Real-Time Photo-Realistic 3D Mapping for Micro Aerial Vehicles

Lionel Heng, Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys

Abstract— We present a real-time photo-realistic 3D mapping
framework for micro aerial vehicles (MAVs). RGBD images are
generated from either stereo or structured light cameras, and
fed into the processing pipeline. A visual odometry algorithm
runs on-board the MAV. We improve the computational per-
formance of the visual odometry by using the IMU readings
to establish a 1-point RANSAC instead of using the standard
3-point RANSAC to estimate the relative motion between
consecutive frames. We use local bundle adjustment to refine
the pose estimates. At the same time, the MAV builds a
3D occupancy grid from range data, and transmits this grid
together with images and pose estimates over a wireless network
to a ground station. We propose a view-dependent projective
texture mapping method that is used by the ground station to
incrementally build a 3D textured occupancy grid over time.
This map is both geometrically accurate and photo-realistic;
the map provides real-time visual updates on the ground to a
remote operator, and is used for path planning as well.

I. INTRODUCTION

Real-time 3D textured reconstruction of a MAV’s environ-
ment is useful in many ways. A geometrically-accurate and
photo-realistic 3D map can be used for object recognition,
localization, and path planning. At the same time, the map
gives an operator in a far-away location better real-time
situational awareness than live video feeds. In addition,
the geometrical integrity of the map easily facilitates the
addition of augmented reality. Texture-mapping out a MAV’s
environment in real-time is a challenging area of research as
the MAV’s payload constraint does not permit access to high-
end GPS/INS systems that can provide high-fidelity pose
estimates and facilitate seamless stitching of image and range
data. Furthermore, existing 3D laser rangefinders are far too
heavy for MAVs which often have to rely on depth-sensing
cameras to perform 3D reconstruction.

We use a 3D occupancy grid as the basis of our 3D
textured map as an occupancy grid is robust to sensor mea-
surement noise, accounts for the uncertainty inherent in range
measurements from stereo cameras, and explicitly models
free space. Furthermore, the grid map can be used for path
planning [1] on board our MAV platform as shown in Figure
1, allowing us to efficiently utilize the limited computational
resources on the MAV. Such utilization is made efficient
further by offloading the 3D map reconstruction task to a
ground station. In this case, the ground station requires sets
of image and depth data, and the pose from which each

The authors are with the Computer Vision and Geometry Lab, ETH
Zurich, 8092 Zurich, Switzerland.
{hengli, glee}@student.ethz.ch
{friedrich.fraundorfer,
marc.pollefeys}@inf.ethz.ch

dataset was captured; the MAV transmits the required data
wirelessly to the ground station.

Fig. 1. The PIXHAWK quadrotor with a 25 cm-baseline stereo rig.

The MAV estimates its pose via a visual odometry ap-
proach which uses the RANSAC algorithm [2]. In the stan-
dard case, we use 3-point RANSAC to find the relative pose
between consecutive frames. By using IMU measurements,
we establish a 1-point RANSAC which significantly speeds
up the visual odometry. We then use local bundle adjustment
to refine the pose estimates.

On the MAYV, depth information from a RGBD image
which is obtained from either a stereo camera or Kinect
device is used to build a local occupancy grid. The mapping
module merges this grid with an existing global grid which
is used by the path planner, and at the same time, the local
grid is sent together with the corresponding RGB image and
pose estimate to the ground station. On the ground station,
the local grid is merged with the stored global grid. We
acknowledge that the same map merging process is done two
times: one on the MAYV, and one on the ground station; since
a global grid grows indefinitely, the global grid is too large
to be transmitted wirelessly, and transmission of local grid
data is a far more optimal use of wireless bandwidth. Still,
the global grids maintained by the MAV and ground station
are assumed to be identical. For each facet of a voxel in
the occupancy grid, we determine which images the facet is
visible in. Subsequently, we split the facets that are partially
visible in one of the images such that the resulting subfacets
are either visible or not visible in each image. The reason for
splitting the facets into subfacets is to enforce the constraint
that each subfacet is either wholly visible or wholly invisible
in any image. Visibility is determined by a GPU-based depth
mapping algorithm which identifies visible subfacets of all
voxels in each camera viewpoint; we choose the image with
the closest viewing direction for each subfacet.

Our approach is novel in two ways: we propose a 1-
point RANSAC method for visual odometry using IMU
information, and we incrementally build in real-time a global
map of the environment with photo-realistic textures.

A. Related Work

Debevec et al. [3] first showed view-dependent projective
texture mapping with static polygon models. [4] uses a DSLR
camera and a high-end 3D laser rangefinder to generate
6D point clouds which are used to build a 3D occupancy
grid; a coarsely textured map is built offline by colorizing
each voxel considered as occupied using the average color
of the points falling in that voxel. The map is used to
localize a robot indoors. [5] uses the same sensor setup to
perform automated 3D reconstruction using a wheeled robot
which conducts frontier-based exploration; data collected at
the end is used to build a high-quality 3D textured model
offline. Real-time mapping of an unmanned ground vehicle’s
surroundings is achieved in [6] with a GPS/INS system,
nodding laser rangefinder and a camera. They use the most
recent image to texture new voxels in the 3D model; the
texture of existing voxels cannot be changed regardless of
whether there are better images with closer view directions.
[7] collects pose estimates from a high-end GPS/INS system
and image data from multiple cameras on a car moving
in urban environments, computes the camera pose and a
stereo depthmap for each video frame via a multi-view plane-
sweep algorithm, and subsequently, generates a 3D textured
n-layer heightmap model. However, the visual details of
the model are not sharp due to local color averaging over
multiple images. The approaches discussed so far build an
accurate geometric model of the environment with stable
ground-based platforms, high-quality pose estimates, and in
most cases, extremely accurate ranging sensors. In contrast,
mapping is a far more daunting task for MAVs; compu-
tational resources are severely limited, their MEMS IMUs
although light-weight provide lower-quality estimates which
are further degraded by mechanical vibration during flights,
and the choice of 3D depth sensors is restricted to stereo
cameras and structured light scanners; these sensors have
significantly more measurement noise.

The MAVs of [8] and [9] apply a variant of the 3-point
RANSAC algorithm to stereo data for visual odometry, and
use a SLAM algorithm and a laser rangefinder to build a
2D map. Similarly, [10] constructs a multi-layer 2D map
using data from a laser rangefinder. [11] extends the mapping
capabilities of MAVs to 3D using a time-of-flight 3D camera.
However, these maps lack texture. In [12], a hand-held
RGBD camera is moved in an indoor environment, and a 3D
surfel-based model is built offline with a SLAM algorithm
estimating the camera poses. This RGBD camera cannot
work in outdoor settings, and for real-time outdoor mapping,
stereo cameras are the only 3D sensing modality for MAVs.
Known work on real-time pose estimation methods for MAVs
do not provide estimates reasonably good for alignment of
projected images.

[13] exploits the nonholonomic constraints of wheeled

vehicles to achieve a 1-point RANSAC instead of doing the
standard 5-point RANSAC for relative motion estimation of a
monocular camera. The accuracy of this algorithm is however
limited to the fidelity of the nonholonomic motion model.
[14] alleviates this limitation by using the prior information
from Extended Kalman Filter (EKF) estimation as the motion
estimation model in the RANSAC algorithm. However, none
of these methods makes use of the IMU readings to achieve
the 1-point RANSAC. Other existing works such as [15]
improve the visual odometry results by fusing them together
with IMU readings using the EKF estimator.

II. RGBD IMAGES

We rectify all camera images such that it is easy to infer
3D points from 2D image points and vice-versa via perspec-
tive projection. This conversion is heavily used throughout
this paper, and the assumption that each image is rectified
enables an efficient processing pipeline.

Each pixel in a RGBD image has both color and depth
information. In the next subsections, we describe how we get
depth information from a stereo camera and Kinect device.
We compute the 3D coordinates of each pixel relative to the
camera coordinate system:

Lcam (1 I 0 —c
Yeam | = 2M |j| where M = — [0 1 —¢4 (1)
Zeam 1 f 0 0 f

where z is the depth associated with the pixel, (cg,cy)
are the coordinates of the principal point of the camera, f is
the focal length, and (i, j) are the image coordinates of the
pixel. The values of ¢,, ¢y, and f, together with the stereo
baseline b are obtained from an one-time calibration.

We then find the world coordinates of each point:

Tworld) Lcam

imu cam
Yworld | = worldHimuH Ycam (2)
Zworld Zcam

where ‘"% H is the homogeneous transform from the
world frame to the IMU frame and is estimated by the visual
odometry, and {*"" H is the homogeneous transform from the
IMU frame to the camera frame and is estimated using the
InerVis calibration toolbox [16].

A. Depth from Stereo Camera

With each stereo image pair, we use the OpenCV imple-
mentation of the stereo correspondence algorithm to build a
dense 640 x 480 disparity map. Subsequently, we compute
the depth to the points in the scene relative to the camera
coordinate system:

bf
Recam = d (3)
where d is the disparity. Differentiation of Equation 3 with
respect to d yields:

bf

S Ad 4)

Aanm =

Azcqm denotes the resolution of the range measurement
corresponding to d. To avoid spurious range measurements
due to small disparities from affecting the map quality, we
set the minimum disparity:

dmin —

&)

r

b fAdw

where r is the grid resolution. In our case, we choose a
conservative value of Ad = 0.5.

B. Depth from Kinect

We use the OpenNI framework to obtain depth information
which is hardware-registered to the RGB image. In other
words, we do not have to find the extrinsic parameters
that transform the depth points from the infrared camera’s
reference frame to the RGB camera’s reference frame, as
OpenNI automatically does this transformation.

III. 1-POINT RANSAC AND VISUAL ODOMETRY

The standard approach to find the relative pose between
two consecutive frames is to use the 3-point RANSAC
algorithm [2]. In each frame, we find keypoints using the
FAST detector [17], and extract Calonder feature descriptors
[18]. First, 2D-2D correspondences between two consecutive
frames are established. The 3D-3D correspondences are then
obtained from the depth map. Next, random sets of 3-point
correspondences are generated to compute the hypotheses of
the relative camera motion R and ¢ in the RANSAC loop
using the absolute orientation [19] formulation:

{pR* 5t} = ?rgminz X = GRX) + 50> ©)
s pt

where X and X} are the 3D point sets from the previous
and current frames respectively. A closed-form solution to
the absolute orientation problem is:

N
. 1 b vb a va\T
H o= 52 (X7 = XX - X9 (7)
aR* = vU* (8)
it o= X*—(RX’ ©)

where U and V are the left and right singular vectors
from the singular value decomposition (SVD) of H. X
and X" are the centroids of the 3D point sets from X and
Xf respectively. Finally, all the inliers from the hypothesis
with the highest RANSAC score are used to compute a
least squares estimate of the relative camera pose given by
Equation 6.

3-point correspondences are needed to compute R and ¢
from Equation 6. However, the IMU readings conveniently
provide us with the relative rotation R between two con-
secutive frames. As such, we propose to use the relative
rotation R provided by the IMU to align the orientation
of the consecutive 3D-3D point correspondences and this

reduces the unknown parameters in Equation 6 to the relative
translation ¢:

ot =argmin Y | X¢ — (XV +5t)|? (10)
gt X

where X?' is X? rotated with R from the IMU reading.
Our approach of using IMU readings for 1-point RANSAC
differs significantly from other 1-point RANSAC approaches
mentioned earlier in Section IA. Consequently, only 1-point
correspondences are needed to get all the inliers from the
RANSAC process. To improve the relative pose estimates,
we further propose to compute the final R and ¢ from all the
inliers found from the 1-point RANSAC with Equation 6.

The number of hypotheses needed in the RANSAC process
is given by:

_ log(1—p)

~ log(1 — a®) (i

where s is the number of features needed, p is the
probability that all selected features are inliers (p is usually
assigned as 0.99), and a is the probability that any selected is
an inlier. We can deduce from Equation 11 that the number
of hypotheses needed decreases tremendously for the 3-point
case (s = 3) and our 1-point case (s = 1). For example, the
number of hypotheses needed drops from 35 to 7 assuming
that p = 0.99 and a = 0.5. As a result, the computation
time for the relative pose estimation process is reduced
significantly. Another advantage of the 1-point RANSAC is
that it is computationally feasible to carry out an exhaustive
search on all point correspondences for inliers as compared
to the 3-point RANSAC.

Lastly, we obtain the camera pose by concatenating the
relative poses estimated from our I-point RANSAC. To
ensure the accuracy of the visual odometry over an extended
distance, we further refine the estimated poses and 3D
structure points with local bundle adjustment [20].

We use a modified version of the VSLAM package [21]
available in ROS.

IV. OCCUPANCY GRID MAPPING

To downsample the range data in each RGBD frame and
remove outliers, we place the range points in a spherical
grid centered at the camera’s position. For each cell in the
spherical grid, we find the median of the range points in
that cell, and refer to the line from the grid origin to that
median as a virtual ray. We define a virtual scan as a set
of virtual rays [1]; we traverse the rays in each scan, and at
the same time, update the occupancy grid cells intersected
by the rays. Another advantage of computing virtual scans is
that updating of the occupancy grid is more efficient as we
rasterize the rays in the virtual scan instead of those from the
camera to each point in the entire point cloud which often
constitutes many thousands of points.

We use the multi-volume occupancy grid of [22] which
explicitly models both occupied and free space. As we
traverse in order the cells intersected by each ray in the

virtual scan, we insert negative volumes in these cells until
we reach the cell where the endpoint of the ray is located
in; we insert a positive volume in that cell. Positive volumes
indicate obstacles while negative volumes indicate free space.
Modeling of both free and occupied space is important as
erroneous range readings, especially from stereo, can be later
corrected. The occupancy probability of a point is determined
by the occupancy density of the positive volume it is in,
divided by the sum of the occupancy densities of both the
positive and negative volumes. We use a low occupancy
threshold, as having parts of the foreground mapped on
ground voxels is undesirable and is seen as degrading the
photorealism of the textured map.

We merge a local grid transmitted by the MAV with the
global grid stored in the ground station by simply merging
both the positive and negative volumes with those of the
corresponding cells in the local grid.

V. PROJECTIVE TEXTURE MAPPING

We project the images onto the occupancy grid as if by a
slide projector. However, projective texture mapping requires
us to determine which parts of which facets of each voxel are
visible in each image. For clarity, we use the term subfacet
to refer to a part of a facet, and that each subfacet is defined
to be either wholly visible or wholly invisible in any image.

The outline of the algorithm is:

1) For each image,

a) Construct the view frustum.
b) For each cell in the occupancy grid,

1) Determine the section of the cell that is within
that view frustum. This cell section is defined
using two values: the height of its bottom face
and the height of its top face, and we refer to
these two values as a z-interval.

ii) For each voxel in the cell, we project the
facets of each voxel located within the z-
interval into image space, and back to object
space. The resulting 3D points identify the
visible parts of the facets.

iii) Using the visibility information, we split the
facets into two distinct sets of visible and non-
visible subfacets.

2) For each subfacet in the visible set, choose the image
with the closest viewing angle for that subfacet.

Figure 2 shows an example of how one facet of a voxel
is textured given two images in which that facet is visible.

For real-time performance, a hybrid CPU-GPU pipeline
is used to perform texture mapping; step 1b in the above-
mentioned algorithm is implemented in the GPU.

To avoid projecting black border pixels from rectified
images which could otherwise create black spots on the
textured map, we determine the region of interest (ROI) in
the images in which no black border pixel is present. The
ROI is represented as a rectangle where (z,y) and (z/,y’)
represent the two opposite corners and 2’ = z+w, ' = y+h.
We project this ROI instead of the rectified image onto

1

-y

a
2 b
L]

Fig. 2. The facet of a voxel outlined in black is non-occluded and is
partially visible in both images 1 and 2. Hence, the facet is partitioned into
three subfacets: a, b, and ¢, such that each subfacet is either wholly or not
visible in each image. Subfacet a is assigned a texture from image 1, while
subfacet c is assigned a texture from image 2. Since subfacet b is visible
in both images, subfacet b is assigned a texture from the image with the
closer viewing angle.

subfacets of voxels in the occupancy grid that are visible
from the viewpoint.

A. View Frustum

The method of checking whether each voxel in the occu-
pancy grid lies in the view frustum for each camera viewpoint
takes time linear in the number of viewpoints, and thus, is
not scalable to large environments. We propose an efficient
method that is guaranteed to run in constant time.

When a new camera viewpoint is added, an one-time
update is applied to each cell in the grid: the cell stores
for that viewpoint the range of z-values that lie within the
view frustum associated with the viewpoint.

Fig. 3. The view frustum is marked by green lines with the border of the
superimposed rectified image marked in yellow.

The view frustum is modeled as a rectangular pyramid
with 8 corners as shown in Figure 3. Using the matrix M
in Equation 1 and the ROI coordinates, the set of corner
coordinates is defined:

!/ /

x x x x
C=<zM \y|,2M |y |,zM |y | ,z2M |y
1 1 1 1

for z € {Znear; Zfar}’ (12)

where Zncar = dL and zfqr = db—f are the depths of
the near and far planes respectively. The six planes that make
up the frustum can be computed from these frustum corners.

Algorithm 1 Check if z-interval [zpin, Zmaz] in cell with
coordinates (x,y) and width w exists within the view frus-
tum, and if so, compute the z-interval.
Zmin = OO
Zmaxr = —OO
: for i =0to 6 do
[’flm ﬁy ﬁz d] =T
vn = [— Lsign(ng) y—
z=[-hy —ny —d 0" |v,
if n, > 0 then

if 2,4, < 2z then

B A A S ol >

Zmaxr = <

end if
else
if 2,5, > z then

_ = e =
w2

Zmin = %
end if
end if
16: end for
17: if V(R,d) € I such that 7 - [z Y 2min]?
A [T Y Zmaz)? > —d then
18: [Zmin, Zmaz) lies within view frustum
19: else
20: [Zmin, Zmaz) does not lie within view frustum
21: end if

_- =
TS

> —d and

We determine the z-interval of the cell that is within
the view frustum by using algorithm 1. For simplicity, we
assume an axis-aligned box spanning the cell cross-section
and with infinite height. We find the z-intersection of the
box with each frustum plane, and infer the z-interval from
the 6 intersection points.

In line 4, we retrieve the parameters 1 and d of frustum
plane ¢ where n is the plane normal which points towards
the center of the view frustum, d is the distance of the plane
from the origin, and 7 - [z y z]7 = —d. Line 5 finds the
(z,y) coordinates of the negative vertex of the box where
the negative vertex is defined to be the vertex of the box
nearest to the plane along the normal’s direction. The z-
coordinate of the negative vertex is found in line 6. Lines
7-15 iteratively narrows the z-interval until it spans the view
frustum. Line 16 ensures that the z-interval lies in the view
frustum by checking that the signed distance of each of the
two interval end-points to every frustum plane is positive.

B. Depth Mapping

We determine which parts of the facets are visible in each
image; that image is considered as a candidate for projection
onto these visible subfacets. We use the OpenGL depth buffer
feature to project all front-facing facets of the voxels within
the view frustum to the depth buffer in image space. Each
pixel in the depth buffer stores the depth to the nearest
voxel with an example shown in Figure 4. In projecting the

facets, we use the intrinsic parameters of the camera that was
used to capture the image. At the same time, we assign an
unique ID to each facet. In this way, occluded parts of facets
do not show up in the image. We project the facet points
from image space to object space, and for each facet, we
accumulate all points associated with that facet. We compute
a set of z-intervals from the z-coordinates of the points with
the constraint that any two points further than a minimum
distance belong to different intervals. These z-intervals mark
the visible parts of the facet.

Fig. 4. Visualization of a depth buffer given a camera viewpoint. For each
pixel, the more cool (blue) the color, the further the distance between the
camera viewpoint and the object occupying that pixel.

C. Facet Splitting & View Selection

Using the visibility information from depth mapping, we
horizontally split each facet into subfacets such that the
resulting subfacets either lie within or outside the z-intervals.
We determine the set of images that each subfacet is visible
in, and we project the image with the closest viewing direc-
tion onto that subfacet. We calculate the viewing direction
using:

0 = arccos < Psubfacet — Pcamera ﬁ) (13)

Hpsubfacet - pcameraH .

where Dsupfacet 18 the position of the mid-point of the
subfacet, pcamerq 15 the camera position, and 7 is the unit
normal of the subfacet.

VI. IMPLEMENTATION

Our platform is a PIXHAWK quadrotor equipped with
infrastructure necessary for real-time computer vision algo-
rithms. A forward-looking stereo rig with a 25 cm baseline
serves as the main exteroceptive sensor. The cameras are
synchronized to the IMU, allowing precise IMU metadata
to be attached to each stereo image pair. To demonstrate
the extensibility of our approach with multiple sensor types,
we also use a Kinect device; we maintain a queue of IMU
measurements, and when a frame arrives, it is timestamped,
and the timestamp is used to compute the IMU data for
that frame by interpolating between IMU measurements with
close timestamps. Data communications within the MAV
and with the ground station is maintained over a Wi-Fi
network using MIT’s LCM middleware. In particular, we use
Intel SIMD extensions to accelerate the projection of points
between image space and object space.

When the camera has moved either a minimum Euclidean
distance or angular distance, the current RGBD image is
marked as a keyframe. In our case, the minimum Euclidean
distance and angular distance are 0.2 m and 0.1 radians
respectively. At this point, the visual odometry module
publishes the camera pose associated with the keyframe.
Upon receiving the camera pose, the 3D mapping module
computes the local occupancy grid and rectified reference
image based on sensor data associated with the camera pose.
This 3-tuple dataset is then transmitted to the ground station
which merges the local occupancy grid with its locally-stored
rolling-window based global occupancy grid. The size of the
global grid is limited to 60 m x 60 m; any cell falling outside
the grid is simply removed. The ground station subsequently
constructs and shows the 3D textured map in a Qt-based
visualization window.

VII. EXPERIMENTS AND RESULTS

We build several 3D textured maps in both outdoor and
indoor settings. For the outdoor setting, we mount a stereo
camera on the quadrotor, and for the indoor setting, we
mount a Kinect device. We estimate the camera pose via our
visual odometry with 1-point RANSAC. Figure 5 compares
the ground truth from the Vicon motion capture system with
the visual odometry estimates from the quadrotor with a
Kinect device.

1-pt RANSAC
Vicon

Fig. 5. Comparison of visual odometry output with Vicon ground truth.

In Figures 6 and 7 which correspond to the outdoor and
indoor datasets respectively, we show the 3D texture maps
together with the underlying occupancy grids. To demon-
strate the photo-realistic aspect of the 3D texture maps, we
compare these maps against the point cloud representations
which are shown to be not as clearly defined as the 3D texture
maps. For the outdoor and indoor data sets, the camera
trajectories estimated by the visual odometry module are
marked in red.

Our 3D textured map is far more compact than a point
cloud representation, and still, shows a slightly higher quality
of image detail compared to the point cloud representation.
In addition, the path planner successfully uses these maps
to plan an obstacle-free flight path to user-defined goal

TABLE 1
BREAKDOWN OF COMPUTATIONAL TIME FOR 3D RECONSTRUCTION ON
THE GROUND STATION. (2.80 GHz INTEL®CORE™17,
NVIDIA®GEFORCE®R)GTX 285)

[Process | Average Computational Time |

Merging local map with global map 37 ms
View frustum computation 9 ms
Depth mapping 95 ms

Facet splitting and view selection 19 ms

Total 160 ms

points. The visual odometry runs at 10 Hz, while the texture
mapping module runs at 6 Hz. Table I shows the breakdown
of computational time for the 3D reconstruction on the
ground station.

The accompanying video shows the live 3D reconstruction
of a MAV’s environment using both a stereo camera and
Kinect device.

VIII. CONCLUSIONS

We have shown our real-time mapping framework to
produce geometrically accurate and photo-realistic 3D maps
which can be used for both visualization and path planning.
Our visual odometry based on 1-point RANSAC estimates
camera poses sufficiently accurate for creating photo-realistic
maps using RGBD images from many viewpoints. We ac-
knowledge that when mapping an environment using visual
odometry, the camera pose drifts over time, and an area
visited twice may show up in two different locations on
the map. Hence, we are working towards incorporating loop
closure in our visual odometry algorithm in order to obtain
globally-consistent maps.

IX. ACKNOWLEDGMENTS

The first author was funded by the DSO National Lab-
oratories Postgraduate Scholarship. In addition, this work
was supported in parts by the European Community’s Sev-
enth Framework Programme (FP7/2007-2013) under grant
#231855 (sFly) and by the Swiss National Science Founda-
tion (SNF) under grant #200021-125017.

REFERENCES

[1] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys,
Autonomous Obstacle Avoidance and Maneuvering on a Vision-Guided
MAV Using On-Board Processing, In Proc. International Conference on
Robotics and Automation, 2011.

[2] M. Fischler and R. Bolles, Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography, Comm. of the ACM, 24:381-395, 1987.

[3] P. Debevec, Y. Yu, and G. Borshukov, Efficient View-Dependent Image-
Based Rendering with Projective Texture-Mapping, In Proc. Eurograph-
ics Rendering Workshop, 1998.

[4] J. Mason, S. Ricco, and R. Parr, Textured Occupancy Grids for Monoc-
ular Localization Without Features, In Proc. International Conference on
Robotics and Automation, 2011.

[S] B. Pitzer, S. Kammel, C. DuHadway, and J, Becker, Automatic recon-
struction of textured 3D models, In Proc. International Conference on
Robotics and Automation, 2010.

[6] D. Huber, H. Herman, A. Kelly, P. Rander, and J. Ziglar, Real-time
Photo-realistic Visualization of 3D Environments for Enhanced Tele-
operation of Vehicles, In Proc. International Conference on 3-D Digital
Imaging and Modeling, 2010.

(c) 3D textured map - Front view

Fig. 6. A comparison of the raw point cloud representation with the occupancy grid representation and 3D textured map representation for the stereo
camera with poses estimated by our visual odometry with 1-point RANSAC. The grid resolution is 0.2m.

(c) 3D textured map - Front view

Fig. 7.

(d) 3D textured map - Top view

A comparison of the raw point cloud representation with the occupancy grid representation and 3D textured map representation for the Kinect

device with poses estimated by our visual odometry with 1-point RANSAC. The grid resolution is 0.1m.

[7]1 D. Gallup, M. Pollefeys, and J. Frahm, 3D Reconstruction Using
an n-Layer Heightmap, In Proc. Annual Symposium of the German
Association for Pattern Recognition, 2010.

[8] M. Achtelik, A. Bachrach, R. He, S. Prentice, and N. Roy, Stereo
Vision and Laser Odometry for Autonomous Helicopters in GPS-denied
Indoor Environments, In Proc. SPIE Conference on Unmanned Systems
Technology X1, 2009.

[9] A. Bachrach, R. He, and N. Roy, Autonomous Flight in Unknown
Indoor Environments, International Journal of Micro Air Vehicles, 1(4):
217-228, 2009.

[10] S. Shen, N. Michael, and V. Kumar, Autonomous Multi-Floor Indoor
Navigation with a Computationally Constrained MAV, In Proc. Interna-
tional Conference on Robotics and Automation, 2011.

[11] W. Morris, I. Dryanovski, and J. Xiao, 3D Indoor Mapping for
Micro-UAVs Using Hybrid Range Finders and Multi-Volume Occupancy
Grids, In Proc. Workshop on RGB-D: Advanced Reasoning with Depth
Cameras, Robotics: Science and Systems Conference, 2010.

[12] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, RGB-D Mapping:
Using Depth Cameras for Dense 3D Modeling of Indoor Environments,
In Proc. International Symposium on Experimental Robotics, 2010.

[13] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, Real-Time Monocular
Visual Odometry for On-Road Vehicles with 1-Point RANSAC, In Proc.
International Conference on Robotics and Automation, 2009.

[14] J. Civera, O. Grasa, A. Davidson, and J. Montiel, 1-Point RANSAC
for EKF-Based Structure from Motion, In Proc. International Conference
on Intelligent Robots and Systems, 2009.

[15] K. Konolige, M. Agrawal, and J. Sola, Large Scale Visual Odometry
for Rough Terrain, In Proc. International Symposium on Research in
Robotics, 2007.

[16] J. Lobo, and J. Dias, Relative Pose Calibration Between Visual
and Inertial Sensors, In International Journal of Robotics Research,
26(6):561-575, 2007.

[17] E. Rosten, and T. Drummond, Machine learning for high-speed corner
detection, In In Proc. European Conference on Computer Vision, 2006.

[18] M. Calonder, V. Lepetit, and P. Fua, Keypoint Signatures for Fast
Learning and Recognition, In In Proc. European Conference on Com-
puter Vision, 2008.

[19] B. Horn, Closed-form solution of absolute orientation using unit
quaternions, In Journal of the Optical Society of America, 4(4):629-642,
1987.

[20] Z. Zhang and Y. Shan, Incremental Motion Estimation Through Local
Bundle Adjustment, Microsoft Research, Tech. Rep. MSR-TR-01-54,
2001.

[21] K. Konolige, VSLAM package, Robot Operating System, available at
http://www.ros.org/wiki/vslam

[22] I.Dryanovski, W. Morris, and J. Xiao, Multi-Volume Occupancy Grids:
an Efficient Probabilistic 3D Mapping Model for Micro Aerial Vehicles,
In Proc. International Conference on Intelligent Robots and Systems,
2010.

