
Vision-Based Autonomous Mapping and Exploration Using a Quadrotor
MAV

Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz
Meier, Petri Tanskanen, and Marc Pollefeys

Computer Vision and Geometry Lab, ETH Zürich, Switzerland

Abstract— In this paper, we describe our autonomous vision-
based quadrotor MAV system which maps and explores un-
known environments. All algorithms necessary for autonomous
mapping and exploration run on-board the MAV. Using a front-
looking stereo camera as the main exteroceptive sensor, our
quadrotor achieves these capabilities with both the Vector Field
Histogram+ (VFH+) algorithm for local navigation, and the
frontier-based exploration algorithm. In addition, we implement
the Bug algorithm for autonomous wall-following which could
optionally be selected as the substitute exploration algorithm
in sparse environments where the frontier-based exploration
under-performs. We incrementally build a 3D global occupancy
map on-board the MAV. The map is used by the VFH+ and
frontier-based exploration in dense environments, and the Bug
algorithm for wall-following in sparse environments. During the
exploration phase, images from the front-looking camera are
transmitted over Wi-Fi to the ground station. These images are
input to a large-scale visual SLAM process running off-board
on the ground station. SLAM is carried out with pose-graph
optimization and loop closure detection using a vocabulary
tree. We improve the robustness of the pose estimation by
fusing optical flow and visual odometry. Optical flow data is
provided by a customized downward-looking camera integrated
with a microcontroller while visual odometry measurements are
derived from the front-looking stereo camera. We verify our
approaches with experimental results.

I. INTRODUCTION

Quadrotor MAVs are an ideal choice for autonomous
reconnaissance and surveillance because of their small size,
high maneuverability, and ability to fly in very challeng-
ing environments. To perform these tasks effectively, the
quadrotor MAV must be able to do precise pose estimation,
navigate from one point to another, map the environment,
and plan exploration strategies. Ideally, all these processes
have to run on-board the quadrotor especially in GPS-denied
environments.

Many researchers demonstrated some of these abilities
by using laser range finders [2], [8], [22], artificial marker
aided vision [9], [19] and/or a Vicon motion capture system
[15]. A camera is sometimes used to detect loop closure
opportunities in laser-based SLAM. In many of these sys-
tems, the choice of the sensors becomes an impedance factor
when designing the quadrotor to achieve full autonomy in
mapping and exploration. For example, the considerable
weight and power consumption of the laser range finder pose
a problem for quadrotor MAVs with stringent payload and
power limitations. Other sensors such as artificial marker
aided vision and the Vicon system require modifications of
the environment, heavily limiting autonomy of the quadrotor.

In comparison with the popular choice of laser range
finder, artificial marker aided vision and Vicon motion cap-
ture system, the use of a camera as the main sensor for
quadrotor MAVs has largely been undermined. This is mainly
due to the need for significant computational resources for
most computer vision algorithms and the lack of robustness
in pose estimation from cameras. However, a camera offers
several advantages over the other sensors for quadrotor
MAVs. It is much more light-weight and consumes less
power, and the camera does not require any modifications
to the environment.

Fig. 1. Our PIXHAWK quadrotor system.

The main objective of this paper is to demonstrate the
feasibility of autonomous mapping and exploration for a
quadrotor with cameras as its main sensor. Our quadrotor
system as shown in Figure 1 is fitted with a customized
computer based on a Intel®Core™2 Duo processor that
meets our computationally-demanding computer vision pro-
cesses. We improve the robustness of the pose estimation
by fusing visual odometry readings from a front-looking
stereo camera with partial state estimates from a customized
downward-looking camera. The downward-looking camera
has a built-in ARM®Cortex-M4F microcontroller with a
Digital Signal Processing (DSP) extension which runs an
optical flow algorithm. The quadrotor moves autonomously
from one point to another using the VFH+ algorithm [23].
It plans exploration strategies based on the frontier-based
exploration algorithm [25] where frontiers are selected from

a global occupancy map [14] which is constructed on-board.
The frontier-based exploration algorithm works very well
in dense environments where distinctive frontiers could be
identified. The algorithm, however, under-performs in sparse
environments where clearly defined frontiers are absent. As a
remedy, we implement the Bug algorithm [7] for autonomous
wall-following which could be optionally selected as the
substitute exploration algorithm in cases where the frontier-
based exploration under-performs. Images from the front-
looking camera are transmitted to the ground station where
large scale SLAM is done off-board with pose-graph opti-
mization. We use the g2o [16] implementation for SLAM.
Each vertex in the graph represents the quadrotor pose, and
each edge represents the constraints between each quadrotor
pose obtained from the visual pose estimation. Additional
edge constraints are also added from loop-closure detections
in the camera images via the vocabulary tree [11], [20]. We
discuss some of the related works in Section II. In Section III,
we show the hardware and software design of our quadrotor
system. The pose estimation for the quadrotor is described in
Section IV. In Section V, we describe our implementation
of the autonomous mapping and exploration algorithms in
detail. The off-board SLAM is discussed in Section VI.
Lastly, we show the experimental results in Section VII.

II. RELATED WORK

Our work in this paper is closely related to the works of
[2], [22]. In [2], Bachrach et al. use laser scan matching
to estimate the MAV’s pose. SLAM is performed with
incremental pose-graph optimization, and loop detection is
done via laser scan matching. The SLAM and planning
processes run on a ground station while pose estimation runs
on-board the MAV. The frontier-based exploration approach
[25] is used for autonomous mapping and exploration of the
environment. Results of large-scale exploration and SLAM
are shown. In [22], Shen et al. show multi-floor navigation
based on the exclusive use of on-board processing. The
MAV pose is estimated by laser scan matching, and opti-
mized using pose-graph optimization SLAM with an iterative
Kalman filter approach. Loops in the pose-graph are detected
using a camera and vocabulary tree matching. In their
approach, camera images are only used for loop detection.
Pose estimation and SLAM run on-board the MAV. The pose-
graph includes full 6-DOF poses so that it is possible to
distinguish poses at different altitudes, thus allowing multi-
floor mapping. They demonstrate autonomous operation and
mapping of the MAV where the flight path is defined by
manual setting of waypoints in the currently estimated map.
They also show results from large-scale SLAM; however,
instead of actual flight, the MAV was carried around by
an operator. Despite the close similarities to our work, we
highlight one important difference; we use cameras whereas
both described works use a laser range finder as the main
sensor. This sensor difference requires a vastly different set
of components in our system. Laser range finders are also
used in [8], [12] which focus on pose estimation and SLAM
without autonomous flight behaviors.

Artificial marker aided vision-based flights are demon-
strated in [9], [19] In [9], Eberli et al. show autonomous
takeoff, landing, and hovering using one circular artificial
marker. This marker is detected in images from a monocular
camera, and used to estimate the pose of the MAV. The pose
data is fed back to a set-point controller in order to achieve
autonomous takeoff, landing, and hovering. Meier et al. [19]
pushed the technology further by demonstrating autonomous
takeoff, landing, hovering, and waypoint following over
a much larger space using numerous ARToolKitPlus [24]
markers laid on the ground. Their MAV is equipped with a
single downward-looking camera which detects these mark-
ers, and computes the MAV pose. However, the autonomy
in both works is largely restricted to the area covered by the
artificial markers. In [15], Heng et al. showed autonomous
occupancy grid mapping, global path planning, and obstacle
avoidance of the MAV. However, the poses of the MAV
are obtained from the Vicon system, thus restricting the
autonomy of the MAV to the Vicon space.

Markerless computer vision control based on a single
downward-looking camera with wide-angle lens has been
demonstrated for landing, takeoff, and hovering and small-
scale mapping in [1], [5]. However, they cannot demon-
strate other autonomous behaviors such as path planning
and exploration because the downward-looking camera is
not able to see the front environment of the quadrotor. In
contrast, our main sensor is a forward-looking stereo camera
complimented with a downward-looking camera for optical
flow. Consequently, this allows our quadrotor to have better
perception of the environment, and thus, the ability to do
autonomous path planning and exploration.

Bills et al. [4] implemented an approach for higher level
navigation using a Parrot AR.Drone. Utilizing image clas-
sification, the MAV was able to follow corridors, and even
make turns, but no notion of a metric map was involved.

III. OUR QUADROTOR PLATFORM

In this section, we give a brief description of the hardware
and software designs of our quadrotor platform which is
shown in Figure 1. The quadrotor is designed for autonomous
flights with the capability of processing computer vision
algorithms on-board. Figure 2 shows a schematic of the hard-
ware and software components on our quadrotor platform.
The quadrotor platform weighs 1.4 kg, spans a diameter
of 0.6 m and has a payload capacity of up to 600 g.
We arrange two Matrix Vision mvBlueFOX cameras with
752x480 resolution in a front-looking stereo rig with a 80
mm baseline. Images from the cameras are inputs to the
stereo processes which compute disparity and depth maps.
The disparity and depth maps are used as inputs to the
visual odometry and Artificial Intelligence (AI) Planner that
give the quadrotor all the autonomous behaviors such as
local navigation and exploration. Our visual odometry also
requires the images directly from the stereo camera (see
Section IV-B for more details). All stereo processes, visual
odometry, and AI Planner run on our customized flight
computer with an Intel®Core™2 Duo 1.86 GHz processor

and running Ubuntu. The AI Planner selects new waypoints
and passes these waypoints to the position controller which
moves the quadrotor from its current location to the new
waypoint. Our position controller is a closed-loop PID con-
troller with the full state (x, y, z, ϕ, θ, φ) (see Section IV for
state estimation) of the quadrotor as feedback. Details of the
implementation of the position controller can be found in
one of our previous works [17].

We add another downward-looking camera that runs an op-
tical flow algorithm on a built-in ARM®Cortex-M4F micro-
controller with DSP extension. Data from a customized iner-
tial measurement and autopilot unit (pxIMU), and ultrasonic
distance sensor is also included for partial state estimation
with optical flow (see Section IV-A for more details). The
partial state estimates are then fused with the visual odometry
readings to obtain more robust pose estimates. The pxIMU is
also used for attitude control which stabilizes the quadrotor
flight. All the estimation and control algorithms are executed
on an ARM7 microcontroller in hard real-time. Note that two
separate microcontrollers are used for the optical flow and
control. The pxIMU also synchronizes and timestamps all
on-board sensors including images from the cameras. This
hardware synchronization allows us to fuse outputs from
different sensors and correctly estimate sensor delays. The
outputs from the stereo processes, visual odometry, and pose
estimator are sent to the ground station where SLAM and
loop-closure detection are computed off-board.

Stereo
Processes

15 Hz

Visual
Odometry

10 Hz

AI
Planner
10 Hz

SLAM
+

Loop Closure Detection

Pose Estimator
200 Hz

Attitude Observer
200 Hz

Position
Controller

50 Hz

Attitude
Controller

200 Hz

4x Motors
Control

Stereo
Cameras

Optical Flow
Camera with

ARM MCU

Ultrasonic
Sensor

pxIMU

High- Level Linux Flight Computer
(Intel Core 2 1.86 GHZ)

Low Level Realtime Controller
(ARM7)

Off-Board
Computer

Fig. 2. System hardware and software design.

IV. POSE ESTIMATION

A. Partial State Estimation with Optical Flow

We estimate the x and y velocities of the quadrotor in the
low-level controller using the optical flow output from the
microcontroller integrated with the downward-looking cam-
era. We assume that there is no coupling effect between the
velocities in the two axes, and that each of these quantities
can be estimated with an independent 1-dimensional Kalman
filter.

The dynamic model of the quadrotor is obtained from
system identification. We assume that the quadrotor is a point
mass, and that the velocities in the x and y axes (vx, vy) are
decoupled and can be computed with a linear state equation
given in Equation (1) that takes the pitch θI and roll ϕI

angles in the inertial frame as the input in the respective
axis. In this work, θI and ϕI are directly read from the IMU
on the quadrotor.

vx(k) = axvx(k − 1) + bxθ
I(k)

vy(k) = ayvy(k − 1) + byϕ
I(k)

(1)

The parameters of the state equations (ax, bx, ay, by) are
determined by fitting the ground truth velocities of the
quadrotor collected from a Vicon motion capture system
with the pitch and roll values collected from the IMU on
the quadrotor using the ARX model found in the Matlab
System Identification toolbox 1.

The measurements of the x and y velocities for the Kalman
filter come from the optical flow. The x and y velocities (vox,
voy) measured by the optical flow camera are in pixel space,
and these quantities are converted into metric space (vmx , vmy)
based on the altitude h of the quadrotor which is measured
by the ultrasonic sensor. Equation (2) shows this conversion
where λx and λy are scaling constants. ∆θB and ∆ϕB are
instantaneous pitch and roll angles of the quadrotor in the
body frame obtained by integrating the angular rates from
the IMU. Note that ∆θB and ∆ϕB are assumed to be small
because small angle approximation is used in the derivation
of Equation 2. ∆θB and ∆ϕB compensate for the extra
optical flow introduced by tilting the optical flow camera off
the horizontal plane. vmx and vmy are in the body frame and
have to be transformed into the inertial frame before it can be
fused with the full state estimate from visual odometry. This
is easily achieved by a pre-multiplication with the rotation
matrix obtained from the IMU readings.

vmx = h
(
λxv

o
x − ∆θB

)
vmy = h

(
λyv

o
y − ∆ϕB

) (2)

Figure 3 shows the comparison of the velocity estimates from
the Kalman filter with the Vicon ground truth and optical
flow. Our velocity estimates are smoother and sufficiently
close to the ground truth. The partial state of x and y in the
inertial frame are obtained by integrating the velocities over
time.

(a) (b)

Fig. 3. Results of x and y velocities from the Kalman filter.

1www.mathworks.com/products/sysid/

B. Full State Estimation with Visual Odometry

We use the front looking stereo camera to compute the
visual odometry that estimates the full state (x, y, z, ϕ, θ, φ)
of the quadrotor in the inertial frame. As mentioned earlier,
the visual odometry is computed on the high-level flight
computer. The visual odometry outputs are then fused with
the integrated partial state estimates x and y from the optical
flow to get better full state estimates. The fusion is done with
a low-pass filter on the low-level controller.

In contrast to many stereo camera visual odometry al-
gorithms that do consecutive frame-to-frame matching, we
maintain a reference frame and compute the poses of the
subsequent frames by localization with respect to the refer-
ence frame. First, we extract and match FAST corners [21]
and BRIEF descriptors [6] from the left cameras of both
the reference and current frames. Here, the reference frame
includes the image from the stereo left camera, and disparity
and depth maps from the stereo processes. The current frame
consists of only the image from the stereo left camera.
The 3D points are computed from the depth map of the
reference frame. Next, we get the 2D-3D correspondences
of the current frame to the reference frame from their 2D-
2D matches of the image features. Lastly, we compute the
current pose with a RANSAC PnP [10] followed by a non-
linear refinement with robust cost function [13].

We select a new reference frame based on the following
conditions:

• The number of geometric inliers of the feature corre-
spondences has to be above a threshold value.

• Either the Euclidean or angular distance measured be-
tween the existing reference frame and the current frame
exceeds a threshold value.

In cases where there are no sufficient matches, we replace
the pose estimation with the optical flow and IMU readings.
If this persists over a certain period of time, we replace the
reference frame with the current frame. The advantage of
using reference frames as compared to consecutive frame-
to-frame matching is that it is less susceptible to drift. This
is because we compute the current pose by localizing the
current frame directly on the reference frame instead of
concatenating frame-to-frame relative pose estimates which
increases the chance for errors to accumulate. In particular,
our reference frame visual odometry helps to stabilize the
quadrotor during hovering by eliminating any possible drifts.

V. AUTONOMOUS MAPPING AND EXPLORATION

Figure 4(a) shows the sub-components of the AI planner
for dense environments where frontiers are clearly defined.
Autonomous selection of the next waypoint is done by the
frontier-based exploration which makes the selection based
on a 2D slice of the existing occupancy grid mapping
chosen at a fixed altitude. The quadrotor moves to the next
waypoint via the VFH+ algorithm. Figure 4(b) shows the
sub-components of the AI planner for sparse environments
where frontiers are absent. In this case, the Bug algorithm
for wall-following replaces the frontier-based exploration and

(a)

(b)

Fig. 4. AI planner for autonomous mapping and exploration in (a) dense
and (b) sparse environments.

VFH+ algorithm, and generates the next waypoint at a fixed
altitude. The selection of the exploration algorithm is done
manually in our current implementation.

A. Mapping

The same mapping algorithm is used in both dense and
sparse environments to generate a 3D occupancy grid map.
Since the point cloud from a stereo frame potentially contains
up to ∼350000 points, it is inefficient to directly update a
3D occupancy map with the point cloud. At the same time,
the point cloud contains a considerable number of outliers.
Instead, we downsample the point cloud to a virtual scan as
described in [14], [15], removing many of the outliers in the
process, before updating the 3D occupancy map via traversal
of each ray in the virtual scan.

B. Exploration

1) Frontier-Based Exploration: We build on top of our
visual odometry (Section IV-B) and mapping (Section V-A)
algorithms the capability to autonomously explore and map
an unknown environment. This essentially turns our mapping
algorithm into active mapping [18] where waypoints are
selected autonomously based on the exploration strategy.
We use the frontier-based exploration [25] algorithm as our
exploration strategy, and we set a fixed altitude for the MAV
to fly at during the exploration process.

Fig. 5. 2D slice of initial occupancy map. Unknown cells are colored as
grey, occupied cells are black, and free cells are white. The blue frontier
behind the MAV is designated as the home frontier.

Exploration begins at an arbitrary location in an unknown
environment. The frontier behind the MAV is designated as

the home frontier, and the MAV goes to as many frontiers as
possible until it reaches the home frontier and lands at that
frontier. Figure 5 shows the 2D slice of the initial occupancy
map at the fixed altitude, and the home frontier colored in
blue. Due to the use of a forward-looking stereo camera, the
home frontier marks the left and right sides of the camera’s
field of view.

Initially, the MAV extracts a 2D slice of the 3D occupancy
grid map based on its fixed altitude. Each grid cell in the
map is classified as either occupied, free, or unknown based
on its occupancy probability. A grid cell is labeled as a
frontier cell if the cell is classified as free and has at least 1
neighbor classified as unknown. These frontier cells are then
clustered into frontiers via connected-component labeling.
Both frontiers whose cell count is below a threshold, and
inaccessible frontiers are removed from the frontier set.
A flood-fill algorithm is initialized at the MAV’s current
position, and frontiers which contain cells not labeled by
the flood-fill algorithm are determined as inaccessible. The
remaining frontiers are the regions where the MAV should
fly to in order to maximize additional information about the
environment. The centroid (Cj

x, C
j
y) of the jth frontier in the

map is computed as:

Cj
x = 1

n

n∑
i=0

xji

Cj
y = 1

n

n∑
i=0

yji

(3)

The MAV selects the centroid that is closest to its current
location as its next desired waypoint. The desired heading κ
is set to be the mean of the heading of the frontier cells with
respect to the centroid. The MAV then flies to the desired
waypoint using VFH+, and along the way, the occupancy
map expands based on successive stereo images. Once the
MAV either reaches the desired frontier or cannot reach that
frontier within a certain period of time, the MAV selects
another frontier to go to. Exploration continues until the
home frontier is the only frontier left in the map, and the
MAV lands at the home frontier.

2) Wall-Following Exploration: We adopt a wall-
following exploration strategy using the Bug algorithm [7]
in sparse environments where the frontier-based exploration
under-performs. The quadrotor starts at an arbitrary location
near a wall. A 3D occupancy grid map described in Section
V-A is built incrementally as the quadrotor circumvents the
wall. An example of the 3D occupancy map is shown in
Figure 6. We extract the wall plane from the 3D points
from the stereo camera by doing iterative plane fittings with
RANSAC. The plane fitting process is initialized with a
randomly chosen set of points. A plane is taken as the wall
plane if it is approximately parallel to the gravity vector from
the IMU. The 3D points belonging to a plane which does not
fulfill this criteria are discarded, and the selection process
continues iteratively with the remaining 3D points until we
find a suitable wall plane. Figure 7 shows an example of
a wall detected (highlighted in blue) by the plane detection
algorithm. The MAV has to select a desired waypoint once

the wall is detected. This is done by first computing the point
p1 on the wall which is closest to the current position of the
MAV. We then compute the point p2 which is at a distance d
away from p1 along the wall plane at the same altitude as the
MAV, and the next waypoint p3 is chosen as the point in the
perpendicular direction from the plane with a distance equal
to the distance between p1 and the MAV’s current position.
The choice of d depends on the admissible distance from one
waypoint to another. The chosen waypoint is directly sent
to the position controller of the quadrotor. Exploration with
wall-following terminates at the command of the operator.

Fig. 6. 3D occupancy map built incrementally as the MAV was following
a wall. The map resolution is 0.1 m.

Fig. 7. Bug algorithm detecting and following a wall in a sparse
environment.

C. Local Planning

The VFH+ plans the path to the desired frontier if the
frontier-based exploration algorithm was selected. The VFH+
planner reads in pose and occupancy map updates; at each
iteration, the planner constructs a polar histogram centered at
the MAV’s current position, and expands each cell classified
as occupied in the occupancy map by the sum of the
MAV’s width and safety clearance distance. The score of
each histogram sector is based on the distance between the
MAV’s position and the obstacle cells falling in the histogram
sector. The scores of all histogram sectors are thresholded
to yield candidate vector directions. Each vector direction

has a score equal to the weighted sum of three angular
differences: between that vector direction and the MAV’s
current yaw, between that vector direction and the direction
towards the desired goal, and between that vector direction
and the previously chosen direction. This scoring method
facilitates a smooth trajectory. The vector direction with the
lowest score is chosen as the direction for the MAV to travel
in. A set-point at a preset distance from the MAV along the
vector direction is sent to the position controller.

In figure 8, the exploration module has selected the desired
waypoint to be at the upper right of the image along the
corridor. The figure shows the cells in the occupancy map
classified as occupied and colored from blue to red in order
of increasing height. The thresholded polar histogram is
visualized as a circle around the MAV. The green sectors
represent the set of feasible vector directions, while the red
sectors represent the set of infeasible vector directions due
to the directions’ proximity to nearby obstacles. The lines
radiating out from the MAV represent the candidate vector
directions. The lines are colored according to their score:
blue indicates a low score while red indicates a high score.
The set-point represented as an orange sphere indicates the
set-point along the desired vector direction.

Fig. 8. Visualization of obstacle map and VFH+ planning along a corridor.
The left stereo image on the top left shows the corridor and the bottom right
shows the textured map in 3D. The map resolution is 0.25 m.

VI. OFF-BOARD VISUAL SLAM

A. Visual SLAM

We use the g2o [16] framework for our off-board visual
pose-graph SLAM. Figure 9 shows an example of the hy-
pergraph representation of our visual pose-graph SLAM. The
node of the graph represents the position Xt of the MAV in
the inertial frame at time t. The edges of the graph repre-
sents the constraints between the poses. These constraints
are measurements from the visual odometry zvot,t+1, optical
flow zoft,t+1 and loop-closure constraint zloopt,t+5. The visual
odometry constraint zvot,t+1 is the transformation between two
successive poses Xt and Xt+1 estimated by visual odometry.

The optical flow constraint zoft,t+1 is the transformation
between two successive poses Xt and Xt+1 estimated by
the optical flow sensor. The loop-closure constraint zloopt,t+5

is the transformation between matching views Xt and Xt+5

that have been identified by the loop-closure detection step.
Additionally, the measurement from the ultrasonic sensor
zaltt is used as prior estimate for the pose-graph SLAM.
The maximum-likelihood estimates of the MAV positions are
computed by minimizing the Euclidean distances between
the transformations. The non-linear optimization is done by
sparse Cholesky decomposition using the g2o framework.

X t
X t+1 X t+2

X t+4X t+5 X t+3

z t , t+1
of

z t , t+1
vo

z t+1, t+2
of

z t+1, t+2
vo

z t+3, t+4
of

z t+3, t+4
vo

z t+4,t+5
of

z t+4, t+5
vo

z t+2, t+3
ofz t+2,t+3

vo

z t
alt zt+1

alt zt+2
alt

z t+5
alt z t+4

alt z t+3
alt

zt , t+5
loop

Fig. 9. g2o hypergraph representation of our pose-graph SLAM problem.

B. Loop-Detection and Relocalization

We remove drifts in the visual odometry and enforce
global consistency on the pose estimations with loop-
detections and loop-closures. In our system, loop-detection
is done with the vocabulary tree [11], [20] approach. We
extract the SURF features and descriptors [3] for every image
and quantize them into visual words using a vocabulary tree
which was pre-trained on a general image data set. The
visual words and image IDs are stored in a database which
is organized as an inverted file for efficient insertion and
retrieval. The global poses of the MAV are also added as
meta-data into the database. We rank all existing images
in the database according to visual similarity with every
new incoming image. The n best candidates go through a
geometric verification where we match the SURF features,
compute the relative pose between the image frames with
RANSAC PnP and check for the feature inliers. A candidate
image passes the geometric verification if the inlier count
is above a preset threshold. The transformation between
the current image and the candidate image that passes the
geometric verification test is computed and added to the
pose-graph as constraint. Node Xt from Figure 9 is an
example of a candidate image that passes the geometric
verification with the current image Xt,t+5. zloopt,t+5 is the
loop constraint between the two nodes. We compute the
transformation for loop constraint with the RANSAC PnP
that was mentioned earlier in Section IV-B.

Additionally, we also implement a relocalization algorithm
that runs on our on-board computer at a framerate of 0.5 Hz.
The relocalization algorithm is particularly useful when a
pre-built map is available. In this case, the MAV can perform

relocalization on-board with the pre-built map instead of the
computationally expensive SLAM process. Pre-built maps of
the environment could be provided by a different MAV/robot
or the same MAV that has previously done SLAM on the
environment. Relocalization is built on top of the visual loop-
detection. The current camera image is checked against the
database and the most similar image in the database is used
to compute the global position of the current camera image
with similar methods described in the previous paragraph.

VII. EXPERIMENTAL RESULTS

A. Frontier-Based Exploration

We test the automonous frontier-based exploration of
our quadrotor in both indoor and outdoor environments.
However, we only show the results of the indoor explo-
ration in the paper due to space limitation. For outdoor
results, please refer to the video at http://www.inf.
ethz.ch/˜hengli/exploration.avi. Our quadro-
tor automonously explores a stretch of corridor which is
approximately 30 m long for the indoor test. Figure 10 shows
the occupancy maps generated during the exploration. Figure
10(a) shows the quadrotor at the starting position. It builds a
local occupancy map in which two frontiers (represented by
green and blue cells) are detected. The quadrotor selects the
nearest frontier (represented by a red dot) and reaches for
it using the VFH+ algorithm. Once the quadrotor reaches
its destination, it retrieves the latest occupancy map, and
chooses the next frontier to go to as shown in Figure 10(b).
The frontier selection and mapping processes are repeated
until it is manually terminated in Figure 10(c).

B. Visual SLAM

We test the scalability of our pose-graph SLAM with
a large outdoor dataset that consists of more than 5000
stereo image pairs which spans across a total trajectory
of approximately 1 km. The dataset contains two large
and two small nested loops, and it also contains passing
cars, bicyclists and pedestrians. As the dataset was collected
along urban streets, we manually carry the quadrotor around
instead of flying it to prevent any accidental injuries to the
pedestrians. We took a log of the dataset with the MAV
and processed it off-board. Figure 11(a) shows the raw
pose-graph of the trajectory, which is estimated from visual
odometry and optical flow, overlaid on the satellite image.
The blue lines are loop-closure opportunities detected by the
vocabulary tree. It is clear from the figure that the raw pose-
graph is not correct. Figure 11(b) shows the pose-graph after
optimization overlaid on the satellite image. Since the loop-
closure constraints are taken into account, the result is much
accurate.

C. Relocalization

We test our relocalization algorithm, which was mentioned
earlier in Section VI-B, in a laboratory setting where a Vicon
motion capture system is available for ground truth. We first
collect a set of images of the laboratory from manual flight
of the quadrotor. This set of images are then used to create

(a)

(b)

Fig. 11. Large scale pose-graph before and after optimization.

a map using our visual SLAM algorithm. We specify several
waypoints within the created map for the quadrotor to follow.
Figure 12 shows the x and y positions from a part of the
flight compared to the Vicon ground truth and desired control
positions. We can see from the plots that our relocalization
algorithm is sufficiently close to the Vicon ground truth.

(a) (b)

Fig. 12. Comparison of the results from our relocalization algorithm with
Vicon ground truth and desired control positions.

VIII. CONCLUSION

The advantages of using cameras as the main sensor for
MAVs are the primary motivation for this work. We have
showed with our quadrotor MAV system equipped with a
stereo camera as its main sensor, the feasibility of doing
pose estimation, autonomous mapping and exploration on-
board. In comparison with other existing approaches that
used vision, we are able to do pose estimation, autonomous

(a) Exploration at t1 (b) Exploration at t2 (c) Exploration at t3

Fig. 10. Various stages of indoor exploration.

mapping and exploration on-board because of our exclu-
sive combination of a front-looking stereo camera and a
downward-looking camera running the optical flow algo-
rithm. In addition, we showed large-scale pose-graph SLAM
that was done off-board. Experimental results that verified
our approaches are shown. It should be emphasized that
despite the nice results that we have shown for vision-based
autonomous mapping and exploration of the quadrotor, many
other challenges, such as detecting sufficient image features
and lighting etc, associated with vision-based autonomous
quadrotor still remain. All these challenges remain as future
works.

IX. ACKNOWLEDGEMENT

This work is supported in part by the European Com-
munitys Seventh Framework Programme (FP7/2007-2013)
and by the Swiss National Science Foundation (SNF) under
grant #200020-135050. Lionel Heng is funded by the DSO
National Laboratories Postgraduate Scholarship.

REFERENCES

[1] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart. Onboard imu
and monocular vision based control for mavs in unknown in- and
outdoor environments. In Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), 2011.

[2] A. Bachrach, A. de Winter, Ruijie He, G. Hemann, S. Prentice,
and N. Roy. Range - robust autonomous navigation in gps-denied
environments. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 1096 –1097, may 2010.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust
features (surf). In Computer Vision and Image Understanding, Jan
2008.

[4] C. Bills, J. Chen, and A. Saxena. Autonomous mav flight in indoor
environments using single image perspective cues. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 5776–
5783, 2011.

[5] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart. Vision based
mav navigation in unknown and unstructured environments. In Proc. of
the IEEE Int. Conf. on Robotics and Automation (ICRA), May 2010.

[6] M. Calonder, V. Lepetit, and C. Strecha. . . . Brief: binary robust
independent elementary features. In Proceedings of ECCV 2010, Jan
2010.

[7] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun. Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, Cambridge, MA, June
2005.

[8] I. Dryanovski, W. Morris, and J. Xiao. An open-source pose estimation
system for micro-air vehicles. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 4449–4454, 2011.

[9] D. Eberli, D. Scaramuzza, S. Weiss, and R. Siegwart. Vision based
position control for mavs using one single circular landmark. In
Journal of Intelligent and Robotic Systems, volume 61, pages 495–
512, 2011.

[10] M. Fischler and R. Bolles. Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated
cartography. In Communications of the ACM, Jan 1981.

[11] F. Fraundorfer, C. Engels, and D. Nistér. Topological mapping,
localization and navigation using image collections. In IEEE/RSJ
Conference on Intelligent Robots and Systems, volume 1. IEEE, 2007.

[12] S. Grzonka, G. Grisetti, and W. Burgard. Towards a navigation system
for autonomous indoor flying. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Kobe, Japan, 2009.

[13] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge, 2000.

[14] L. Heng, G. H. Lee, F. Fraundorfer, and M. Pollefeys. Real-time
photo-realistic 3d mapping for micro aerial vehicles. In Proc. of the
IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2011.

[15] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys.
Autonomous obstacle avoidance and maneuvering on a vision-guided
mav using on-board processing. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 2472–2477, 2011.

[16] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), Shanghai, China, May
2011.

[17] M. Lorenz, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys. Pixhawk: A micro aerial vehicle design for autonomous
flight using onboard computer vision. Auton. Robots, 33(1-2):21–39,
2012.

[18] A. A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-
Whyte. An experiment in integrated exploration. In Proc. of the IEEE
Int. Conf. on Intelligent Robots and Systems (IROS), pages 534–539,
2002.

[19] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys. Pixhawk:
A system for autonomous flight using onboard computer vision. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
pages 2992–2997, 2011.

[20] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition, New York City, New York, pages 2161–2168, 2006.

[21] E. Rosten, R. Porter, and T. Drummond. Faster and better: A machine
learning approach to corner detection. In IEEE Trans. Pattern Analysis
and Machine Intelligence, volume 32, pages 105–119, 2010.

[22] S. Shen, N. Michael, and V. Kumar. Autonomous multi-floor indoor
navigation with a computationally constrained mav. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 20–25,
2011.

[23] I. Ulrich and J. Borenstein. Vfh+: Reliable obstacle avoidance for
fast mobile robots. In Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA), 1998.

[24] D. Wagner and D. Schmalstieg. Artoolkitplus for pose tracking
on mobile devices. In Proc. of the 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality, 2007.

[25] B. Yamauchi. A frontier-based approach for autonomous exploration.
In Proc. of the IEEE International Symposium on Computational
Intelligence, Robotics and Automation, pages 146–151, 1997.

