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Abstract. In this paper, we study and propose solutions to the rela-
tively un-investigated non-perspective pose estimation problem from line
correspondences. Specifically, we represent the 2D and 3D line correspon-
dences as Plücker lines and derive the minimal solution for the minimal
problem of three line correspondences with Gröbner basis. Our minimal
3-Line algorithm that gives up to eight solutions is well-suited for robust
estimation with RANSAC. We show that our algorithm works as a least-
squares that takes in more than three line correspondences without any
reformulation. In addition, our algorithm does not require initialization
in both the minimal 3-Line and least-squares n-Line cases. Furthermore,
our algorithm works without a need for reformulation under the special
case of perspective pose estimation when all line correspondences are
observed from one single camera. We verify our algorithms with both
simulated and real-world data.

Keywords: Pose Estimation, Plücker Lines, Non-Perspective, Gröbner
Basis, Line Correspondences

1 Introduction

Pose estimation is a well-known problem in Computer Vision. It refers to the
problem of finding the rigid transformation between a camera frame and a fixed
world frame, given a set of 3D structures expressed in the world frame, and its
corresponding 2D projections on the camera image. The 2D image projection to
3D structure correspondences can be either points or lines, or less commonly a
combination of both. A minimum of three 2D-3D correspondences is needed to
solve for the camera pose. Solutions to the pose estimation problem have signifi-
cant importance in many real-world applications such as robotics localization, vi-
sual Simultaneous Localization and Mapping (vSLAM) / Structure-from-Motion
(SfM), and augmented reality etc.

The pose estimation problem for a single camera from point or line corre-
spondences is a very well-studied problem, and a huge literature of robust and
efficient solutions had been proposed [9, 24, 21, 6, 2, 20, 28, 23] since the 1850s.
This problem is also commonly known as the perspective pose estimation prob-
lem. In the recent years, due to the increasing popularity of multi-camera sys-
tems for robotics applications such as self-driving cars [7, 15, 16, 19] and Micro-
Aerial Vehicles [10, 11], many researchers turned their attentions to the so-called
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non-perspective pose estimation problem [17, 18, 4, 13, 22] from point correspon-
dences. The main difference between the perspective and non-perspective pose
estimation problem is that for the latter, light rays casted from the 3D points do
not meet at a single point, i.e. there is no single camera center. Consequently,
many new algorithms [17, 18, 4, 13, 22] for the non-perspective pose estimation
problem from point correspondences were proposed.

Despite the fact that the perspective pose estimation problem from point and
line correspondences, and non-perspective pose estimation problem from point
correspondences are well-studied, the non-perspective pose estimation problem
from line correspondences remains relatively un-investigated. The increasingly
wide-spread of multi-camera applications, availability of 3D models from line
reconstructions [12], and line detector/descriptor algorithms [8, 27] made the
non-perspective pose estimation problem from line correspondences imperatively
relevant.

In this paper, we study and propose solutions to the non-perspective pose
estimation problem from line correspondences. Specifically, we represent the 2D
and 3D line correspondences as Plücker lines and derive the minimal solution
for the minimal problem of three line correspondences with Gröbner basis. Our
minimal 3-Line algorithm that gives up to eight solutions is well-suited for ro-
bust estimation with RANSAC [1]. We show that our algorithm works as a
least-squares that takes in more than three line correspondences without any
reformulation. In addition, our algorithm does not require initialization in both
the minimal 3-Line and least-squares n-Line cases. Furthermore, our algorithm
works without a need for reformulation under the special case of perspective pose
estimation when all line correspondences are observed from one single camera.
We verify our algorithms with both simulated and real-world data.

2 Related Works

It was mentioned in the previous section that to the best of our knowledge no
prior work on the non-perspective pose estimation problem from line correspon-
dences exist. Nonetheless, we will discuss some of the relevant existing works
on the perspective pose estimation problem from line correspondences in this
section.

One of the earliest work on perspective pose estimation from line corre-
spondences was presented by Dhome et al. [6]. They solve the perspective pose
estimation problem as a minimal problem that uses three line correspondences.
A major disadvantage of their algorithm is that it does not work with more
than three line correspondence, which makes it difficult for least-squares estima-
tion in the presence of noise. The fact that their algorithm requires a line to be
collinear with the x-axis, and another line to be parallel to the xy-plane made it
impossible to extend their work to the non-perspective case.

Ansar and Daniilidis [2] proposed a linear formulation for the perspective
pose estimation problem from line correspondences. Their formulation works
for four or more line correspondences, but an addition step of Singular Value
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Decomposition (SVD) is needed for the case of four line correspondences. A
problem with [2] is that it resulted in a linear system of equations with 46
variables. The high number of variables compromises the accuracy of the solution
[3]. We did not adopt Ansar’s formulation although it is possible to extend
the algorithm for the non-perspective pose estimation problem. This is because
similar to the perspective case, it results in a linear system of equations with
high number of variables. Moreover, the formulation is not minimal, thus not
ideal for robust estimation with RANSAC [1].

More recently, Mirzaei et al. [20] proposed an algorithm for perspective pose
estimation from three or more line correspondences. They formulated the prob-
lem as non-linear least-squares, and solve it as an eigenvalue problem using the
Macaulay matrix without a need for initialization. The algorithm yields 27 so-
lutions, and this makes it difficult to identify the correct solution. We do not
choose Mirzaei’s formulation despite the fact that it is possible to extend the
algorithm for non-perspective pose estimation because of the high number of
solutions.

In [28], Zhang et al. proposed an algorithm for perspective pose estimation
with three or more line correspondences. In contrast to Mirzaei et al. [20], the
algorithm proposed by Zhang et al. is more practical since it yields up to only
eight solutions. However, the requirement to align one of the 3D lines with the
z-axis of the camera frame made it impossible to extend the algorithm for non-
perspective pose estimation.

The most recent work on perspective pose estimation from line correspon-
dences is presented by Pr̆ibyl et al. [23]. They represent the 2D-3D line corre-
spondences as Plücker lines, and proposed a linear algorithm that works with
nine or more correspondences. Unfortunately, their algorithm uses high number
of correspondences, i.e. nine or more, thus is unsuitable for RANSAC. We adopt
their representation of line correspondences as Plücker lines and extend their
work to non-perspective pose estimation. Furthermore, we derive the minimal
solution for the 3-Line minimal problem that is suitable for RANSAC, and show
that our algorithm works without a need for reformulation under the special case
of perspective pose estimation when all line correspondences are observed from
the same camera.

3 Problem Definition

Figure 1 shows an example of a minimal case multi-camera non-perspective
pose estimation problem from line correspondences. We are given three 3D lines
LW1

, LW2
, LW3

defined in a fixed world frame FW , and its corresponding 2D
image projections lc1 , lc2 , lc3 seen respectively by three cameras FC1 , FC2 , FC3 .
These three cameras are rigidly fixed together, and FG is the reference frame.
We made the assumption that the cameras are fully calibrated, i.e. the camera
intrinsics Ki and extrinsics TG

Ci
for i = 1, 2, 3 are known. Here, TG

Ci
is the 4× 4

homogeneous transformation matrix that brings a point defined in FCi
to FG.

Note that in general, the minimal case for non-perspective pose estimation can
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Fig. 1. An example of the non-perspective pose estimation problem from line corre-
spondences.

be three 2D-3D line correspondences from a multi-camera system made up of
either two or three cameras.

Definition 1: The non-perspective pose estimation problem seeks to find the
pose of the multi-camera system with respect to the fixed world frame, i.e. rel-
ative transformation

TW
G =

(
RW

G tWG
03×3 1

)
(1)

that brings a point defined in the multi-camera reference frame FG to the fixed
world frame FW from the 2D-3D line correspondences LWj

↔ lcj , where j is
the line correspondence index. We refer to the problem as the Non-Perspective
3-Line (NP3L) or Non-Perspective n-Line problems (NPnL) depending on the
number of 2D-3D line correspondences that are used.

4 NP3L: 3-Line Minimal Solution

We represent the 2D-3D line correspondence as a 6-vector Plücker line in our
formulation for the non-perspective pose estimation problem. Let us denote
PW
a = [PW

ax PW
ay PW

az 1]T and PW
b = [PW

bx PW
by PW

bz 1]T as the homogeneous
coordinates expressed in the world frame FW that represent the two end points
of the 3D line segment LW . The 6-vector Plücker line of the 3D line segment is
given by LW = [UT

W V T
W ]T , where

VW =
PW
b − PW

a∥∥PW
b − PW

a

∥∥ , UW = PW
a × VW . (2)

Geometrically, VW is the unit direction vector of the 3D line segment, and UW

is the vector that represents the moment of the first 3D line segment end point
PW
a and the unit direction vector VW as illustrated by Figure 2. Note that for

simplicity, we only show the illustration for one camera and one 2D-3D line
correspondence in Figure 2, and we drop the camera and line indices for brevity.
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Fig. 2. A 2D-3D line correspondence represented as Plücker lines.

LW = [UT
W V T

W ]T is known in the non-perspective pose estimation problem and
it is expressed in the coordinate frame of the fixed world frame FW .

The Plücker line LW can be expressed in the camera reference frame FC as
follows:

LC = T C
WLW =

(
RC

W btCW c×RC
W

03×3 RC
W

)
LW , (3)

where T C
W is the transformation matrix that brings a Plücker line defined in the

fixed world frame FW to the camera reference frame FC . RC
W and tCW are the

3× 3 rotation matrix and 3× 1 translation vector. Specifically,

TC
W =

(
RC

W tCW
01×3 1

)
=

(
RC

G tCG
01×3 1

)(
RG

W tGW
01×3 1

)
=

(
RC

GR
G
W RC

Gt
G
W + tCG

01×3 1

)
, (4)

where (RC
G, t

C
G) is the known camera extrinsics, and (RG

W , tGW ) is the unknown
pose of the multi-camera system defined in the previous section. Since LC =
[UT

C V T
C ]T ,

UC =
(
RC

W btCW c×RC
W

)(UW

VW

)
(5)

is a vector defined in FC that is perpendicular to the plane formed by the pro-
jection of the 3D line onto the camera image as shown in Figure 2, and

VC = RC
WVW (6)

is the unit direction vector of the 3D line in the camera reference frame FC .
In addition to the end points PW

a and PW
b of the 3D line segment LW , we

are also given the image coordinates of the end points pa = [pax pay 1]T and
pb = [pbx pby 1]T from the 2D image line correspondence lC of the 3D line.
Similar to LW , we can also represent lC as a Plücker line [uTC vTC ]T , where

vC =
p̂b − p̂a
‖p̂b − p̂a‖

, uC = p̂a × vC . (7)
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p̂a = [p̂ax p̂ay 1]T = K−1pa and p̂b = [p̂bx p̂by 1]T = K−1pb are the camera
matrix normalized image coordinates. vC is the unit direction vector of the 2D
image line segment, and it is parallel to VC from Equation 6. The third element
of vC is always zero since lC lies on the image plane that is parallel to the xy-
plane of FC . uC is the vector that represents the moment of the first camera
matrix normalized 2D image line segment end point p̂a and the unit direction
vector vC as shown in Figure 2, and it is parallel to UC from Equation 5.

4.1 Solving for RG
W

It is important to note that the moment vector U is always perpendicular to the
unit direction vector V in any Plücker line [UT V T ]T , i.e. the dot product of U
and V must be zero. As a result, we get the following constraint from Equation
6:

UT
CR

C
WVW = 0. (8)

Since we know that uC is parallel to UC , and RC
W = RC

GR
G
W , we can rewrite

Equation 8 as

uTCR
C
GR

G
WVW = 0, (9)

where the only unknown is RG
W . Equation 9 can be rearranged into the form of

a homogeneous linear equation ar = 0, where a is a 1× 9 matrix made up of the
known variables uTC , RC

G and VW , and r = [r11 r12 r13 r21 r22 r23 r31 r32 r33]T is
a 9-vector made up the nine entries of the unknown rotation matrix RG

W . Given
three 2D-3D line correspondences in the minimal case, we obtain a homogeneous
linear equation

Ar = 0, (10)

where A is a 3 × 9 matrix made up of aj for j = 1, 2, 3. Taking the Singular
Value Decomposition (SVD) of the matrix A gives us six vectors denoted by
b1, b2, b3, b4, b5, b6 that span the right null-space of A. Hence, r is given by

r = β1b1 + β2b2 + β3b3 + β4b4 + β5b5 + β6b6. (11)

β1, β2, β3, β4, β5, β6 are any scalar values that made up the family of solutions
for r. Setting β6 = 1, we can solve for β1, β2, β3, β4, β5 using the additional
constraints from the orthogonality of the rotation matrix RG

W . Following [25],
enforcing the orthogonality constraint on the rotation matrix matrix RG

W gives
us 10 constraints:

||r1||2 − ||r2||2 = 0, ||r1||2 − ||r3||2 = 0, (12a)

||c1||2 − ||c2||2 = 0, ||c1||2 − ||c3||2 = 0, (12b)

r1r2
T = 0, r1r3

T = 0, r2r3
T = 0, (12c)

c1
Tc2 = 0, c1

Tc3 = 0, c2
Tc3 = 0. (12d)
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Here, rj for j = 1, 2, 3 and cj for j = 1, 2, 3 are the rows and columns of the
rotation matrix RG

W . Putting r from Equation 11 into the 10 orthogonality con-
straints in Equation 12, we get a system of 10 polynomial equations in terms of
β1, β2, β3, β4, β5, i.e.

fj(β1, β2, β3, β4, β5) = 0, j = 1, 2...10. (13)

We use the automatic generator provided by Kukelova et al. [14] to generate
the solver for the system of polynomials in Equation 13. A maximum of up
to eight solutions can be obtained. β1, β2, β3, β4, β5 are substituted back into
Equation 11 to get the solutions for r that makes up the rotation matrix RG

W .
For each of the solutions, we divide RG

W by the norm of its first row ||r1|| to
enforce the orthonormal constraint for a rotation matrix. Furthermore, we ensure
that RG

W follows a right-handed coordinate system by multiplying it with −1 if
det(RG

W ) = −1.

4.2 Solving for tGW

It was mentioned earlier that uC is the vector that represents the moment of the
first camera matrix normalized 2D image line segment end point p̂a and the unit
direction vector vC as shown in Figure 2, and it is parallel to UC from Equation
4. This means that we can write

λuC = UC , (14)

where λ is a scalar value. Substituting Equation 14 into Equation 5, we get

λuC =
(
RC

W btCW c×RC
W

)(UW

VW

)
. (15)

[RC
W btCW c×RC

W ] can be seen as a 3 × 6 projection matrix that projects a 3D
Plücker line [UT

W V T
W ]T onto a 2D image. It can be easily seen from Figure 2

that λuC is the normal vector of the plane formed by the projection of the 3D
Plücker line [UT

W V T
W ]T onto the image plane.

Taking the cross product of uC on both sides of Equation 15 to get rid of the
unknown λ, we get

buCc×
(
RC

W btCW c×RC
W

)(UW

VW

)
= 0. (16)

We substitute the known camera extrinsics (RC
G, t

C
G) and rotation matrix RG

W

that we solved in Section 4.1 into Equation 16 to get two constraints with the
unknown translation tGW for each 2D-3D line correspondence uC ↔ [UT

W V T
W ]T :

buCc×
(
RC

GR
G
W bRC

Gt
G
W + tCGc×RC

GR
G
W

)(UW

VW

)
= 0. (17)

Equation 17 can be rearranged into a homogeneous linear equation bt = 0, where
b is a 2× 4 matrix made up of all the known variables RC

G, t
C
G, R

G
W , uC , UW and
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VW , and t = [tx ty tz 1]T is a 4-vector made up of the three entries of the
unknown translation vector tGW . Given three 2D-3D line correspondences in the
minimal case, we obtain a overdetermined homogeneous linear equation

Bt = 0. (18)

B is a 6 × 4 matrix made up of bj for j = 1, 2, 3. We solve for t by taking the
4-vector that spans the right null-space of B. The final solution is obtained by
dividing the 4-vector with its last element since t = [tx ty tz 1]T . Finally, tGW is
the first three elements of t.

We get up to eight solutions for the unknown pose (RG
W , tGW ) of the world

frame FW to the multi-camera system FG. We use each of the solution to trans-
form the end points PW

a and PW
b from each of the 3D line into the camera frame

FC , and retain the solutions that give the most number of lines with at least
one end point from each line that appears in front of the camera, i.e. PC

az > 0
or PC

bz > 0. Finally, the correct solution can be identified from the reprojection
errors (see Section 6 for the details of reprojection errors) for all the other 2D-3D
line correspondences. A 2D-3D line correspondence is chosen as an inlier if the
reprojection error is lesser than a pre-defined threshold, and the correct solution
is chosen as the one that yields the most number of inliers.

5 NPnL: ≥3 Line Correspondences

In general, the solution steps remain unchanged for n ≥ 3 2D-3D line correspon-
dences. The system of homogeneous linear equations Ar = 0 from Equation 10 is
valid for n ≥ 3 2D-3D line correspondences, i.e. A is a n×9 matrix where n ≥ 3.
Similar to the minimal case, we can find six vectors b1, b2, b3, b4, b5, b6 that spans
the right null-space of A using SVD, where b6 is set to 1. The solution for RG

W is
obtained by enforcing the orthogonality constraints in Equation 12. We get up
to eight solutions for RG

W . For each solution of RG
W , we solve for tGW following

the steps described in Section 4.2. Bt = 0 from Equation 18 is now a 2n × 4
matrix, where n ≥ 3. Solutions that give the most number of lines with at least
one end point from each line that appears in front of the camera are retained.
The final solution for (RG

W , tGW ) is chosen to be the one with the highest number
of inliers.

6 Reprojection Error for RANSAC

Figure 3 shows an illustration of the reprojection error that we use to reject
outliers within RANSAC, and to determine the correct solution for the pose of
the multi-camera system. For each estimated pose (RG

W , tGW ), we transform the
3D end points (PW

a , PW
b ) defined in the world frame FW into the camera frame

FC as follows:

PC
k =

(
RC

GR
G
W RC

Gt
G
W + tCG

01×3 1

)
PW
k , k = a, b, (19)
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Fig. 3. An illustration of reprojection error from a 2D-3D line correspondence.

where (RC
G, tCG) is the known camera extrinsics. Next, we compute the reprojec-

tion of PC
a and PC

b onto the image:

p̃k = KPC
k , p̃k =

p̃k
p̃kz

, k = a, b, (20)

where K is the camera intrinsics. Note that the division by p̃kz is to ensure that
p̃a and p̃b are homogeneous coordinates. The reprojection error e is then com-
puted as the mean of the shortest distances da and db from the camera matrix
normalized 2D line end points p̂a and p̂b to the infinite line formed by the cam-
era matrix normalized reprojected correspondence line end points K−1p̃a and
K−1p̃b. We remove the influence from the length of the line segment by normal-
izing the reprojection error with the distance between p̂a and p̂b. Specifically,

e =
da + db

2(‖p̂b − p̂a‖)
. (21)

Any 2D-3D line correspondence with e ≥ α, where α is a pre-defined threshold
is rejected as an outlier.

7 Special Cases

One Camera: The problem becomes the perspective pose estimation problem
with line correspondences when all correspondences are seen by only one camera.
Here the camera extrinsics (RC

G, tCG) from Equation 4 vanishes, and we directly
solve for the camera orientation RC

W from Equation 8 without the need to de-
compose the orientation into RC

GR
G
W . Similarly, we can solve for the camera

translation tCW directly from Equation 16. The steps for solving the single cam-
era pose from≥ 3 line correspondences remain the same as described in Section 5.

Parallel 3D Lines: This is the minimal case where two or all the three 3D lines
are parallel. Since the unit directions VW from Equation 8 are the same for par-
allel lines, the rank of matrix A from Equation 10 drops below 3. Consequently,
RG

W from Section 4.1 cannot be solved. Fortunately, we can easily prevent this
degenerate case by omitting parallel lines.



10 G. H. Lee

8 Results

We validate our non-perspective pose estimation algorithm with line correspon-
dences from both simulated and real-world datasets. Our algorithm is imple-
mented on Matlab and takes ∼ 0.07s to solve for the solution. Note that due
to the absence of prior methods for non-perspective pose estimation from line
correspondences as comparisons, we focus our evaluations on the stability and
accuracy of our algorithm based on different configurations of the multi-camera
system. In addition, we also do a comparison of our algorithm under the special
case of one camera with the existing methods from Zhang et. al. [28] and Mirzaei
et. al. [20].

8.1 Simulations

One Line Per Camera: We first evaluate the accuracy of our algorithm for
different number of cameras in the multi-camera system. We randomly generate
500 different multi-camera poses TW

G uniformly drawn from a range of [−5, 5] m
and [−1, 1] rad for all x, y, z axes, and roll, pitch and yaw angles. For each of these
multi-camera pose, we randomly generate the extrinsics TG

Ci
, for i = 3, 10, 50, 100

cameras. All the cameras all generated to lie on a sphere centered on the multi-
camera frame FG with their z-axis pointing outwards. Hence, the extrinsics TG

Ci

are uniformly drawn from a sphere radius range of [1, 5] m with the xy-plane
orientation on the sphere uniformly drawn from a range of [−π, π] rad. We
randomly generate one 2D line for each camera, where the line end points are
uniformly drawn within the range of the image width and height. We fixed the
image size at 1280 × 1024. Only 2D lines with length more than 30 pixels are
accepted. The depths that correspond to the end points of the 2D image lines
are uniformly drawn from a range of [5, 10] m.

1 Line Per Camera

(a)

1 Line Per Camera

(b)

Fig. 4. Comparisons of the average relative (a) rotational and (b) translational errors
for 3, 10, 50 and 100 cameras with 1 line correspondence per camera. Note that the
configuration with 3 cameras is the minimal case.
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Figure 4 shows the plots of the average relative rotational and translational
errors for 3, 10, 50, 100 cameras with one line per camera, where the end points
of the 2D image lines are corrupted by noise that follows an uniform distribution
with variance of 1 to 20 pixels at a step size of 1 pixel centered around the original
end point values. Following [24], the relative translational error is computed as
2(||t̃−t||)
||t̃||+||t|| , where t̃ and t is the ground truth and estimated translations. The

relative rotational error is computed as the norm of the Euler angles from R̃TR,
where R̃ and R are the ground truth and estimated rotation matrices. We can
observe from Figure 4 that the rotational and translational errors is the highest
for the minimal case (shown in green) and decreases with increasing number of
cameras. We can also see that the errors remain small with increasing noise.

Ten Cameras: Figure 5 shows the comparisons of the average relative rota-
tional and translational errors for 500 randomly generated multi-camera system
with 10 cameras, where each camera sees 1, 10, 50, 100 lines with the end points
corrupted with noise from 1 to 20 pixels at a step size of 1 pixel. We can see
that the errors for the 1 line per camera case (shown in green) is the highest,
and decrease gradually for the 10, 50, 100 lines per camera cases. Overall, the
errors increase but remain small with increasing pixel noise.

10 Cameras

(a)

10 Cameras

(b)

Fig. 5. Comparisons of the average relative (a) rotational and (b) translational errors
for 1, 10, 50 and 100 lines per camera with 10 cameras.

One Camera: Figure 6 shows the comparisons of the average rotational and
translational errors from our algorithm, [28] and [20] for 500 randomly generated
single cameras, where the end points of the 2D image lines are corrupted with
noise from 1 to 20 pixels at a step size of 1 pixel. The number of lines seen by
the camera vary from 3 (our), 4 ([28] and [20]), 10, 50 and 100. It is the minimal
case when the number of lines is 3. Note that no results from the minimal case
are shown for [28] and [20] since the open-source Matlab codes are implemented
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for ≥ 4 line correspondences. Despite the fact the our algorithm is formulated
for non-perspective pose estimation, it can be observed from Figure 6 that our
algorithm shows similar accuracy as [28] and [20] under the influence of noise
for perspective pose estimation without a need for reformulation.

(a) (b)

Fig. 6. Comparisons of the average relative (a) rotational and (b) translational errors
from our algorithm, [28] and [20] for 3 (our), 4 ([28] and [20]), 10, 50 and 100 lines in
one camera. Note that the configuration with 3 lines in one camera is the minimal case
for our algorithm.

8.2 Real-World Data

We test the accuracy of our non-perspective pose estimation algorithm with the
3D line models shown in Figure 7 and 8. The 3D line models are reconstructed
from 113 (Dataset 01) and 229 (Dataset 02) images respectively. We first do a
3D reconstruction with [26] to get the camera poses (shown in red) and sparse
3D points of the structures. Next, we discard the 3D points and use the camera
poses to compute the 3D lines of the structures (shown in blue) using [12].
In our experiments, we emulate a multi-camera system by randomly selecting
≥ 3 cameras from the cameras in the 3D models. One of the selected cameras
is chosen to be the reference frame of the multi-camera system. The ground
truth pose of the multi-camera system, i.e. pose of the reference frame, and the
extrinsics of the other cameras in the multi-camera system are computed with the
known poses from the 3D reconstruction. The camera poses shown in green from
Figure 7 and 8 are examples of the emulated multi-camera system. The images
shown on the left of the 3D line models are the images seen by the selected
multi-camera system shown in green. For each emulated multi-camera system,
we remove the cameras from the 3D model, find the 2D-3D line correspondences,
and compute the pose of the multi-camera system with our non-perspective pose
estimation algorithm. The estimated pose is then compared with the ground
truth, i.e. pose of the reference frame for evaluation.
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Fig. 7. 3D Line model from Dataset 01 (113 images) for testing our non-perspective
pose estimation algorithm.

Fig. 8. 3D Line model from Dataset 02 [5] (229 images) for testing our non-perspective
pose estimation algorithm.

Table 1 shows the comparisons of the average relative rotational and trans-
lational errors from our non-perspective pose estimation algorithm with multi-
camera systems that are made up of 3, 5, 10, 20, 25 cameras from both Dataset
01 and 02 respectively. For each multi-camera system, the average rotational and
translational errors are computed from 80 sets of randomly selected cameras. We
can see that the average errors for both datasets remain low and stable for the
different number of cameras in the multi-camera system.

Table 2 shows the comparisons of the average relative rotational and transla-
tional errors from our algorithm, [28] and [20] for the special case of one camera.
The average relative rotational and translational errors are computed from 80
randomly selected cameras. We can see that the average errors from our algo-
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Table 1. Average relative rotational (R Error, Radian) and translational (t Error, No
Units) errors for multi-camera systems emulated with 3, 5, 10, 20 and 25 cameras from
datasets 01 and 02 respectively.

Dataset
# of Cameras

3 5 10 20 25

01 (R Error) 0.0119 0.0051 0.0041 0.0032 0.0034
02 (R Error) 0.0562 0.1600 0.1381 0.2166 0.2778

01 (t Error) 0.0886 0.0465 0.0256 0.0289 0.0262
02 (t Error) 0.0380 0.0459 0.0700 0.0747 0.0900

Table 2. Comparisons of the average relative rotational (R Error, Radian) and trans-
lational (t Error, No Units) errors from our algorithm, [28] and [20] for one camera.

Dataset
[28] [20] Ours

R Error t Error R Error t Error R Error t Error

01 0.3016 0.1988 0.3733 0.2015 0.0155 0.0195
02 0.0698 0.0407 0.0186 0.0229 0.0369 0.2549

rithm are small and comparable to [28] and [20]. Note that RANSAC is used to
eliminate outliers for all the algorithms.

9 Conclusions

We derived the minimal solution for the relatively un-investigated minimal prob-
lem of non-perspective pose estimation from line correspondences. We showed
that our minimal 3-Line algorithm gives up to eight solutions, and is well-suited
for robust estimation with RANSAC. Our algorithm works as a least-squares
that takes in more than three line correspondences without any reformulation.
In addition, our algorithm does not require initialization in both the minimal 3-
Line and least-squares n-Line cases. We further showed that our algorithm works
without any need for reformulation under the special case of perspective pose
estimation when all line correspondences are observed from one single camera.
We verified our algorithms with both simulated and real-world data.
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