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Global path planning algorithms are good in planning
an optimal path in a known environment, but would
fail in an unknown environment and when reacting to
dynamic and unforeseen obstacles. Conversely, local
navigation algorithms perform well in reacting to dy-
namic and unforeseen obstacles but are susceptible to
local minima failures. A hybrid integration of both the
global path planning and local navigation algorithms
would allow a mobile robot to find an optimal path and
react to any dynamic and unforeseen obstacles during
an operation. However, the hybrid method requires
the robot to possess full or partial prior information of
the environment for path planning and would fail in
a totally unknown environment. The integrated algo-
rithm proposed and implemented in this paper incor-
porates an autonomous exploration technique into the
hybrid method. The algorithm gives a mobile robot
the ability to plan an optimal path and does online col-
lision avoidance in a totally unknown environment.

Keywords:

1. Introduction

Autonomous navigation of mobile robots is continu-
ously gaining importance particularly in the military for
surveillance as well as in industry for inspection and ma-
terial handling tasks. Another emerging market with enor-
mous potential is mobile entertainment robots.

Three competencies are identified for a mobile robot to
navigate autonomously. First, the mobile robot must be
able to stay away from hazards such as obstacles or oper-
ating conditions dangerous to itself and it must not pose
any risk to humans in its vicinity. Second, the robot must
possess the capability of planning its path so that it will
always be able to travel from a starting point to a given
goal. Third, the first two competencies should be accom-
plished with minimal human intervention even when the
mobile robot is operating in an unknown environment.

Many algorithms such as the potential field, vector field

histogram, roadmap, cell decomposition and navigation
function [1–5, 7] were developed over the years for the
autonomy of mobile robots. However, these algorithms
are not capable of giving the mobile robot all the three
competencies in one single framework. For example the
potential field and the vector field histogram algorithms
[5, 7], which are collectively known as the local naviga-
tion methods, give a mobile robot the capability of on-
line collision avoidance but the algorithms fail to provide
a mobile robot the capability of planning its own path.
The other algorithms such as the roadmap, cell decom-
position and navigation function [1–4], which are collec-
tively known as the global path planning methods, give
a mobile robot path planning capability only if the infor-
mation of the environment is surveyed and provided by
humans. Moreover, the global path planning methods are
not capable of doing online collision avoidance.

Another group of algorithms suggest a combination of
the local navigation and global path planning methods
which aim to combine the advantages from both the lo-
cal and global methods, and to also eliminate some of
their weaknesses [1, 9]. An example is the hybrid navi-
gation algorithm [9] which combines the navigation func-
tion with the potential field method. This algorithm is
able to generate an optimal path in a partially or fully
known environment and also does online collision avoid-
ance. However, the hybrid navigation algorithm would
fail in totally unknown environments.

This paper presents a robust navigation algorithm that
gives the mobile robot all the three competencies in one
single framework. This paper first discusses some of
the existing algorithms and their limitations particularly
the navigation functions, potential field method and the
hybrid navigation algorithm. It also proposes our in-
tegrated algorithm that combines the frontier-based ap-
proach, which is an autonomous exploration technique,
into the hybrid navigation method, to achieve all the three
competencies for autonomous navigation. The integrated
algorithm is simulated in a virtual environment and also
implemented on the Nomad XR4000 mobile robot.
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Fig. 1. The shaded cells are the 1-Neighbor of the cell (x, y)
and the number shows the priority of the neighboring cells.

Fig. 2. Path generated by the navigation function.

2. Existing Works and Their Limitations

2.1. Global Path Planner – Navigation Functions

Global path planning means finding a safe path from
the initial position of the robot to the goal in a known
environment. There are many existing approaches that at-
tempt to solve the problem. One of them is based on the
navigation function where the path planning problem is
transformed to a steepest descent problem from the initial
position to the goal.

The algorithm based on a navigation function dis-
cretizes the workspace W of the robot into retangloid grid
cells gC. In addition a fixed frame FW is embedded in the
workspace of the robot. The position of individual gC can
thus be specified as cartesian coordinates with respect to
FW . Each gC is either free or occupied space. The subsets
of gC in free and occupied space are denoted by gC f ree
and gCoccupied respectively. The “wave-front expansion”
[1] algorithm is used to compute the navigation function.
The algorithm is practical, easy to implement and robust.

The path that is generated by the navigation function is
computed in four steps. First, the coordinates of the free
cells at the border of any obstacles in the workspace, de-
noted by gCborder, are extracted and stored into a First-
In-First-Out (FIFO) list LB. gCborder is defined as any
gC f ree on the tessellation of gC which has at least one
gCoccupied as its neighbor. Second, the unsafe regions are
computed from the gCborder. The unsafe region includes
all the cells that are less than α distance away from the

border of the obstacle. The unsafe regions are then filled
up with occupied cells. This will prevent the generated
path from getting too close to the obstacles. Third, the
navigation function values N are computed and applied to
the rest of gC f ree using the “wave-front expansion” algo-
rithm. Fourth, a minimum length path can thus be gener-
ated following the steepest descent of N. The coordinates
of all the grid cells that constitute the path are stored in a
List Lp.

The pseudo code for the computation of the path gen-
erated by the navigation function is as follows:
Step 1-Extracting free cells at border of obstacle cells
1. begin
2. for every gC f ree in the map do
3. if there exist a gCoccupied neighbor then
4. begin
5. insert coordinates of gC f ree to end of LB;
6. end;
7. end;
Step 2-Computing the unsafe regions
1. begin
2. for every element i in LB, where i � 1�2� � � � do
3. for every neighbor of the cells in LBi do
4. if the neighbor is gC f ree and � α distance then
5. begin
6. neighbor� occupied;
7. insert coordinate of neighbor at the end of LB;
8. end;
9. end;
Step 3-Computing the navigation function values N
1. begin
2. for every gC f ree in the map do
3. N�M (large number)
4. N for goal cell� 0;
5. insert coordinates the of goal cell to the end of L0;
6. for every element i in L0, where i � 1�2� � � � do
7. for every 1-neighbor cells of L0i do
8. if N � M then
9. begin
10. N� N of L0i�1;
11. insert coordinate of 1-neighbor at end of L0;
12. end;
13. end;
Step 4 - Generating the optimal path Lp
1. begin
2. temp� cell coordinates of robot currently occupying;
3. insert temp to the end of Lp;
4. while N for temp �� 0 do
5. temp � coordinate of min(neighboring cells of
temp);
6. insert temp to the end of Lp;
7. end;

Figure 1 shows the definition of 1-Neighbor and the
priority of the neighboring cells. The min function returns
the coordinate of the neighboring cell of (x, y) that has the
lowest N value. However, in cases where there are more
than 1 neighboring cells having the same lowest N value,
the cell with the highest priority will be chosen.
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Fig. 3. Robot’s motion influenced by potential field.

Figure 2 shows a path generated by the navigation
function. The black cells are the obstacles and the grey
cells are the unsafe regions.

The navigation function requires the surrounding of the
robot to be known and static. A continuous free path can
thus be found in advance by analyzing the connectivity
of the free space. A continuous free path always exists
with the method. However any changes in the environ-
ment could invalidate this since N needs to be recomputed
when there are changes in the environment. Furthermore,
complete information of the environment is required to
compute the navigation function. Hence, the navigation
function is usually not suitable for navigation in an ini-
tially unknown environment with dynamic obstacles.

2.2. Local Navigation Method – Potential Field
Method

The potential field method [7] is perhaps the most
widely used algorithm for autonomous navigation of mo-
bile robots. The robot is represented as a particle in the
configuration space q moving under the influence of an ar-
tificial potential produced by the goal configuration qgoal
and the scalar distance to the obstacles. Typically the goal
generates an attractive potential,

Ug �q� �
1
2

Kg �q�qg�
T �q�qg� . . . . . . (1)

which pulls the robot towards the goal. The obstacles pro-
duce repulsive potential,

Uo�q� �

�
1
2 Ko

�
1
d �

1
do

�2
if d � do

0 otherwise
. . (2)

which pushes the robot away. Kg and Ko are the respec-
tive gains of the attractive and repulsive potential. d is the
scalar distance between the robot and the obstacle. The
repulsive potential will only have effect on the robot when
its moves to a distance which is lesser than d0. This im-
plies that d0 is the minimum safe distance from the obsta-
cle that the robot tries to maintain.

The negated gradient of the potential field gives the ar-
tificial force acting on the robot.

F �q� ��∇U �q� . . . . . . . . . . . . (3)

Goal Robot 

Fatt Frep 

Obstacle 

Fig. 4. An example of a local minimum from the potential
field method.

Figure 3 shows the attractive force

Fg �q� ��Kg �q�qg� . . . . . . . . . . (4)

that is generated from the goal and the repulsive force

Fo�q� �

�
Ko

�
1
d �

1
do

�
1
d2 if d � do

0 otherwise
. . (5)

that is generated from the obstacle. FR is the resultant
of both the repulsive and attractive force. At every posi-
tion, the direction of this force is considered as the most
promising direction of motion for the robot.

FR �q� � Fg �q��Fo �q� . . . . . . . . . (6)

The potential field method does not include an initial
processing step aimed at capturing the connectivity of
the free space in a concise representation. Instead, it
integrates online sensory data into motion generating
process, which is otherwise known as reactive control
method. Hence a prior knowledge of the environment is
not needed. At any instant in time, the path is determined
based on the contents of the immediate surrounding of the
robot. This allows the robot to avoid any dynamic obsta-
cles in its vicinity.

The potential field method is basically a steepest de-
scent optimization method. This renders the mobile robot
to be susceptible to local minima [6]. Fig. 4 shows an ex-
ample of local minimum in the potential field method. It
occurs when the attractive and the repulsive forces can-
cel out each other. The robot will be immobilized when
it falls into a local minimum, and loses the capability to
reach its goal.

2.3. Hybrid Method – Hybrid Navigation Algo-
rithm

Figure 5 describes the hybrid navigation algorithm and
its results [9]. The robot first computes the path joining its
current position to the goal using the navigation function.
It then places a circle with an empirical radius centered at
its current position. The cell that corresponds to the inter-
section of the circle with the navigation function path is
referred to as the attraction point. The attraction point is
the cell with the lowest N if there is more than one inter-
section.
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Fig. 5. Illustration of the hybrid navigation algorithm

Fig. 6. The integrated algorithm.

The robot advances towards the attraction point using
the potential field method and the circle moves along with
the robot which will cause the attraction point to change.
As a result, the robot is always chasing after a dynamic at-
traction point which will progress towards the goal along
the local minima free navigation function path. The ra-
dius of the circle is made larger to intersect the navigation
function path in cases where no intersections are found.
The radius of the circle is reduced to smaller than the dis-
tance between the robot and its goal when this distance
becomes smaller than the radius of the circle. This is to
make sure that N of the next intersection will be smaller
than the current N.

The hybrid navigation algorithm has the advantage of
eliminating local minima failures and at the same time
doing online collision avoidance. However, it requires the
environment to be fully known for the search of an opti-
mal navigation function path to the goal. The algorithm
will fail in a fully unknown environment. It also does not
possess any capability to re-plan the navigation function
path during an operation. Therefore any major changes to
the environment could cause failure in the algorithm.

3. Our Integrated Algorithm

Our integrated algorithm gives a mobile robot all the
competencies needed to achieve autonomous navigation
in one single framework. The algorithm modifies the
frontier-based exploration method [8], which was origi-
nally used for map building, into a path planning algo-
rithm. The modified frontier-based exploration method is
then combined with the hybrid navigation algorithm into
a single framework.

Figure 6 shows an overview of the integrated algo-
rithm. The mobile robot will first build a local map of
its surrounding. It then decides whether the goal is reach-
able. It will advance towards the goal if it is reachable, or
compute another sub-goal if it is not reachable. The robot
will build another local map, which will be added onto the
previous local maps to form a larger map of the environ-
ment, after it has reached the sub-goal. This process goes
on until the goal is reached. The following discusses the
algorithm in detail.

3.1. Local Map Building

It is impossible for a mobile robot to plan a path that
allows it to navigate safely from a starting position to a
given goal in an unknown environment. It is therefore im-
perative for the robot to have the ability in acquiring the
knowledge of its surrounding so that it would be possible
for it to do path planning. A mobile robot can gain knowl-
edge of an unknown world via sensors. Sensors provide
local information about the environment in the vicinity of
the robot. As the robot moves, information of the environ-
ment is updated in a process referred to as map building.

In many algorithms, the map building and path plan-
ning processes are decoupled. The robot has to acquire
a map of its surrounding before it could plan a path. For
example, in the frontier-based approached [8], a mobile
robot has to complete an exploration mapping of the en-
tire environment prior to the path planning process. This
is inefficient because extra computation time and memory
is needed for the exploration mapping of the whole envi-
ronment. In many cases, a substantial part of the map is
not utilized in the path planning process.

Our integrated algorithm does not attempt to build the
map of the whole environment for path planning. Instead,
the algorithm seeks to build local maps which are essen-
tial for path planning. Local map is the perceived view
of a robot at its existing position. The mobile robot starts
navigation by building a local map at its starting position.
Next, it does further local mappings at the sub-goals (see
Section 3.3 for the definition of sub-goals). The resulting
map is therefore a concatenation of the local maps which
the robot had built at the starting position and the respec-
tive sub-goals.

The occupancy grid mapping algorithm, which is de-
scribed in detail in [10], is employed to build the local
map. The occupancy map is chosen because it repre-
sents the environment as a tessellation of retangloid grid
cells gC, which is similar to the navigation function that
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(a) (b)

Fig. 7. (a) The goal is reachable because it is in the
gCf ree region (b) The goal is unreachable because it is in
the gCunknown region.

we use in the integrated algorithm (described in Sections
3.3, 3.4 and 3.5). The grid cells are classified into three
categories namely gCunknown which represents the unex-
plored cells, gC f ree which represents the unoccupied cells
and gCoccupied which represents cells that are occupied
by obstacles. The classification into either one of the
three classes depends on the certainty values that each cell
holds.

3.2. Goal Reachability

After the robot has finished a local map building pro-
cess, it will determine whether the goal is reachable based
on the map. The goal is reachable if it is in the gC f ree
region, and is not reachable if it is in the gCunknown re-
gion. Fig. 7(a) shows an example of a reachable goal in
the gC f ree region (white region) and 7(b) shows an exam-
ple of an unreachable goal in the gCunknown region (grey
region).

3.3. Computation of Sub-Goal

The robot will compute a sub-goal if the goal is un-
reachable. This is done in three steps. First, compute the
path that joins the robot’s current position and the goal us-
ing the navigation function. The unknown cells are taken
to be free space in the computation of the navigation func-
tion. Second, all the frontiers in the map are computed.
The boundary of free space and unknown region is known
as the frontier. A frontier is made up of a group of ad-
jacent frontier cells. The frontier cell is defined as any
gC f ree cell on the map with at least two gCunknown cells as
its immediate neighbor. The total number of frontier cells
that make up a frontier must be larger than the size of the
robot to make that frontier valid. Fig. 8 shows an exam-
ple of a valid frontier. Third, the frontier that intersects the
navigation function path will be selected and its centroid
chosen as the sub-goal. The sub-goal is an effective point
in bringing the robot closest to its goal. The coordinates
( jxc, jyc� of the centroid can be calculated using Eqs. (7)
and (8).

Fig. 8. A frontier region made up of a group of adjacent
frontier cells.

Fig. 9. Sub-goal is the centroid of the frontier that intersects
the navigation function (NF) path.

jxc �
1
n j

n j

∑
i�1

xi . . . . . . . . . . . . . (7)

jyc �
1
n j

n j

∑
i�1

yi . . . . . . . . . . . . . (8)

where,
n j = number of frontier cells in the selected frontier j
xi = x coordinate of ith frontier cell in frontier j
yi = y coordinate of ith frontier cell in frontier j
Figure 9 shows an example of the computation of the

sub-goal. The centroid of the frontier that intersects the
navigation function path is selected as the sub-goal.

3.4. Reaching for the Sub-Goal

After computing the sub-goal, the robot will compute
another navigation function path from its current position
to the sub-goal. It will then move towards it using the
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Fig. 10. Map of the simulation environment.

hybrid navigation algorithm. The robot will build another
local map when it has reached the sub-goal. This local
map is added onto the previous local map to form a larger
map.

3.5. Reaching for the Goal
As mentioned earlier, the robot checks for the goal

reachability after it finishes building a local map. The
robot will move towards the goal using the hybrid naviga-
tion algorithm when it detects that the goal is in the gC f ree
region.

4. Simulation and Implementation Rusults

A simulation of the integrated algorithm was done in
the environment shown in Fig. 10. The white regions
represent gC f ree cells and the black regions represent
gCoccupied cells. The robot was placed in an initial ar-
bitrary position and commanded to move to a given goal.
Note that the robot does not have any initial knowledge of
the environment. The robot is equipped with range sen-
sors all around but with limited range. Fig. 11(a) to 11(h)
are the snap-shots of the robot’s perception of the envi-
ronment as it advances towards the goal. The grey regions
represent the gCunknown cells.

Figure 11(a) shows that the robot was initially in
a completely unknown environment. The robot gains
knowledge of its surrounding by building a local map as
shown in Fig. 11(b). In this case, the robot finds that
the goal is not reachable and hence the navigation func-
tion path connecting the current position of the robot is
computed. Next, the centroid of the frontier that inter-
sects the navigation function path is taken as the sub-goal.
The robot then computes another navigation function path

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11. Snap shots of the robot’s perception in the sim-
ulated environment. The red line represents the navigation
function path connecting the robot to the goal. The blue line
represents the navigation function path connecting the robot
to the sub-goal. Note that the frontier cells are represented
by the green cells.

that connects its current position and the sub-goal. Fi-
nally, it advances to the sub-goal via the hybrid navigation
method.

The robot builds another local map when it reaches the
sub-goal. This local map is added onto the previous maps
to form a larger map. Fig. 11(c) to Fig. 11(h) shows the
gradual increment of the map by as the robot advances
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Snapshots of the trajectories and acquired maps
of the Nomad XR4000 mobile robot during the implementa-
tion of the integrated algorithm. The blue lines represent the
navigation function (NF) path from the robot to the respec-
tive sub-goals and red lines represent the actual trajectories
taken by the robot.

nearer to the goal. Note that the robot does not attempt to
map the whole environment. Instead, it will map out only
the necessary portions of the environment that is sufficient
for it to find the goal.

Fig. 11(d) and 11(e) show two possible cases of local
minima if the robot navigates using only the potential field
method. With the integrated algorithm, the robot finds a
subgoal using the local minima free navigation function
path. The robot is therefore able to escape from any pos-
sible local local minimum. The goal is within reachabil-
ity in Fig. 11(g). Here, the robot will not compute any
sub-goal. It will compute a navigation function path that
connects its current position with the goal and advances
towards the goal using the hybrid navigation algorithm.
Finally the algorithm terminates at Fig. 11(h) when the
goal is reached.

Our integrated algorithm was successfully imple-
mented on the Nomad XR4000 mobile robot. The robot
is equipped with a SICK laser range finder that gives it
an 180o view of the environment. Fig. 12(a) to 12(f)

(a) (b)

(c) (d)

Fig. 13. Implementation of the integrated algorithm on the
Nomad XR4000 robot (a) Robot moving through narrow
doorway (b) Robot encounters an unforeseen obstacle (hu-
man) (c) Robot successfully avoids the unforeseen obstacle
(d) Robot at the goal.

are snapshots of the trajectories and acquired maps of the
Nomad XR4000 robot during the implementation of our
integrated algorithm. The robot starts from an initially
unknown environment and navigates towards the goal.
Fig. 12(a) shows the first local map acquired by the robot.
The robot does not find the goal within the gC f ree re-
gion, hence the first sub-goal is determined and the robot
advances towards it via the hybrid navigation method.
Fig. 12(b) shows the trajectory of the robot as it moves
through a narrow doorway towards the first sub-goal us-
ing the hybrid navigation algorithm. Notice that the circle
for finding the attraction point becomes equal to the dis-
tance between the robot and its goal as the robot moves
closer towards to goal. Fig. 13(a) shows the robot moving
through the narrow doorway. The robot reaches its first
sub-goal in Fig. 12(c) and builds another local map which
is added onto the previous local map to form a larger map
of the environment. The robot does not find the goal to be
within the gC f ree region and hence computed another sub-
goal. Fig. 12(c) also shows a local minimum if the robot
navigates to the goal from its initial location using only
the potential field method. Fig. 12(d) shows the trajec-
tory of the robot as it does an online collision avoidance
with an unforeseen obstacle (human). Fig. 13(b) shows
the encounter of the robot with an unforeseen obstacle
(human) and Fig. 13(c) shows that the robot has success-
fully avoided the obstacle and advancing towards the sec-
ond sub-goal. A third local map is added to the previous
map in Fig. 12(e) and the robot finally finds the goal to
be within the gC f ree region. It then advances towards the
goal and finally reaches the goal in Fig. 12(f). Fig. 13(d)
shows the robot at its goal.
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5. Conclusion

The ability to navigate safely from one point to an-
other is the most important part in the development of
autonomous mobile robots. A vast number of techniques
and methods have been introduced and implemented by
many researchers. In this paper, a few methods are exam-
ined. They include the navigation function, the potential
field method and the hybrid navigation algorithm. The
contribution of this paper is the integrated algorithm. This
method modifies the frontier-based exploration method,
which was originally a map building technique, into a
path planning algorithm. In the integrated algorithm, the
navigation function and the potential field method are
fused together with the modified frontier-based explo-
ration method into one single framework. The algorithm
is capable doing path planning in an unknown environ-
ment. The navigation function is used to plan the path
and hence local minima free. The algorithm is also ca-
pable of avoiding any dynamic obstacles which were not
included in the path planning.
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