Motion Estimation for Self-Driving Cars With a Generalized Camera
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e Objective: Ego-motion estimation for a selt-driving car equipped with a e System overview for motion estimation with the generalized camera on a e Putting Equation 3 into Equation 1, we get the generalized epipolar con- o A total of 4 x 2500 images are used in the test of our algorithm.
multi-camera system, i.e. a generalized camera. car. I straint with Ackermann motion. o Additional 1 i].ater—ca.mera co.rrespon dence used to compute scale for 79.9%
e Grobi - Our S.elf—dri.vi.ng car with a glener.alizgdlcan;erg made up of 4 fish- (g;;gu??g:srg) - Polint Imag%s (Usedlirl"ntes?rgi]mfﬁotion) 0cos0 + bsind + cpcos 0 + dpsin 0 o= () when the car is moving straight.
eye cameras with minimal /non- overlapping field-of-views. l | Correspondences | l 2 2 e Trajectories before and after pose-graph loop-closure compared with GPS/
GPS/INS INS ground truth.
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| “ | e Inter-camera and intra-camera point correspondences (left diagram). spondence [ <> [’. N\
e Sample 1maes from the gnerahzed callera. e Relation between generalized camera and Ackermann motion (right dia- e The metric scale p can be solved by back-substitution. \ ;‘ ‘\\ \:
gram). A s A
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Ce 0 Ciing /i/sz e Top view of trajectory and 3D map points after pose-graph loop-closure
- NG / 0 and full bundle adjustment compared with GPS/INS ground truth.
e Main contributions: v R ! e More intra-camera than inter-camera correspondences = intra-camera e poire |
. i sy the default | 2 ot
— New formulation of the generalized epipolar essential matrix from ntra.Camera i / NI corre§pondences A VT CETAtHD Ca5. . ‘ OFS/INS
.. . L . : o e Metric scale p cannot be uniquely computed when the car goes straight, '
combining the generalized epipolar constraint (GEC) and Ackermann - : c. «~ " 0. #6/2 , .
motion model Inter-Camera i ' ‘ i.e. # =0 (when using intra-camera tracks only).
' 1 9,49/ e Solution: Retrieve the metric scale with 1 additional inter-camera corre-
— Analytical 2-point minimal solution for ego-motion estimation with Vil Kspondence. /
na 2,k

metric scale.

— Investigation of and practical solution to the degenerate case of straight o . - ) )
motion. e Ackermann motion is parameterized by the relative yaw angle 6 and scale Kalman Filteri ng
o of the relative translation.
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i . - - e Example of scales p (left) and yaw angles 8 (right) between consecutive

e Generalized epipolar constraint defined in [1].

e Putting Equation 2 into Fgc from Equation 1, we get the generalized frames after Kalman filtering.
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