Infrastructure-Based Calibration of a Multi-Camera Rig

Lionel Heng', Mathias Biirki2, Gim Hee Lee!, Paul Furgale?, Roland Siegwart?, and Marc Pollefeys'

Abstract— The online recalibration of multi-sensor systems
is a fundamental problem that must be solved before complex
automated systems are deployed in situations such as automated
driving. In such situations, accurate knowledge of calibration
parameters is critical for the safe operation of automated
systems. However, most existing calibration methods for multi-
sensor systems are computationally expensive, use installations
of known fiducial patterns, and require expert supervision.
We propose an alternative approach called infrastructure-based
calibration that is efficient, requires no modification of the
infrastructure, and is completely unsupervised. In a survey
phase, a computationally expensive simultaneous localization
and mapping (SLAM) method is used to build a highly accurate
map of a calibration area. Once the map is built, many other
vehicles are able to use it for calibration as if it were a known
fiducial pattern.

We demonstrate the effectiveness of this method to calibrate
the extrinsic parameters of a multi-camera system. The method
does not assume that the cameras have an overlapping field of
view and it does not require an initial guess. As the camera rig
moves through the previously mapped area, we match features
between each set of synchronized camera images and the map.
Subsequently, we find the camera poses and inlier 2D-3D
correspondences. From the camera poses, we obtain an initial
estimate of the camera extrinsics and rig poses, and optimize
these extrinsics and rig poses via non-linear refinement. The
calibration code is publicly available as a standalone C++
package.

I. INTRODUCTION

Many companies are devoting substantial parts of their
budgets to research and development of robots and automated
systems. As a result, in the coming years, we will see a wide-
scale deployment of such systems in consumer-oriented mar-
kets. This raises a number of fundamental problems related
to the long-term autonomy of robotic systems—autonomy
for months at a time without the constant supervision of
experts. Calibration of complex robotic systems is one of
these fundamental problems.

In many automated systems such as autonomous cars or
driver assistance systems, so-called calibration parameters—
transformations between sensors, scale factors, camera lens
parameters, etc.—must be known with a high degree of
precision to ensure safe and robust operation in the presence
of pedestrians and other vehicles. Although systems can be
calibrated in the factory, some parameters will change due to
normal wear and tear during extended operation. Within the
research and development community, calibration and recali-
bration of multi-sensor/multi-actuator systems is a continual

1L. Heng, G.H. Lee, and M. Pollefeys are with the Computer Vision
and Geometry Lab, ETH Ziirich, Switzerland. {hengli@inf.ethz.ch,
gleel@student.ethz.ch, marc.pollefeys.inf.ethz.ch}

2M. Biirki, P. Furgale, and R. Siegwart are with the Autonomous Sys-

tems Lab, ETH Ziirich, Switzerland. {mbuerki@student.ethz.ch,
paul.furgale@mavt.ethz.ch, r.siegwart@ieee.org}

Fig. 1: Our Prius platform equipped with a set of four fish-eye
cameras that provides an all-surround view of the environment. This
paper demonstrates the use of Infrastructure-Based Calibration to
estimate the extrinsic transformations of this multi-camera system
based solely on a pre-existing map. No specialized fiducial markers
such as chessboards are used.

burden that requires expertise, specialized equipment, and
special vehicle motions. Consequently, it is necessary that we
seek robust and accurate online self-calibration algorithms
that require no operator input.

One possibility for calibration of mobile robotic systems
is to build “calibration areas” that include special instrumen-
tation for different sensors, such as known fiducial markings
for cameras or known structural geometry for lasers. The
use of specially designed fiducials can resolve appearance
and geometric ambiguities and reduce the computational
complexity of system calibration. For example, this was the
strategy adopted by Geiger et al. [5] as they were collecting
an extensive multi-sensor dataset over a number of months
[6]. They installed a number of chessboards covering the full
field of view of the cameras and laser scanner and used them
to recalibrate the vehicle before every run of data collection.
As attractive as this method is, it still requires modification of
the infrastructure, which could make deployment on the large
scale complicated and expensive, and represent yet another
barrier to the deployment of autonomous systems.

In this paper, we introduce a method called Infrastructure-
Based Calibration that shares positive aspects with the
above method but relaxes the requirement to modify the
infrastructure. This method leverages on multi-sensor SLAM
to build calibration areas using an already calibrated robotic
system. Although these SLAM-based methods can be com-

putationally expensive, the resulting data may be used for
calibration of any number of other vehicles at a fraction
of the computational cost. Furthermore, we show how a
state-of-the-art self-calibration method [8] requiring special
motions of the vehicle may be used to bootstrap the process,
further reducing the cost of deployment by removing the
need for a specially calibrated survey vehicle. Infrastructure-
based calibration is therefore a both financially and compu-
tationally efficient solution to the continuous unsupervised
calibration of large numbers of automated vehicles.

We demonstrate the accuracy of the method through
the calibration of the vehicle-mounted multi-camera system
shown in Figure 1. Multi-camera setups have seen a rapidly
increasing number of applications, which however, require
an accurate calibration to achieve optimum results. A cal-
ibration is accurate only if the computed camera intrinsics
and extrinsics allow one to relate 2D image points to 3D
scene points with low reprojection error. Environmental
factors such as temperature variations and vibration cause
the camera extrinsics to deviate much more than the camera
intrinsics from their original values over time. Hence, in this
paper, we focus on estimating the camera extrinsics while
assuming that the camera intrinsics stay constant over time.
The camera extrinsics refer to the set of camera poses with
respect to a reference frame located on the rig. If odometry
data is available for the camera rig, we can compute the
transform between the camera rig’s reference frame and the
odometry frame. Examples of odometry sources are wheel
odometry, a GPS/INS system, or a Vicon motion capture
system.

A. Related Work

We focus on existing work that calibrates a multi-camera
rig without assuming overlapping fields of views. A majority
of existing work [11, 12, 13] requires a pattern board. The
additional use of a mirror in Kumar et al. [11] creates a
limitation in which the mirror has to be in the camera’s field
of view, while at the same time, the entire pattern is visible
in the camera. Lebraly et al. [12] uses two pattern boards,
and requires the rig to manoeuvre such that each camera sees
both pattern boards at different times. Li et al. [13] requires
neighboring cameras to see some part of the pattern at the
same time. We note that the use of a pattern board comes
with a constraint that makes calibration of multi-camera rigs
non-straightforward.

We then look at unsupervised methods that do not require
specific calibration patterns. Our approach is most similar to
the works of Carrera et al. [2] and Heng et al. [8] in the
sense that we perform an unsupervised extrinsic calibration
based on natural features in the environment. Carrera et al.
[2] builds a globally consistent sparse feature map for each
camera. Subsequently, feature correspondences are exhaus-
tively found between each pair of maps, and an inlier set
is obtained from the 3D similarity transform together with
RANSAC. At the end, a global bundle adjustment is run
to optimize the camera poses, 3D scene points, and robot
poses. Here, the 3D similarity transform step can fail in

outdoor environments where the majority of natural features
are located far away from the cameras, and their estimated
3D locations can have substantial noise as a result, leading
to few inliers. Heng et al. [8] overcomes this difficulty; for
each image in each camera, they find feature correspondences
between the image and a set of the most recent images from
each of all other cameras. To maximize the number of feature
correspondences, the heading from odometry data is used to
rectify each image pair on a common image plane before
feature matching is done between the rectified images.

We note that since these two SLAM-based works do not
assume a prior map, they have to perform an exhaustive
search of feature correspondences between images from
different cameras, and rely on loop closures which may fail
sometimes. By relying on a pre-existing map, we remove the
need to find inter-camera feature correspondences and loop
closures. Furthermore, we do not have to do global bundle
adjustment. As a result, our infrastructure-based calibration
is simpler, more robust, and requires a much shorter time
compared to the two above-described methods. We can think
of our method as requiring a one-time fixed cost in terms of
map generation but entailing a much lower variable cost per
calibration. Hence, only our method is advantageous if many
calibrations are needed within a short time span.

This statement succinctly describes the motivation behind
our infrastructure-based calibration: “The world is a giant
chessboard.” We use a map of the environment as a virtual
3D chessboard which is used for quickly inferring camera
poses with high accuracy. This can be seen as an analogy
to the ubiquitous method of inferring camera poses via the
use of a chessboard in intrinsic camera calibration. A pre-
verification of the map accuracy and the non-need to find
loop closures maximize the robustness of our calibration
method. There is no perfect robust loop closure framework
as we cannot identify all false loop closures in every possible
scenario.

-

II. PLATFORM

-
— . i

‘\

|

s

|

—_
—— —

|

Fig. 2: The sensor coverage of the car platform. The four fish-eye
cameras are marked in blue.

The platform is a Toyota Prius car that is equipped with 4
mvBlueCOUGAR cameras from Matrix Vision. Each camera
has an image resolution of 1280 x 960 and uses a fish-eye
lens. For synchronous image capture, one camera acts as
a master trigger source for all other cameras. We compute

the odometry in real-time by using the individual wheel
velocities and steering wheel angle to compute the position
and heading of the car.

For purposes of clarity, in subsequent figures, we color all
camera poses and 3D scene points associated to the front,
left, rear, and right cameras as red, green, blue, and yellow
respectively.

ITII. INTRINSIC CAMERA CALIBRATION

We require all cameras to be calibrated before we run our
infrastructure-based calibration method. For each camera, we
perform an intrinsic calibration in which we find the param-
eters for a given camera model. Here, we use the reduced
Kannala-Brandt camera model [10] to model the camera
intrinsics. This camera model consists of 8 parameters: ki,
ko, k3, k4, my, My, Ug, and vg. This reduced model does
not take radial and tangential distortions into account; from
experiments, we find that this model is accurate nevertheless
as we are using high-quality lenses with minimal radial and
tangential distortions.

Given a scene point P = [X Y Z]T, we find its image
coordinates (u, v):

Z
0 = arccos ——

[Pl
Y
¢ = arctan X
r(0) =60+ k103 + ko5 + k367 + ku0° W
x| cos ¢
oo]
U m, 0 ugl| |x
vi=10 m, v Y
1 0 0 1 1

Here, r(0) is the distance between the image point and
principal point on the normalized plane. Inversely, given

an image point p = [u v]T, we find its corresponding ray
(XY zZ)":

x m. 0 g 1Ty

Yyl = 0 ™y Vo v

1 0 0 1 1 (2)

d= /I2+y2

=0+ k10% + ko0® + k307 + kqt®

We solve for 6 using the companion matrix. If there are no
real roots, we use 6 = d.

o if d =0
N arctan £ otherwise

X sin @ cos ¢ 3)
Y| = |sinfsin¢
Z cos 6

We propose an unique method to obtain the parameters
for the reduced Kannala-Brandt model. First, chessboard
detection is performed to find the image coordinates of
all interior corners on the chessboard in each image. This

chessboard corner data is used to compute an initial estimate
of the intrinsic parameters and camera poses. In this initial
estimate, we set k1 = ko = ks = ks =0, my = my, = f,
ug = 5 and vg = % where w and h are the width and height
of the image respectively. Here, we can see that computing
the initial estimate of the intrinsic parameters only requires
us to estimate the value of f which is the focal length.
The initial estimate transforms the reduced Kannala-Brandt
model into the well-known equidistant fish-eye model, and
allows us to use existing calibration methods for equidistant
fish-eye models.

From Hughes et al. [9], we see that for a equidistant fish-
eye model, if we fit a circle through the corners of each
row of the chessboard in one image, all the resulting circles
intersect at two vanishing points v; and vs. We can then
find f = @ For each chessboard image, we obtain
a hypothesis for f, and we choose the value of f to be
that of the best hypothesis which corresponds to the lowest
sum of all reprojection errors. We infer the camera poses by
solving the PnP problem using 2D-3D correspondences. We
then optimize the intrinsic parameters and camera poses via
non-linear refinement in which we minimize the sum of all
reprojection errors.

In our calibration pipeline, other camera models such as
the pinhole model and the unified projection model can also
be used. The Kannala-Brandt model is able to model a fish-
eye camera more accurately when compared to the unified
projection model due to the higher number of parameters,
but at the cost of increased computation due to the higher
computational complexity of backprojection. As a result,
the Kannala-Brandt model is recommended for applications
which do not have real-time requirements.

IV. INFRASTRUCTURE-BASED CALIBRATION

At the beginning, we build a sparse feature map of the
environment in which calibration is conducted. We use this
map as the basis for multiple calibrations as long as the
environment does not change substantially. In addition, we
assume that the cameras used in the calibration have been
calibrated. Before we start the calibration, we log synchro-
nized images from all cameras as the rig moves through
the environment. We also log odometry data if such data is
available. We then run a pipeline which processes the logged
data, and estimates the camera extrinsics with respect to a
designated reference frame located on the camera rig. The
pipeline first infers camera poses via visual localization, and
subsequently, an initial estimate of the camera-rig transforms
and rig poses. In turn, a non-linear refinement step optimizes
the camera-rig transforms and rig poses. If odometry data is
available, we find the transform between the camera rig’s
reference frame and the odometry frame by using a hand-
eye calibration method, and subsequently obtain the camera-
odometry transforms. We show a diagram of the pipeline in
Figure 3, and describe each step of the pipeline in detail
below.

Map l
[Visual Localization]

Camera Poses l

Infer Camera Extrinsics
and Rig Poses

Camera - Rig Transforms l Rig Poses

[Non-Linear Refinement H Hand-Eye Calibration]

Camera —Rig Transforms l

Camera — Odometry Transforms l

Fig. 3: A sparse feature map and images are input to the
infrastructure-based calibration pipeline which generates the camera
extrinsics.

A. Building A Sparse Feature Map

A standard structure-from-motion implementation can be
used to build a sparse feature map. An example of such
an implementation is Wu [16]. Furthermore, we can use a
different camera setup such as a stereo camera to build the
map. This map is a graph data structure in which a node can
be either an image, a 2D feature point, or a 3D scene point.
Edges link an image to 2D feature points that are detected
in that image. In addition, an edge links a 2D feature point
to a corresponding 3D scene point.

After the map is generated, we build a vocabulary tree by
converting each image in the map to a bag-of-words vector
and adding this vector to the vocabulary tree.

B. Visual Localization

The visual localization step takes images from the multi-
camera system and the sparse feature map as input, and
outputs camera poses with respect to the map’s reference
frame. Visual localization allows us to infer the camera
poses for a given set of frames captured simultaneously from
all cameras. First, for each image, we use the vocabulary
tree to find n most similar images. For each candidate,
we obtain 2D-2D feature correspondences from matching
features between the query image and the candidate using
the well-known distance ratio. As the feature points in the
candidate image already have corresponding 3D scene points
from the sparse feature map, it is trivial to obtain 2D-3D
feature correspondences. We use the EPnP method [15] to
find the camera pose together with the inlier set of 2D-3D
feature correspondences. For the query image, we choose
the camera pose associated with the candidate which has the
highest number of inlier 2D-3D feature correspondences. The
camera pose is defined to be unknown if the highest number
of inlier correspondences does not exceed a threshold, which
in our case, is 25. We store the set of camera poses if the
following two conditions are met:

1) if at least 2 camera poses are found, and

2) the minimum distance between the current camera pose
and the previous camera pose over all cameras exceeds
a threshold, which in our case, is 0.3 m.

The former condition is necessary for the set of camera
poses to be useful for calibration, and the latter condition
minimizes bias by avoiding situations where the majority of
sets of camera poses is concentrated in a few locations. These
situations occur when the car is at a standstill or moving
slowly.

C. Inferring Camera Extrinsics and Rig Poses

In this step, we use the sets of camera poses inferred from
visual localization to infer the camera-rig transforms and the
rig poses. Since the cameras are rigidly fixed to the rig, we
express each set of camera poses at any point of time as a
function of the rig pose at that time and the camera extrinsics.
Here, the camera extrinsics comprise a rigid body transform
from each camera’s reference frame to the rig’s reference
frame.

When computing an initial estimate of the rig poses, we
choose the reference frame of the rig to be aligned with that
of the first camera without loss of generality. However, the
rig’s reference frame may not necessarily be aligned with the
first camera’s reference frame at the end of the non-linear
refinement step.

We only use complete sets of camera poses to estimate
the camera extrinsics. A set of camera poses at any time is
considered to be complete if the poses for all cameras can
be estimated from the images captured at that time. For each
complete set of camera poses, we compute a hypothesis of
the camera extrinsics. We use this hypothesis to compute
the rig poses. In each set of n camera poses in which the
pose for the first camera may not be available, we use the
hypothesis of the camera extrinsics to compute n estimates of
the rig poses. We obtain the rig pose by using the quaternion
averaging method [14] to obtain the average rotation, and
simple averaging to obtain the average translation. We choose
the best hypothesis of the camera extrinsics that minimizes
the average reprojection error over all images. This best
hypothesis also gives us the rig poses.

D. Non-Linear Refinement

In this step, we minimize the sum of all reprojection errors
by optimizing the camera extrinsics and the rig poses while
keeping the coordinates of all 3D scene points fixed.

Formally, we solve the optimization problem:

Q%ZP(HW(CC;Pi;TmXP)*pcisz) (4)
C,%,p

m is a projection function that predicts the image co-
ordinates of the scene point X, seen in camera c given
the camera’s intrinsic parameters C., the rig pose P;, and
the rigid body transformation from the camera to the rig’s
reference frame 7. p.;, is the observed image coordinates
of X, seen in camera c with the corresponding rig pose F;.
p is a robust cost function used for minimizing the influence

of outliers. We use the Cauchy cost function in this case.

E. Hand-Eye Calibration

If odometry data is available, we can optionally choose
to obtain the rig-odometry transform, and thus, the camera-
odometry transforms. Otherwise, we skip this step, and
output the resulting camera-rig transforms.

We compute the rig-odometry transform by finding a least-
squares solution to the hand-eye calibration problem that
relates relative rig motions to relative odometry motions.
In the case of 6-DoF motion of the camera rig, we use
the dual quaternion approach [3] to find the rig-odometry
transform. In the case of planar 3-DoF motion, we use the
method described in Guo et al. [7] to obtain the rig-odometry
transform.

V. IMPLEMENTATION

In our implementation, we use SURF! to detect features
and compute their descriptors. The CamOdoCal library [8] is
used to build a sparse feature map for the infrastructure-based
calibration. We use the DBoW?2 implementation [4] of the
vocabulary tree. Non-linear refinement is implemented using
the Ceres library [1].

VI. EXPERIMENTS AND RESULTS

We verify the accuracy and repeatability of our
infrastructure-based calibration via real-world experiments in
both an indoor parking garage and outdoor urban environ-
ment on the ETH campus. Figure 5 shows images of both
areas taken by the front camera. We design our experiments
to demonstrate that our infrastructure-based calibration ex-
hibits a high level of accuracy in both indoor and outdoor
environments in the presence of moving cars and pedestrians.

Before we conduct the experiments, we use the CamOd-
oCal pipeline to build a sparse feature map for both areas
with initial unknown extrinsics as shown in figures 6a and
7a. To determine the accuracy of our estimated camera ex-
trinsics, we compare the estimated camera extrinsics against
those estimated by CamOdoCal. We first compute the pose of
each camera with respect to the first camera for both sets of
extrinsics. Then, we use these relative poses to compute the
rotation error and two types of translation errors: the angle
between the two translation vectors, and the norm of the
difference between the two translation vectors. These three
errors are used to give a qualitative measure of the accuracy
of the camera extrinsics estimated by our infrastructure-based
calibration method.

In one indoor experiment, figure 6b shows the subset of
scene points that are from the sparse feature map and used for
the calibration. Furthermore, the figure shows the estimated
camera poses which are used to infer the camera extrinsics.
Similarly, for one outdoor experiment, the scene points and
camera poses are shown in figure 7b.

A. Experiment — Indoor Parking Garage

In this experiment, the Prius is driven along one loop with
the same camera configuration that was used to generate the

http://docs.opencv.org/modules/nonfree/doc/
feature_detection.html

TABLE I: Indoor experiment: comparison of extrinsics estimated
by our method and those estimated by CamOdoCal.

[[Left Cam | Rear Cam | Right Cam |

Rotation error (deg) 0.0044 0.0032 0.0088
Translation error (deg) 0.0563 0.0468 0.0349
Translation error (m) 0.0016 0.0022 0.0021

sparse feature map. This loop trajectory differs from that
taken by the Prius during the data collection for building the
sparse feature map. This experiment aims to show that our
estimated extrinsics and those estimated by CamOdoCal are
the same. The accompanying video shows the infrastructure-
based calibration process.

We tabulate the errors between our estimated extrinsics
and the CamOdoCal extrinsics in table I. The infrastructure-
based calibration estimated the extrinsics from 167 sets of
camera poses with an average of 3.05 camera poses per set. A
total of 37860 2D-3D correspondences were used. The initial
estimates of the extrinsics and rig poses had an associated
average reprojection error of 0.99 pixels which reduced
to 0.69 pixels after non-linear refinement. It is observed
from the results in table I that the extrinsics estimated by
our method are virtually the same as those estimated by
CamOdoCal.

B. Experiments — Outdoor Urban Environment

We run a total of four experiments. In each of the first
three experiments, the Prius is driven in one loop in the
same scene and with a different camera configuration. As in
the indoor experiment, this loop trajectory differs from that
taken by the Prius during the data collection for building the
sparse feature map. These three experiments aim to show that
our calibration can reliably estimate the camera extrinsics
for a camera configuration different from that used for
building the sparse feature map. For the fourth experiment,
we drive the Prius over 25 loops for 1 hour with the same
camera configuration that was used to generate the sparse
feature map. This experiment shows the impact of a changing
environment on the calibration accuracy and repeatability;
during this one hour, cars and pedestrians continually move
around, and plants and trees sway significantly in moderate
wind conditions. From odometry measurements, the average
distance of each loop in all experiments is 308 m.

We use a three-way tripod head and a sliding plate in
figure 4 to ensure that camera configuration changes can be
measured as precisely as possible.

1) Experiment 1: The left and right cameras are moved
towards the front of the car by 9.7 and 10.0 cm respectively
as measured with a ruler. The infrastructure-based calibration
used 427 sets of camera poses with an average of 3.17 camera
poses per set. Based on the results from our method, the left
and right cameras are deemed to have moved 9.72 cm and
10.03 cm respectively. The rear camera is estimated to have
moved 0.005 cm which is negligible. These estimates closely
agree with the hand measurements.

2) Experiment 2: The left camera is rotated around its
z-axis towards the ground by 30° as measured with a scale

(a)

(b)

Fig. 5: (a) Indoor parking garage and (b) outdoor urban environment as seen from the front camera

(a)

(b)

Fig. 6: Experiments in an indoor parking garage as shown in figure 5a. (a) The sparse feature map generated with the CamOdoCal
pipeline. The camera poses marked in white illustrate the twisting path taken by the car. (b) The subset of scene points from the sparse
feature map and which is used for calibration is shown. The camera poses inferred from PnP are marked as white triangles. Here, the car
approaches the end of a loop, and the current set of camera poses are derived from 2D-3D correspondences visualized as lines from the

camera poses to the scene points.

that is available for each axis of movement of the three-way
tripod head. The infrastructure-based calibration used 411
sets of camera poses with an average of 3.14 camera poses
per set. Our method estimates the left camera to have rotated
about its x-axis by 29.9°. This estimate closely agrees with
the hand measurement.

3) Experiment 3: The left camera is rotated around its z-
axis towards the front of the car by 15°. The infrastructure-
based calibration used 381 sets of camera poses with an
average of 3.20 camera poses per set. Our method estimates
the left camera to have rotated around its x-axis by 14.3°.
This estimate closely agrees with the hand measurements.

4) Experiment 4: For each of the 25 loops, we estimate
the extrinsics, and find the maximum of the three error
metrics among all cameras. We then plot these maximum
errors in figure 8. This plot shows that our calibration
method is still very accurate regardless of changes in the

environment, as the maximum rotation and translation errors
do not exceed 0.025°, 0.22°, and 0.77 cm respectively.

C. Discussions

To calibrate a 4-camera rig based on 500 frames per
camera, our infrastructure-based calibration takes 10 minutes
on average while the CamOdoCal pipeline takes 2 hours.
Our infrastructure-based calibration requires a much shorter
running time, and hence, is extremely useful when multiple
calibrations are needed within a short time. Furthermore, our
extensive experiments clearly demonstrate the high accuracy
of our infrastructure-based calibration. The calibration is
shown to work with camera configurations which signifi-
cantly differ from that used to build the sparse feature map.
We also show changes in the environment to have no impact
on the calibration accuracy. It is important to note that the
accuracy of the infrastructure-based calibration is dependent

Fig. 7: Experiments in an outdoor urban environment as shown in figure 5b. (a) The sparse feature map generated with the CamOdoCal
pipeline. (b) The subset of scene points from the sparse feature map and which is used for calibration. The camera poses inferred from
PnP are marked as white triangles. (c) Aerial imagery of the environment.

on both the metric accuracy of the map and the accuracy of
the intrinsic calibration. Using a substandard map will cause
the infrastructure-based calibration to produce inaccurate
camera extrinsics.

VII. CONCLUSIONS

Our experimental results demonstrate the feasibility and
high accuracy of our method for infrastructure-based cali-
bration of a multi-camera rig. In contrast to SLAM-based
calibration methods, we require a prior map, which how-

ever, makes our calibration method much more robust and
vastly reduces the time required for each calibration. With
these two important advantages, only our infrastructure-
based calibration method is feasible in scenarios which
require multiple calibrations in a short time without expert
supervision. In future work, we will look at extending the
usable lifespan of the map used for the calibration by
exploring time-invariant feature descriptors. The code for
the infrastructure-based calibration is available as part of

=

——

1 » BlueCouGARY 4@

=

- e
-/ iy

Fig. 4: The left camera is mounted on a three-way tripod head,
which in turn, is mounted on a sliding plate. This sliding plate is
attached to the car roof via screws.

0.3 T T 0.015
—6— Max Translation Error (deg)
—©— Max Translation Error (m)
—6— Max Rotation Error (deg)
0.24 . : . 40.012
0.18 -0.009
3 @
9] 2
o [
8 =
0.12f 0.006
0.06 - -0.003
0 L ° L - L \ - L - 0000
0 10 20 30 40 50 60

Time (min)

Fig. 8: A plot of the maximum errors against the time at which
each loop was completed.

the CamOdoCal library which can be downloaded from
https://github.com/hengli/camodocal.

VIII. ACKNOWLEDGMENTS

The first author is funded by the DSO National Lab-
oratories Postgraduate Scholarship. In addition, this work
is supported in parts by the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
#269916 (V-Charge) and 4DVideo ERC Starting Grant Nr.
210806. We thank Jerome Maye for his hard work in setting
up our experimental platform.

REFERENCES

[1] S. Agarwal, K. Mierle, and Others. Ceres
solver, 2013. https://code.google.com/p/
ceres-solver/.

[2] G. Carrera, A. Angeli, and A. Davison. Slam-based
automatic extrinsic calibration of a multi-camera rig. In
International Conference on Robotics and Automation
(ICRA), 2011.

[3] K. Daniilidis. Hand-eye calibration using dual quater-
nions. International Journal of Robotics Research
(IJRR), 18(3):286-298, 1999.

[4] D. Galvez-Lopez and J. Tardos. Bags of binary words
for fast place recognition in image sequences. IEEE
Transactions on Robotics, 28(5):1188-1197, 2012.

[5] A. Geiger, F. Moosmann, O. Car, and B. Schuster.
Automatic calibration of range and camera sensors
using a single shot. In International Conference on
Robotics and Automation (ICRA), 2012.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision
meets robotics: The kitti dataset. International Journal
of Robotics Research (IJRR), 32(11):1231-1237, 2013.

[7] C. Guo, F. Mirzaei, and S. Roumeliotis. An analytical
least-squares solution to the odometer-camera extrinsic
calibration problem. In International Conference on
Robotics and Automation (ICRA), 2012.

[8] L. Heng, B. Li, and M. Pollefeys. Camodocal: Auto-
matic intrinsic and extrinsic calibration of a rig with
multiple generic cameras and odometry. In Interna-
tional Conference on Intelligent Robots and Systems
(IROS), 2013.

[9] C. Hughes, P. Denny, M. Glavin, and E. Jones. Equidis-
tant fish-eye calibration and rectification by vanishing
point extraction. Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 32(12):2289-2296, 2010.

[10] J. Kannala and S. Brandt. A generic camera model and
calibration method for conventional, wide-angle, and
fish-eye lenses. Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 28(8):1335-1340, 2006.

[11] R. Kumar, A. Ilie, J. Frahm, and M. Pollefeys. Simple
calibration of non-overlapping cameras with a mirror.
In International Conference on Computer Vision and
Pattern Recognition (CVPR), 2008.

[12] P. Lebraly, E. Royer, O. Ait-Aider, C. Deymier, and
M. Dhome. Fast calibration of embedded non-
overlapping cameras. In International Conference on
Robotics and Automation (ICRA), 2011.

[13] B. Li, L. Heng, K. Koser, and M. Pollefeys. A multiple-
camera system calibration toolbox using a feature
descriptor-based calibration pattern. In International
Conference on Intelligent Robots and Systems (IROS),
2013.

[14] F. Markley, Y. Cheng, J. Crassidis, and Y. Oshman.
Averaging quaternions. Journal of Guidance, Control,
and Dynamics, 30(1):12-28, 2007.

[15] F. Moreno-Noguer, V. Lepetit, and P. Fua. Accurate
non-iterative o(n) solution to the pnp problem. In
International Conference on Computer Vision (ICCV),
2007.

[16] C. Wu. Visualsfm: A visual structure from motion
system, 2011. http://homes.cs.washington.
edu/~ccwu/vsfm.

