geometric verification as TGV = max(V )vT after denor-
malization.

C. Degenerated Case

Our algorithm for unsupervised learning of the threshold
for geometric verification degenerates when there is too few
or no loop-closures. In this case, there is only one dominant
Log-Normal distribution from the non-loop closure inlier
counts. The EM algorithm would not be able to detect the
missing Log-Normal distribution that represents the loop-
closure in the degenerated case. We propose to detect the
degeneracy by performing the χ2 test on the optimization
results after SLAM optimization. Intuitively, a degenerated
case includes wrong loop-closure constraints which causes
wrong convergence in the optimization. As a result, the total
Mahalanobis distance D2 after optimization is high and will
fail the χ2 test.

A popular approach to perform the optimization with
the loop-closure constraints is the pose-graph SLAM which
represents the SLAM problem as a graph. The pose-graph
SLAM optimization minimizes the errors between the pre-
dicted poses X = [x1, ..., xi, ...xj , ...xt]

T represented by
the vertices and the K set of measured constraints Z =
[..., zi,j , ...]

T represented by the edges given by

argmin
X

∑
K∈{i,j}

||zi,j − h(xi, xj)||2Qi,j
(8)

where h(.) is the function which computes the relative
transformation between two given poses xi and xj , and Qi,j
is the error covariance of the measurement zi,j . The total
Mahalanobis distance D2 of the optimized poses X∗ =
[x∗1, ..., x

∗
i , ...x

∗
j , ...x

∗
t ]
T which reflects the “goodness-of-fit”

is given by

D2 =
∑
K∈{i,j}

||zi,j − h(x∗i , x
∗
j )||2Qi,j

(9)

We compare the Mahalanobis distance D2 with the critical
value χ2

K,α of the χ2 distribution where K is the degree
of freedom which is equal to the number of measured
constraints, and α is the significance level, i.e. there is a
probability of α that D2 would be greater than the critical
value χ2

K,α by chance. α is usually set at 0.05 or 0.025.
A degenerated case is detected when the total Mahalanobis
distance is higher than the critical value, i.e. D2 > χ2

K,α.

D. Summary

Fig. 3. Initial two components Log-Normal mixture distribution.

Algorithm 1 shows the pseudo-code of our algorithm for
unsupervised learning of the threshold for geometric verifi-
cation. The input is the inlier counts V = [v1, v2, ..., vN ]
from all the potential loop-closure image pairs generated
by the vocabulary-tree. The output is the threshold TGV
for geometric verification. Line 2 normalizes V with its
maximum value so that the values lie in the range of 0 to 1.
Line 4 initializes the parameters φ from the two components
Log-Normal mixture distribution. The mixing coefficients π
are initialized to 0.5 which give the two components of the
Log-Normal distribution equal weights. Figure 3 shows the
initial Log-Normal mixture distribution with means µ =
[−2, 1] and standard deviations Σ = [1, 1]. The non loop-
closure Log-Normal distribution has a high peak at 0.05 and
a long tail with values close to 0. In comparison, the loop-
closure Log-Normal distribution is distributed more evenly
with lower values near the peak and higher values at the tail
region. We chose this initial distribution that is close to the
final solutions, where there is always a higher occurrence
of low inlier counts which are non loop-closure and higher
occurrence of high inlier counts which are loop-closure.

Lines 7 to 31 are the EM loop which terminates when
the change in φ is small. Lines 10 to 20 are the Expectation



Algorithm 1 Unsupervised Learning of Threshold for Geo-
metric Verification.
Require: Inlier counts V = [v1, v2, ..., vN ] from all the

potential loop-closure image pairs.
Ensure: Threshold for geometric verification TGV .

1: // Normalize inlier count list
2: V = V

max(V ) ;
3: // Parameters initialization
4: µ = [−2.0, 1.0]; Σ = [1.0, 1.0]; π = [0.5, 0.5];
5: φ = [µ,Σ, π]; φ′ = 0;
6: // EM algorithm
7: while |φ′ − φ| > δ do
8: φ′ = φ;
9: // Expectation step, Equation 3

10: for n = 1 to N do
11: // Compute denominator of Equation 3
12: Zn = 0;
13: for j = 1 to 2 do
14: Zn = Zn +

π′
j

vnΣ′
j

√
2π

exp(− (ln(vn)−µ′
j)2

2Σ
′2
j

);
15: end for
16: for k = 1 to 2 do
17: // Compute posterior probability T (Ln,k)

18: T (n, k) =
π′
k

ZnvnΣ′
k

√
2π

exp(− (ln(vn)−µ′
k)2

2Σ
′2
k

);
19: end for
20: end for
21: // Maximization step, Equation 6
22: for k = 1 to 2 do
23: µk = 0; Σk = 0; πk = 0;
24: for n = 1 to N do
25: µk = µk + T (n, k) ln(vn);
26: Σk = Σk + T (n, k)(ln(vn)− µk)2;
27: πk = πk + T (n, k);
28: end for
29: µk = µk

πk
; Σk = Σk

πk
; πk = πk

N ;
30: end for
31: end while
32: Solve for the root vT in Equation 7.
33: TGV = max(V )vT ; // Denormalization
34: return TGV ;

step where the posterior distribution T (Ln,k) is computed,
and Lines 22 to 30 are the Maximization step where the
parameter φ is updated. Line 32 solves for the intersection
of the two Log-Normal distributions and Line 33 does
denormalization to compute the threshold TGV .

III. RESULTS

We verify our proposed algorithm with several large-scale
real-world datasets - two datasets from a multi-camera setup
and one dataset from a stereo camera. We chose the multi-
camera and stereo setups because these two setups allow us
to compute the loop-closure constraint with metric scale [5].
We show the χ2 test results for all the three datasets. In
addition, we show an example of the degenerated case and
its detection with the χ2 test.

A. Multi-Camera System

Fig. 4. Our car equipped with a multi-camera system with minimal
overlapping field-of-views and GPS/INS system for ground truth.

(a)

(b)

(c)

Fig. 5. Wolfsburg dataset with a multi-camera system. (a) Distribution
of the all the inlier counts from the geometric verifications. (b) Two com-
ponents Log-Normal mixture model and geometric verification threshold
learned from the inlier counts. The threshold is 220 after denormalization.
(c) Ground truth distribution from INS/GPS.

Figure 4 shows the car platform we used to collect the
datasets. The car is equipped with four fish-eye cameras
looking front, left, rear and right with minimal overlapping
field-of-views. The car is also equipped with wheel odometry
and INS/GPS system for ground truth. The first dataset -
the Wolfsburg dataset was collected by driving the car along
public roads in Wolfsburg Germany where it is largely urban
scenes. The Wolfsburg dataset consists of a total of 13250×4
images from a trajectory that spans across approximately
9 km forming two large closed loops. We form the pose-
graph with the wheel odometry readings. The loop-closure
candidates are found from the vocabulary-tree as mentioned
in Section I and the loop-closure constraints are computed
with the 3-point algorithm described in [5]. Similar to [5],
we maintain only one vocabulary-tree for all the cameras
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Fig. 6. Results from the Wolfsburg dataset. (a) Pose-graph from wheel odometry trajectory (red) with all the detected loop-closures (green). (b) Pose-graph
from wheel odometry (red) with the loop-closures (green) after applying the geometric verification threshold learned from our algorithm. (c) Final result
after pose-graph optimization (red) compared with the INS/GPS ground truth (blue).

from our multi-camera system. We do so by assigning unique
image IDs given by imageID = frameID × n + cameraID,
where n is the total number of cameras in the multi-camera
system.

(a)

(b)

(c)

Fig. 7. Carpark dataset with a multi-camera system. (a) Distribution of the
all the inlier counts from the geometric verifications. (b) Two components
Log-Normal mixture model and geometric verification threshold learned
from the inlier counts. (c) Ground truth distribution from INS/GPS.

Figure 5(a) shows the distribution of the normalized inlier
counts obtained from the computations of the geometric
constraints with the 3-point algorithm for the Wolfsburg
dataset. Figure 5(b) shows the two components Log-Normal
mixture distribution learned from the observations in Figure

5(a) with our proposed algorithm. The intersection of the
two Log-Normal distributions is found to be 0.1048, which
is 220 after denormalization. Figure 5(c) shows the ground
truth distribution from the INS/GPS. We can see that the in-
tersection of the two distributions is very close to the estimate
we have obtained from our algorithm. Figure 6(a) shows the
pose-graph from wheel odometry (red) with all the detected
loop-closures (green) from the vocabulary-tree where there
are many wrong loop-closures. Figure 6(b) shows the pose-
graph with the loop-closures after applying the geometric
verification threshold learned from our algorithm where
majority of the wrong loop-closures are removed. Figure 6(c)
shows the pose-graph (red) after optimization overlaid on the
satellite image. We apply the robust pose-graph optimization
proposed in [14] to minimize the effects of the a small
number of non-loop closures with higher inlier count than
the threshold. We compare the estimated pose-graph with
the INS/GPS ground truth (blue) where we can see that our
estimated pose-graph is sufficiently close to the ground truth.

We apply our algorithm on another dataset - the Carpark
dataset collected from the same car with the multi-camera
setup. The dataset was collected by driving the car around
a huge car park besides an office building. A total of
12000× 4 images are collected over a trajectory that spans
across approximately 3.5 km forming 3 large and 6 nested
loops. Figure 7(a) shows the distribution of the normal-
ized inlier counts obtained from the computations of the
geometric constraints with the 3-point algorithm for the
Carpark dataset. Figure 7(b) shows the two components Log-
Normal mixture distribution learned from the observations
from Figure 7(b) with our algorithm. The intersection of
the two Log-Normal distributions is found to be 0.2168,
which is 277 after denormalization. Figure 7(c) shows the
ground truth distribution from the INS/GPS. We can see that
the intersection of the two distributions is very close to the
estimate we have obtained from our algorithm. It is important
to note that that the threshold for geometric verification for
the datasets differs slightly even though they are collected
from the same platform. This explains our approach to learn
the threshold from each dataset in a batch process for the
best results. However, it is also possible to take the most
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Fig. 8. Results from the Carpark dataset. (a) Pose-graph from wheel odometry trajectory (red) with all the detected loop-closures (green). (b) Pose-graph
from wheel odometry (red) with the loop-closures (green) after applying the geometric verification threshold learned from our algorithm. (c) Final result
after pose-graph optimization(red) compared with the INS/GPS ground truth (blue).

conservative threshold, i.e. highest threshold learned from
multiple datasets collected from the same platform and use
it for online geometric verifications.

Figure 8(a) shows the pose-graph from wheel odometry
(red) with all the detected loop-closures (green) from the
vocabulary-tree where there are many wrong loop-closures.
Figure 8(b) shows the pose-graph after applying the geomet-
ric verification threshold learned from our algorithm where
majority of the wrong loop-closures are removed. Figure
8(c) shows the final pose-graph (red) after robust pose-graph
optimization. We compare the estimated pose-graph with the
INS/GPS ground truth (blue) where we can see that our
estimated pose-graph follows the ground truth very closely.

B. Stereo Camera

(a)

(b)

Fig. 9. New College dataset with a stereo camera. (a) Distribution of the
all the inlier counts from the geometric verifications. (b) Two components
Log-Normal mixture model and geometric verification threshold learned
from the inlier counts.

We also test our algorithm on the New College dataset
[15] which was collected with a stereo camera mounted
on a ground robot. A total of 48241 stereo frames from
a trajectory that spans across approximately 1.25 km are
used. The vocabulary-tree for visual loop-closure is formed
from the left stereo images and the loop-closure constraints
are computed from the absolute orientation algorithm [11].
Figure 9(a) shows the distribution of the distribution of the

normalized inlier counts obtained from the computations
of the geometric constraints with the absolute orientation
for the New College dataset. Note that this distribution is
similar to Figure 5(a) and 7(a) even though a different camera
setup is used. Figure 9(b) shows the two components Log-
Normal mixture distributions learned with our algorithm. The
intersection of the two Log-Normal distributions is found
to be 0.18, which is 76 after denormalization. Figure 10(a)
shows the pose-graph from stereo visual odometry [16]
(red) with all the detected loop-closures (green) from the
vocabulary-tree where there are many wrong loop-closures.
Figure 10(b) shows the pose-graph with the loop-closures
after applying the geometric verification threshold learned
from our algorithm where majority of the wrong loop-
closures are removed. Figure 10(c) shows the pose-graph
after robust robust pose-graph optimization. Although there
is no INS/GPS ground truth for the New College dataset,
we can see that the pose-graph after optimization appears
reasonable with all the deviations in the z-axis removed.

C. Degenerated Case

We show an example of the degenerated case with a
dataset collected from our car platform with the multi-camera
setup. The dataset consists of 1600 × 4 images from a
trajectory that spans across approximately 300 m forming
one loop with the starting and ending points at approximately
the same location. The small number of loop-closures means
that there is not enough information for our algorithm to
learn the threshold correctly. Figure 11(a) shows the pose-
graph from wheel odometry (red) and all the loop-closures
from the vocabulary-tree. Figure 11(b) shows the pose-graph
with the loop-closures after applying the threshold learned
from our algorithm where it is clearly visible that some
wrong loop-closures remain. Figure 11(c) shows the pose-
graph (red) after robust pose-graph optimization compared
with the ground truth (blue). The ground truth is obtained by
performing robust pose-graph optimization on the manually
chosen correct loop-closures. It can be observed that the
estimated pose-graph is slightly distorted by the wrong loop-
closures even after applying the robust optimization because
the ratio of correct to wrong loop-closures is too low.

As mentioned in Section II-C, we do the χ2 test to detect
the degenerated case. Table I shows the χ2 test results for
all the datasets at a significance level α = 0.05. We can
see from the χ2 test results that the first three datasets -



(a) (b) (c)
Fig. 10. Results from the New College Dataset. (a) Pose-graph from visual odometry trajectory (red) with all the detected loop-closures (green). (b)
Pose-graph from visual odometry (red) with the loop-closures (green) after applying the geometric verification threshold learned from our algorithm. (c)
Final result after pose-graph optimization.

Wolfsburg, Carpark and New College pass the χ2 test with
D2 < χ2

α=0.05 while the degenerated dataset fails the χ2 test
with D2 > χ2

α=0.05.

(a)

(b)

(c)

Fig. 11. Results from the Degenerated dataset. (a) Pose-graph from wheel
odometry trajectory (red) with all the detected loop-closures (green). (b)
Pose-graph from wheel odometry (red) with the loop-closures (green) after
applying the geometric verification threshold learned from our algorithm.
(c) Wrong convergence after pose-graph optimization(red) compared with
the ground truth (blue).

IV. CONCLUSION

The threshold for geometric verification is crucial in
identifying the correct loop-closures. However, the threshold
varies for different datasets and has been chosen empirically
in the existing works for visual-based loop-closure. We de-
scribed a method for unsupervised learning of the threshold
for geometric verification in this paper. Our method is based
on the EM algorithm which learns the threshold from the
inlier counts generated from the RANSAC computation of
the geometric constraints between all potential loop-closure
image pairs. We verified our method with multiple large-
scale datasets from both the multi-camera and stereo setups.

TABLE I
χ2 TEST RESULTS FOR THE DATASETS

Dataset DOF χ2
α=0.05 D2

Wolfsburg 12840 1.3105e+04 4.1249e+03
Carpark 17506 1.7815e+04 1.0325e+04

New College 9713 9.9434e+03 644.7097
Degenerated 1589 1.6828e+03 4.8715e+03
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