


to get all the inlier point correspondences. We also identify

the correct solution from the eight possible solutions within

RANSAC. Finally, we relax the linear velocity assumption

and do a non-linear refinement on the full motion, i.e. linear

and angular velocities, and pose of the rolling shutter camera

with all the inliers. We verify the feasibility and accuracy of

our algorithm with both simulated and real-world datasets.

II. RELATED WORK

Most of the existing works on rolling shutter cameras

largely revolve around calibration, correction for rolling shut-

ter distortion on the images, using rolling shutter cameras for

in stereo setups, and iterative methods for pose estimation.

In contrast, we propose a minimal solution to estimate the

rolling shutter camera pose and velocity in this work. Our

minimal solution requires only 5-point correspondences and

this makes it very suitable to be used within RANSAC for

robust estimation to find all the inlier correspondences.

One of the early publications on rolling shutter camera

is from Liang et al. [7]. They gave detailed discussions on

the rolling shutter effect and low level CMOS sensor that

usually has an electronic rolling shutter. In this work, the

authors proposed to compensate for the rolling shutter effect

using optical flow. In [8], Geyer et al. proposed a method to

calibrate the rolling shutter timings using additional hardware

and studied the different rolling shutter effects under special

fronto-parallel motion. More recently, Oth et al. proposed

in [9] to calibrate the shutter timings using a video sequence

of a known calibration pattern. A continuous-time trajectory

model is combined with a rolling shutter model to estimate

the shutter timings.

In [10], [11], the authors proposed 2D approaches for

rolling shutter image stabilization and rolling shutter distor-

tion correction using optical flow. Similarly, [12] used optical

flow and a mixture of homographies to correct for the rolling

shutter effect. In [13], [14], Hanning et al. and Karpenk

et al. proposed rolling shutter distortion correction base on

gyroscope measurements. Their assumption is that on hand-

held devices the main motion during exposure is due to a

rotation and can be compensated with a homography.

While the above approaches are 2D in nature, Forssen

and Ringaby [15], [16] proposed a Structure-from-motion

approach to compensate for the rolling shutter distortion that

is mainly induced by rotational motions. In [17], Hedborg

et al. proposed a full rolling shutter bundle adjustment on

a continuous video stream by enforcing a continuous pose

parametrization between consecutive frames. Klein et .al

proposed in [18] to first estimate a constant velocity between

consecutive frames and uses this motion model to undo

the RS distortion on the extracted keypoints. The corrected

keypoints are then used in a standard bundle adjustment [19]

for global shutter camera.

In [20], [21], the authors have proposed stereo algorithms

that take into account the rolling shutter model and produces

geometrically consistent 3D reconstructions. In [22], Meil-

land et al. proposed a dense 3D model registration which

accounts for rolling shutter distortion and motion blur on

RGBD data.

Probably closest to our work is the work by Ait-Aider

et al. [23], where they estimate the pose and velocity of

a moving object from a single rolling shutter image. They

use a spiral motion parametrization of the camera pose and

solve for the pose and velocities as a non-linear least squares

problem. Their formulation requires a good initialization

which is obtained from a global shutter pose algorithm. The

3D-2D correspondences are provided manually. In [24], the

authors extended the initialization process with a homogra-

phy based formulation, which takes into account the temporal

pose parametrization. It is however limited to only planar

objects. To overcome the initialization burden, Magerand

et. al [25] solved the pose and velocities using constrained

global optimization by parameterizing the camera motion

with degree 2 polynomials. The final objective function they

need to solve for consists of a 6 degree polynomial with

twelve unknowns.

III. ROLLING SHUTTER CAMERA POSE ESTIMATION

A. Camera Motion Model

Since a rolling shutter camera typically has a rapid scan-

ning time (∼ 72ms per image), it is reasonable to make the

assumption that the camera undergoes constant linear and

angular velocities during an image acquisition. We further

assume that each scanline takes exactly the same time, and

the relative camera translation tn and rotation Rn at the nth

scanline with respect to the first scanline can be linearly

interpolated as

tn = vnτ (1a)

Rn = exp(Ωnτ), (1b)

where v = [vx, vy, vz]
⊤ and Ω = [ωx, ωy, ωz]

⊤ denotes

the constant linear and angular camera velocities, and τ

is the time taken to complete each scanline. The function

exp(.) : so(3) → SO(3) denotes the exponential map

that transforms the angle-axis rotation representation to a

corresponding rotation matrix.

As mentioned in Section I that in practice the scanline

speed is always much faster than the velocity of the camera,

the camera motion can be approximated with only the linear

velocity. As such, we consider only the linear velocity in our

derivation of the minimal solution, i.e. Rn = exp(0) = I3×3.

We justify the validity of this assumption with the results

from a real data experiment. We look at an image sequence

where a car with a rolling shutter camera mounted on it

takes a 90◦ turn, while driving at 10km/h. During the scan

time of the CMOS sensor (72ms in our case), the car

moved 0.2m and the absolute camera orientation changed by

0.02rad. Figure 2 compares the ground truth GPS/INS poses

to the interpolated poses assuming zero angular velocity. The

maximum absolute angular error obtained is only 0.01rad.

We will further discuss the valid range of this assumption in

Section IV-A.



(a) (b)

Fig. 2. The plots show the position and rotation error while the car moves
through a 90

◦ turn. During image scan time of 72ms the car moved 0.20m.
(a) The maximum position error is 1.8718×10

−4m. (b) Maximum rotation
error assuming zero angular velocity is 0.0114 rad.

B. Minimal 5-point Algorithm

Making the assumption of a constant linear velocity, we

can express a pixel on the nth scanline as

xn = K
[

R t− tn
]

X, (2)

where K is the camera intrinsic. R and t are the camera pose

in the world frame, which is also the camera pose for the first

scanline. tn is the camera pose for the nth scanline as given

in Equation 1. xn ↔ X is the 2D-3D point correspondence.

Formally, Equation 2 is the camera projection equation that

accounts for the rolling shutter effect. The unknowns are R,

t and the linear velocity v in tn, where there are altogether

9 degree-of-freedom (3 degree-of-freedom each for R, t and

v). Since each point correspondence gives two independent

equations, a minimum of 5-point correspondences are needed

to solve for all the unknowns in Equation 2. Taking the cross

product of xn with Equation 2, we get

xn × (K
[

R t− tn
]

X) = 0. (3)

With 5-point correspondences, Equation 3 can be rear-

ranged into the form

Ay = 0, (4)

where A is a matrix made up of the known values from the

camera intrinsic K, point correspondences xn ↔ X, scanline

number n and time τ . Here we choose randomly 9 out of

the 10 equations in the minimal 5-point correspondence case

(since any 9 out of the 10 equations are always independent)

to form the 9× 15 matrix A.

y =
[

r1 r2 r3 tx ty tz vx vy vz
]⊤

(5)

is a 15 × 1 vector, where ri is the ith row of the rotation

matrix R, [tx ty tz] are the components from the translation

vector t and [vx vy vz] are from the linear velocity v of the

camera. Solving for the right nullspace of Ay = 0 using the

Singular Value Decomposition (SVD) gives 6 basis vectors

denoted by b1...b6, where the linear combination forms the

solution

y = β1b1 + β2b2 + β3b3 + β4b4 + β5b5 + β6b6. (6)

β1...β6 are any scalar values. Assigning random values to

β1...β6 however do not guarantee the orthogonality of R.

We fix β6 = 1 and the remaining five scalar values can be

found by enforcing the orthogonal constraint on the elements

from the rotation matrix R. Following [26], enforcing the

orthogonality on R gives us 10 constraints:

||r1||
2 − ||r2||

2 = 0, (7a)

||r1||
2 − ||r3||

2 = 0, (7b)

||c1||
2 − ||c2||

2 = 0, (7c)

||c1||
2 − ||c3||

2 = 0, (7d)

r1
⊤r2 = 0, r1

⊤r3 = 0, r2
⊤r3 = 0, (7e)

c1
⊤c2 = 0, c1

⊤c3 = 0, c2
⊤c3 = 0, (7f)

which we can use to solve for the scalar values β1...β5 that

formed the solution. ri denotes the ith row and ci the ith

column of R. Putting the elements from R in Equation 6

into the 10 constraints, we get a system of 10 polynomial

equations with β1...β5 as the unknowns. We use the auto-

matic generator of Gröbner solvers provided by Kukelova

et al. [27] to generate a solver for the system of polynomial

equations that gives up to eight real solutions for y. We

divide each of the solution by its respective ||r1|| to make R

an orthonormal matrix. Note that the orthonormal constraint

is not enforced earlier in Equation 7 to keep the system of

polynomials less complicated. In addition, we ensure that the

solution follows a right-hand coordinate system by negating

the solution if det(R) = −1.

It should be noted that our formulation also works for m-

point correspondences where m ≥ 5, i.e. ≥ 10 independent

equations are used to form Equation 4. In this case, we get

an over-determinate system. The 6 basis vector in Equation 6

can be obtained from the 6 singular vectors that correspond

to the 6 smallest singular values of A.

C. Robust Estimation

We use the minimal 5-point algorithm within RANSAC

[6] to robustly select all the inlier 2D-3D correspondences.

We also determine the correct solution from the 8 solutions

within each RANSAC loop as the one that gives the most

inlier count.

D. Non-linear Refinement

The 5-point minimal solver with RANSAC provides an

initial solution and finds all the inlier 2D-3D correspon-

dences, which is then used for further refinement using a

non-linear solver [28]. Here, we relaxed the linear velocity

assumption and do a refinement on the full camera motion,

i.e. linear v and angular Ω velocities, and pose (R, t).

Formally, we seek to minimize the total reprojection errors

over v, Ω, R and t. The objective function is given by

argmin
v,Ω,R,t

∑

i

||xn,i − π(Pn,i,Xi)||
2, (8)



where xn,i is the ith 2D image point on the nth scanline,

Xi is the corresponding 3D point, π(.) = Pn,iXi is the

reprojection function. Pn,i is the rolling shutter camera

projection matrix for the nth scanline given by

Pn,i = KRn

[

R t− tn
]

, (9)

where (tn, Rn) is the pose of the rolling shutter camera

when the nth scanline was taken as defined in Equation 1.

IV. EVALUATION

A. Synthetic Data

We first evaluate our proposed algorithm on several syn-

thetic configurations. Specifically, we do comparisons for the

following three methods:

1) GS + refinement: Global shutter P3P [4] with non-

linear rolling shutter aware refinement of pose and

velocities as described in Section III-D. Note that in

a perspective configuration the generalized P3P algo-

rithm [4] simplifies to [29], its perspective counter

part.

2) RS: Our proposed minimal 5-point rolling shutter

pose and translational velocity solver as described in

Section III-B.

3) RS + refinement: Our proposed minimal 5-point

rolling shutter pose and translational velocity solver

with refined pose and velocities as described in Sec-

tion III-D.

The evaluations are done under varying image noise, increas-

ing translational and angular velocities, and different shutter

directions relative to the camera motions. There are a total of

four different combinations for the shutter directions relative

to the camera motions:

1) Horizontal shutter and sideway camera motion.

2) Horizontal shutter and forward camera motion.

3) Vertical shutter and sideway camera motion.

4) Vertical shutter and forward camera motion.

For each setting and method, we report the median error

over 1000 random trials. Each trial consists of a random

camera pose generated within the range of [0,1]m and [-

0.01,0.01]rad for the respective axes, and the scene consists

of 1000 randomly generated points with an average depth of

20m. We used an image resolution of 1000 pixels with a fixed

focal length of 1000 pixels, which results in a field-of-view

of about 53◦. We assume a fixed rolling shutter scan time

of 72ms for all experiments. The following error measure

which averages the rotation and translation errors over all

scanlines are used to evaluate the synthetic experiments:

• Angle difference in R, averaged over all scanlines:

δθ =
1

N

N
∑

n

cos−1

(

Tr(RnR̃
⊤
n )− 1

2

)

, (10)

• Translation difference, averaged over all scanlines:

δt =
1

N

N
∑

n

||tn − t̃n||, (11)

where Rn, tn denote the ground-truth transformation for

a given scanline n and R̃n, t̃n are the corresponding esti-

mated measurements and N represents the total number of

scanlines.

Figure 3 shows the average error plots from the three

algorithms under increasing translational velocity, zero an-

gular velocity and an image noise of 0.5 pixel standard

deviation. It can be seen that our proposed method shows

a constant error with increasing translational velocity, while

the translational and rotational errors for GS + refinement

increased linearly. In Figure 4, we evaluate the robustness

of the algorithm under varying pixel noise with a constant

translational velocity of 6.9m/s and zero angular velocity.

The results show that our proposed method is less sensitive

to the image noise than the GS + refinement approach for

all the four combinations of shutter directions and camera

motions.

Figure 5 shows the error plots when the zero angular

velocity assumption is violated. Here, we vary the angular

velocity while maintaining a constant translational velocity

of 6.9m/s and an image noise of standard deviation 0.5 pixel.

Our proposed method with refinement RS + refinement is

observed to be more robust in the angular velocity interval

of [0− 2.2]rad/s. It is important to note that in practice the

angular velocity of a camera mounted on hand-held devices

or a moving car is normally ≤ 2.2rad/s. This can be seen

from our real-world data taken from a camera mounted on

a moving car in Section IV-B. The car reached a maximum

angular velocity of only 0.31rad/s when making a 90◦ turn.

Motion blur might also occur for any angular velocity that

is greater than 2.2rad/s, thus making it useless for pose

estimation.

In general it might be counter intuitive that the algebraic

minimization of the RS solution outperforms the GS +

Refinement approach. The reason is the initial solution of the

GS approach only finds a reduced set of inliers that satisfies

the GS perspective model. This poorly distributed set of

inliers does not constraint the camera motion well enough for

the geometric refinement to converge to the correct solution.

In our synthetic experiments the number of inliers obtained

in the GS case drops by over 70% with a motion of 12m/s.

B. Streetview Data

We evaluate the proposed algorithm on 5 different datasets

- Dataset (a)-(e). These datasets were captured by a Google

Streetview car. The images have a native resolution of 1944×
2592 pixels and are recorded at 4Hz. The shutter time for

the rolling shutter camera is 72ms. This corresponds to a

motion of 0.5m during image formation for a car driving

at 25km/h. The camera poses are obtained from a GPS/INS

system and interpolated to provide a position and orientation

for each scanline. We will refer to these poses as the ground

truth poses. It should be noted that the baseline between

consecutive images taken from the rolling shutter camera

is approximately 1m, and we are not using any temporal

constraints to estimate the velocity and pose of the camera.

An overview of the 5 sequences is given in Table I. In the
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Fig. 3. Evaluation on increasing translational velocity with image noise of 0.5 pixel standard deviation and zero angular velocity. The first two columns
show error plots for a sideways motions of the camera and the two last columns show errors for a forward (into the scene) moving camera.
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Fig. 4. Evaluation on increasing pixel noise with a fixed translational velocity of 6.9m/s and zero angular velocity. The first two columns show error
plots for a sideways motions of the camera and the two last columns show errors for a forward (into the scene) moving camera.

first step, we create a 3D map by using all the even numbered

images from each of the sequences. We extract and match

SIFT [30] features using [31]. The point correspondences are

then radially undistorted and triangulated using the provided

GPS/INS pose. 3D points with large reprojection error (> 1
pixel) are discarded from the model. Figure 6 second row,

shows the completed 3D models.

For each odd numbered image in the sequences, we extract

SIFT features, radially undistort the keypoints and match

them to the 3D model. This gives us the potential 2D-3D

correspondences. The matches are used in RANSAC together

with our 5-point minimal solver to find a consensus set. The

pose and velocity hypothesis is refined by minimizing the

objective function in Equation 8 with the Google Ceres [28]

TABLE I

DATASET OVERVIEW

Dataset
# of

Cameras
# of

3D Points
Length

(m)
Median δθ

(rad)
Median δt

(m)

(a) 118 215936 276.82 0.0014 0.0539
(b) 178 338806 377.44 0.0109 0.1698
(c) 190 326254 451.40 0.0050 0.2975
(d) 156 336712 353.61 0.0016 0.0423
(e) 162 310893 376.39 0.0030 0.0951

solver using all inliers. We compare the final pose to the

ground truth using the same error measure as in the synthetic

evaluation. The third and fourth rows of Figure 6 show
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Fig. 7. Top row ground truth velocity of the car. Bottom row error
distribution of estimated car speed. In case of the Dataset (d) we achieve
an error of 2.01km/h and 3.4km/h for Dataset (e). Note that the last bin of
the histogram is expanded to infinity.

robust estimation to get all the inlier 2D-3D correspondences.

Finally, we relaxed the linear velocity assumption and do a

non-linear refinement on the full velocity, i.e. translation and

angular, and pose of the rolling shutter camera. We verified

the accuracy of our algorithm on both synthetic and real-

world data obtained from a Streetview car.
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