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Abstract— In this paper, we model the robust loop-closure
pose-graph SLAM problem as a Bayesian network and show
that it can be solved with the Classification Expectation-
Maximization (EM) algorithm. In particular, we express our
robust pose-graph SLAM as a Bayesian network where the
robot poses and constraints are latent and observed variables.
An additional set of latent variables is introduced as weights for
the loop-constraints. We show that the weights can be chosen as
the Cauchy function, which are iteratively computed from the
errors between the predicted robot poses and observed loop-
closure constraints in the Expectation step, and used to weigh
the cost functions from the pose-graph loop-closure constraints
in the Maximization step. As a result, outlier loop-closure
constraints are assigned low weights and exert less influences
in the pose-graph optimization within the EM iterations. To
prevent the EM algorithm from getting stuck at local minima,
we perform the EM algorithm multiple times where the loop
constraints with very low weights are removed after each EM
process. This is repeated until there are no more changes to the
weights. We show proofs of the conceptual similarity between
our EM algorithm and the M-Estimator. Specifically, we show
that the weight function in our EM algorithm is equivalent to
the robust residual function in the M-Estimator. We verify our
proposed algorithm with experimental results from multiple
simulated and real-world datasets, and comparisons with other
existing works.

I. INTRODUCTION

The focus of many existing works [1], [2] on the back-end
pose-graph SLAM problem is on improving the efficiency of
the optimization algorithms. Most of these optimization al-
gorithms assumed that the constraints provided by the front-
end are free from errors, and would fail if this assumption
was violated. For most cases, these errors are from erroneous
loop-closure constraints. Erroneous loop-closure constraints
are the result of wrong place recognitions by the appearance
or vocabulary-tree based approaches and this problem is
aggravated in environments with highly repetitive scenes.
Despite the numerous efforts [3], [4] to improve the accuracy
of the front-end recognition, none of these algorithms is
totally free from false positives. The task of identifying
erroneous loop-closure constraints is always left to the front-
end, and it is only until the recent two years that several
works [5]–[9] demonstrated the ability robustly detect and
disable erroneous loop-closure constraints within the back-
end optimization process.

In this paper, we propose a robust pose-graph SLAM opti-
mization algorithm based on the Classification EM algorithm
[10] to robustly detect and minimize the influences from the
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Fig. 1. (a)-(c) City1000 dataset randomly corrupted with 1, 10 and 100
outlier loop-closure constraints (red lines) leading to wrong convergence
with standard pose-graph SLAM. (d)-(f) Our EM algorithm detects all the
outliers and converges to the correct solution. Green and blue lines are the
correct loop-closure and odometry constraints.

erroneous loop-closure constraints within the optimization
process. In particular, we express our robust pose-graph
SLAM as a Bayesian network where the robot poses and
constraints are latent and observed variables. An additional
set of latent variables is introduced as weights for the loop-
constraints. We show that the weights can be chosen as
the Cauchy function, which are iteratively computed from
the errors between the predicted robot poses and observed
loop-closure constraints in the Expectation step, and used to
weigh the cost functions from the pose-graph loop-closure
constraints in the Maximization step. As a result, outlier
loop-closure constraints are assigned low weights and exert
less influences in the pose-graph optimization within the
EM iterations. To prevent the EM algorithm from getting
stuck at local minima, we perform the EM process multiple
times where the loop constraints with very low weights are
removed after each EM process. This is repeated until there
are no more changes to the weights. We show proofs of
the conceptual similarity between our EM algorithm and
the M-Estimator [11]. Specifically, we show that the weight
function in our EM algorithm is equivalent to the robust
residual function in the M-Estimator. We verify our proposed
algorithm with experimental results from multiple simulated
and real-world datasets, and comparisons with other existing
works. An example of the results from our algorithm is



shown in Figure 1.

II. RELATED WORKS

Back-end optimizers are usually standard non-linear least
squares methods that try to minimize the sum-of-squares
residuals. The rapid gain of the quadratic error function in
both ends means that any outlier that is present would assert
a strong influence on the optimizer and lead to a wrong
solution. A popular approach to reduce the effect of outliers
within the optimizer is the M-Estimator Huber robust cost
function [11]. The Huber function replaces the quadratic
error function with another error function which is quadratic
in the vicinity of zero but increases linearly when the error is
above a certain threshold known as the Huber kernel width.
The linear gain of errors above the Huber kernel width helps
to reduce the influence of outliers within the optimizer. The
Huber function is implemented as an option within the state-
of-the-art SLAM solver g2o [2]. However, it has been shown
in [5] that the Huber function is only capable of reducing
the effects of outliers and not removing them completely in
pose-graph SLAM thus causing pose-graphs with erroneous
loop constraints to converge to wrong solutions (see Section
IV-A for our explanations on Huber robust cost).

In [5], Sünderhauf et al. introduced the so-called switch
variables to each loop constraints. The switch variable is
used as a parameter in the weight for the cost function
of the loop-closure constraint and lies within the range of
[0, 1]. The switch variable for an erroneous loop constraint
would result in a low weight for the cost function of
the loop-closure constraint thus reducing or removing the
effect of the wrong loop constraint within the optimization.
The weighting function is chosen arbitrarily as a sigmoid
function. In a further work [6], Sünderhauf et al. suggested
experimentally that a linear function is a better choice than
the sigmoid function. A penalty cost is introduced for each
switch variable to prevent a trivial solution of zero weight
for all loop constraints and the penalty term was chosen
empirically. Standard non-linear least squares optimizer such
as the Levenberg-Marquardt algorithm is used to jointly
optimize both the pose-graph SLAM and switch variables.
In a more recent work [9], Agarwal et al. showed that the
joint optimization of the pose-graph SLAM and the switch
variable is equivalent to iteratively re-evaluating the switch
variable with the Geman-McClure function. In contrast, we
show that solving the problem with Classification EM allows
us to naturally select the weight as a function of the error
between the robot poses and observed loop-constraints, in
particular the Cauchy function, thus avoiding the needs to
arbitrarily assign the weighting function and penalty term.
We also show in Section V-A.1 that our algorithm outper-
forms [5].

In [7], Latif et al. proposed the RRR algorithm which
detects and removes wrong loop-closure edges by evaluat-
ing the “goodness-of-fit” from the non-linear least squares
pose-graph optimization using the χ2 test. The loop-closure
edges are segmented into clusters according to its spatial
arrangements. Intra-cluster consistency check is done by

multiple pose-graph optimizations with respect to each single
cluster while disabling the rest. Individual loop-closure edge
that does not pass the χ2 for individual edge is removed.
Similarly, a cluster is removed if it does not pass the χ2

test for a cluster. The algorithm tests for inter-cluster consis-
tency after the intra-consistency checks. Clusters are further
grouped into subsets of clusters and multiple pose-graph
optimizations are carried out to test for joint consistency
of each subset of clusters. Subsets of clusters which are
found to be jointly consistent from the χ2 test for subsets
of clusters and passing a threshold test are grouped as
goodSet while those found to be jointly inconsistent are
grouped as rejectSet. The joint consistency checks are
repeated for the remaining subsets of clusters which passed
the joint consistency check but failed the threshold test. The
final subsets of clusters in the goodSet are all the correct
loop-closure edges. Extensive experimental results showed
the reliability of the RRR algorithm. However, the need to
perform multiple pose-graph optimizations during the intra-
and inter-consistency checks makes the algorithm slow. In
addition, the algorithm makes fix assignments of the wrong
loop-closure edges and there is no chance of re-verifying
them further in the intra- and inter-consistency checks.

The Max-Mixture model was proposed by Olson et al. in
[8] as a replacement to the Corrupted Gaussian model (Gaus-
sian Mixture model) as the robust cost function. The Max-
Mixture model consists of a front-end loop-closure and null
hypotheses. The front-end loop-closure hypothesis represents
the distribution of the inlier loop-closure constraints and the
null hypothesis represents the distribution of the outlier loop-
constraints. Each loop-closure constraint is verified against
the hypotheses iteratively within the optimization loops and
the weight associated with the most likely hypothesis is used
to scale the Jacobian, residual and information matrix from
that loop-closure constraint. In other words, the hypothesis
testing acts as an “selector” to the weighting of the loop-
closure constraint. The Max-Mixture model requires the
specification of the covariance of the outlier distribution for
the null hypothesis which is difficult to quantify since the
outlier distribution is usually unknown. It was also shown
in [8] that the algorithm fails when the outlier to inlier ratio
becomes too high. We show examples of this failure case in
Section V-A.2 and verify experimentally that our proposed
algorithm has a higher tolerance to high outlier to inlier ratio.

III. ROBUST SLAM WITH EM

Our robust back-end pose-graph SLAM can be rep-
resented by the Bayesian network shown in Figure 2.
X = [x1, x2, ..., xn]T are the robot poses and Z =
[z12, ..., zi,i+1, zi,j ]

T , j 6= i+ 1 are the odometry constraints
zi,i+1, and loop-closure constraints zi,j . For brevity, we will
drop the notation j 6= i+ 1 in the rest of the equations and
assume that the indices {i, j} always comes with this condi-
tion. The variables W = [..., wi,j ], w ∈ [0, 1] are the weights
to the loop-constraints zi,j . The values in W determines the
weight of the loop-constraints in the optimization. X and W
are latent variables and Z is an observed variable. Formally,
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Fig. 2. Bayesian network representing the pose-graph problem. wi,j is the
weight for the loop constraint zi,j in the optimization.

the problem of pose-graph optimization involves finding the
Maximum a Posterior (MAP) solution of p(X|Z) and this
means marginalizing out the latent variable W as given in
Equation (1).

p(X|Z) =

∫
W

p(X,W |Z) dW (1)

One possible way to find the MAP solution to p(X|Z)
is to use the EM algorithm. The EM algorithm is an
iterative algorithm that iterates between the Expectation and
Maximization steps. In the Expectation step, the current Xk

is used to find the posterior distribution of the latent variable
W given by Equation (2a). This posterior distribution is then
used to find the next Xk+1 by maximizing the complete log
likelihood given by Equation (2b) in the Maximization step.

p(W |Xk, Z) (2a)

Xk+1 = argmax
X

∫
W

p(W |Xk, Z) ln p(X|W,Z) dW (2b)

The main drawback of the EM solution is the computation
of p(W |Xk, Z) grows exponentially with the size of W and
becomes intractable. As suggested by [12], an alternative
solution would be to use the Classification EM algorithm
[10]. In the Expectation step given by Equation (3a), we
compute W k+1 by maximizing p(W |Xk, Z) instead of
evaluating p(W |Xk, Z) explicitly. With W k+1 known from
the Expectation step, Xk+1 can be found by maximizing the
log-likelihood ln p(X|W k+1, Z) as given by Equation (3b)
in the Maximization step. The Maximization step can also be
written into a minimization problem by appending a negative
sign to the log-likelihood and this turns the problem into the
usual pose-graph SLAM optimization.

W k+1 = argmax
W

p(W |Xk, Z) (3a)

Xk+1 = argmax
X

ln p(X|W k+1, Z)

= −argmin
X

ln p(X|W k+1, Z)
(3b)

A. Expectation Step

The task in Equation (3a) is to find the correct values of
wi,j ∈ [0, 1] given the current estimate of the robot poses Xk

and observations Z. Applying Bayes rule on p(W |Xk, Z)

and assuming that all observations Z are independent, we
have the following relation:

p(W |Xk, Z) ∝ p(Z|W,Xk) =
∏
ij

p(zi,j |wi,j , x
k
i , x

k
j )

∝
∏
ij

exp{−wi,j(h(xki , x
k
j )− zi,j)TQ−1i,j (h(xki , x

k
j )− zi,j)}

(4)
where Qi,j is the error covariance of the loop constraint
observation zi,j and h(.) is the observation model. Putting
Equation 4 back into Equation 3a and taking the negative
log-likelihood, the Expectation step becomes

W k+1 = argmin
W

∑
ij

wi,j ||h(xki , x
k
j )− zi,j ||2Qi,j (5)

However, a trivial solution of W = 0 exists for the minimiza-
tion of Equation 5. In order to circumvent this problem, we
introduce a penalty term −C2(lnwi,j − wi,j) to Equation
5, which penalizes the cost as wi,j goes to 0. This turns
Equation 5 into

W k+1 = argmin
W

∑
ij

wi,j ||h(xki , x
k
j )− zi,j ||2Qi,j

−C2(lnwi,j − wi,j)

(6)

where C is a constant. It is important to note that we do
not chose the penalty term arbitrarily, but it is chosen such
that the cost function in Equation 6 becomes convex with the
values for wi,j that gives the minimal cost bounded between
the range of [0, 1] as the Mahalanobis distance ||h(xki , x

k
j )−

zi,j ||2Qi,j
changes. Differentiating Equation 6 and setting it

to 0 gives us

wk+1
i,j =

C2

C2 + ||h(xki , x
k
j )− zi,j ||2Qi,j

(7)

which is the Cauchy function where C is a constant that
corresponds to the half maximum at wk+1

i,j = 0.5. Figure
3 shows the Cauchy weighting function at C = 0.01m. The
value of C determines the range of the Mahalanobis distances
to be considered as inliers. It becomes apparent from the
Cauchy function that the weight gradually decreases from
a maximum value of 1 to 0 with increasing error and this
means that the loop-constraints are down-weighted gradually
as the errors increase. We shall see from the results in Section
V that this smooths out loop-constraints which are correct
but corrupted with noises. In addition, the near-zero values
at both ends of the Cauchy function serve the purpose of
suppressing the bad effects from the outlier loop-constraints.

B. Maximization Step
From the Bayesian Network shown in Figure 2, we have

the following relation:

p(X|W k+1, Z) ∝∏
i

p(zi,i+1|xi, xi+1)︸ ︷︷ ︸
Odometry Constraints

∏
ij

p(zi,j |wk+1
i,j , xi, xj)︸ ︷︷ ︸

Loop Constraints

(8)
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Fig. 3. The Cauchy weighting function with C = 0.01.

where p(zi,i+1|xi, xi+1) and p(zi,j |wk+1
i,j , xi, xj) are the

odometry and loop constraints. Assuming that X and Z are
random variables that follow the Gaussian distribution, we
can write

p(zi,i+1|xi, xi+1) ∝ exp(−∆zTi,i+1P
−1
i,i+1∆zi,i+1) (9a)

p(zi,j |wi,j , xi, xj) ∝ exp(−wk+1
i,j ∆zTi,jQ

−1
i,j ∆zi,j) (9b)

where Pi,i+1 is the error covariance of the odometry ob-
servations zi,i+1. wk+1

i,j is the weight variable found from
the Expectation step. It acts as a scaling factor to the
information matrix Q−1i,j of the loop constraint since it takes a
value ranging from [0, 1]. Therefore, a lower weight implies
lower influence of the loop-constraint. ∆zi,i+1 and ∆zi,j
are defined in Equation (10) and these are the error terms
between the observed relative pose z and the predicted
relative pose from the observation model h(.).

∆zi,i+1 = h(xi, xi+1)− zi,i+1 (10a)
∆zi,j = h(xi, xj)− zi,j (10b)

Putting Equations (8), (9) and (10) into Equation (3b), we
obtain

Xk+1 = argmin
X

∑
i

||h(xi, xi+1)− zi,i+1||2Pi,i+1
+∑

ij

wk+1
i,j ||h(xi, xj)− zi,j ||2Qi,j

(11)

We solve for Xk+1 as a standard non-linear least squares
problem given by

JT ΛJδ = −JT Λε (12a)

Xk+1 = Xk + δ (12b)

where J is a Jacobian matrix that consists of the Jacobian
of h(xi, xi+1) and h(xi, xj). ε is the error term given by
∆zi,i+1 and ∆zi,j . Λ is the weight for the non-linear least
squares and it is a diagonal matrix formed by the information
matrices P−1i,i+1 and Q̂−1i,j = wk+1

i,j Q−1i,j . It is important to
note that, unlike standard non-linear least squares, we do
not solve Equation 12 iteratively until convergence. Instead,
we solve Equation 12a and update Equation 12b only once
within the Maximization step. As mentioned in [12], [13],
making an one step update in the Maximization step prevents

the EM optimization from getting stuck at local minima and
improves the convergence rate.

C. Summary

Algorithm 1 Pose-graph SLAM with Robust Loop-Closure
Require: Poses X , observations Z, loop vertex pairs I
Ensure: Corrected poses X , Weight variables W .

1: W ′ = 0; W = 1; I ′ = I;
2: while |W −W ′| > ν do
3: W ′ = W ;
4: // Classification EM iterations
5: k = 0; Xk = X;
6: while | δ |> η do
7: // Expectation Step
8: for all loop vertex pairs {i, j} ∈ I ′ do
9: Compute wk+1

i,j with Equation 7;
10: end for
11: // Maximization Step, {i, j} ∈ I ′
12: Form Λ with P−1i,i+1 and Q̂−1i,j = wk+1

i,j Q−1i,j ;
13: Compute J and ε with Xk and Z;
14: Solve for δ in JT ΛJδ = −JT Λε;
15: Update Xk+1 = Xk + δ;
16: k = k + 1;
17: end while
18: // Remove loop constraints with low weight
19: for all loop vertex pairs {i, j} ∈ I do
20: Compute wk

ij with Equation 7;
21: if wk

ij < ω then
22: Remove loop vertex pair {i, j} from I ′;
23: end if
24: end for
25: X = Xk; W = W k;
26: end while
27: return X , W ;

Algorithm 1 shows the pseudo code of our pose-graph
SLAM with robust loop-closure. Lines 8 to 10 are the
Expectation step where the weights wk+1

i,j are computed
based on the current pose Xk. It is important to note that
the weights wk+1

i,j are not kept fixed but are update within
the EM iterations based on the current pose Xk. Lines 12
to 16 are the Maximization step where the pose update
Xk+1 is computed from the weights wk+1

i,j and current pose
Xk. Intuitively, our algorithm re-evaluates the weights wk+1

i,j

based on the current poses Xk and observations Z, and
scales the updated poses Xk+1 according to these weights
at every iteration. The scaling is done in Line 12 where the
loop-closure information matrices Q−1i,j are scaled with the
weights wk+1

i,j . We repeat the EM process until there are no
more changes to the weights in Line 2. Lines 19 to 24 check
and remove loop constraints with very low weights, i.e. high
confidence to be outliers from the next EM process. The
repeated EM process and removal of loop constraints with
very low weights help to prevent local minima where the
EM algorithm terminates before all outlier loop constraints
are removed.



IV. RELATION WITH M-ESTIMATORS

Our proposed algorithm can also be viewed as solving
an iteratively re-weighted least-squares problem where the
weights are re-evaluated from the error between the robot
poses and observed loop-constraints ∆z = h(.)− z at every
iteration. We shall see that our algorithm which is based on
EM turns out to be conceptually similar to the M-Estimators.
The M-Estimators reduces the effect of outliers by replacing
the usual squared error ∆z2 term with a robust cost function
ρ(∆z). In the context of a robust pose-graph optimization,
we have the following

Xk+1 = argmin
X

∑
i

∆z2i,i+1 +
∑
ij

ρ(∆zi,j) (13)

where the first term is the odometry constraint and the second
term is the loop-constraints. Let us look at the second term
where the solution to the minimization is given by solving
for X after differentiating the second term and setting it zero.∑

ij

w(∆zi,j)∆zi,j
∂(∆zi,j)

∂X
= 0 (14)

where w(∆zi,j)∆zi,j is obtained from differentiating the
robust cost function ρ(∆z) and multiplying it by ∆zi,j . It
can be immediately observed that solving Equation 14 is the
same as optimizing the following

argmin
X

∑
ij

w(∆zi,j)∆z
2
i,j (15)

Putting the results from Equation 15 back into Equation 13,
we get

Xk+1 = argmin
X

∑
i

∆z2i,i+1 +
∑
ij

w(∆zi,j)∆z
2
i,j (16)

which is also an iteratively re-weighted least-squares where
w(∆zi,j) is the weight evaluated from the error εi,j at
every iteration similar to our method given in Equation
11. This means that Lines 5 to 17 of Algorithm 1 can
also be implemented as an M-Estimator with ρ(∆z) =∫
w(∆z)∆z d(∆z), where w(∆z) is given by the Cauchy

function in Equation 7.

A. Why Huber Robust Cost Fails?

The obvious question that follows after proving that our
algorithm based on EM is conceptually similar to the M-
Estimators is why does the commonly used robust Huber
cost function fails for pose-graph optimization with outliers
while our proposed algorithm works? The answer is in the
choice of the weight function. Figure 4 shows a plot of the
Huber weight function with a kernel width C = 0.01m. We
see that the Huber weight function assigns a considerable
weight to the loop-constraints with high errors on both ends
of the plot. This means that the outlier loop-constraints are
still exerting considerable influences from the Huber weight
on the pose-graph optimization thus rendering it to failure.
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Fig. 4. The Huber weighting function with C = 0.01.

In comparison, the Cauchy weight function proposed in this
paper assigns near-zero weight thus suppressing outliers with
high errors.

V. RESULTS AND EVALUATIONS

We implement our algorithm with the Google Ceres solver
[14] and evaluate it with multiple simulated and real-world
datasets. Here, simulated datasets refer to datasets where the
outlier loop-constraints are simulated and real-world datasets
refer to datasets with loop-constraints obtained from real
robots and sensors. C = 1.0m for all datasets except for
the ParkingGarage, Carpark01 and Carpark02 datasets where
C = 0.01m.

A. Simulated Datasets

TABLE I
SIMULATED DATASETS USED FOR EVALUATIONS

Dataset 2D/3D Vertices Loop-Edges
City10000 2D 10000 10688
Intel 2D 943 894
Manhattan3500 (Olson) 2D 3500 2099
Manhattan3500 (g2o) 2D 3500 2099
Sphere2500 3D 2500 2450
ParkingGarage 3D 1661 4615

Similar to [6], we make the evaluations of our robust pose-
graph algorithm with six different Open-Source pose-graph
datasets shown in Table I. We obtained the first five datasets
from Vertigo SLAM 1 and the ParkingGarage dataset from
g2o. The Intel and ParkingGarage datasets were collected
from real robots while the remaining datasets were simulated.
We simulate outliers loop constraints to corrupt the datasets
based on the four different policies mentioned in [6] - (a)
Random Constraints, (b) Local Constraints, (d) Randomly
Grouped Constraints and (e) Locally Grouped Constraints.
The simulation of the outliers are done using the script which
is provided by Vertigo SLAM. We compare our algorithm
with previous approaches - (a) Switchable Constraints [6]
and (b) Max-Mixture model [8] based on the Open-Source
implementations Vertigo SLAM. Note that we classify a
loop-closure constraint as outlier if the error is larger than a
given threshold after optimization.

1http://openslam.org/vertigo.html
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Fig. 5. Results from the ParkingGarage dataset comparing our method (top row) with the Switchable Constraints method (bottom row). (a)-(e) 1000
Random Constraints, (b)-(f) 1000 Local Constraints, (c)-(g) 50 sets of 20 Randomly Grouped Constraints, and (d)-(h) 50 sets of 20 Locally Grouped
Constraints.
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Fig. 6. Results from the City10000 dataset comparing our method (top row) with the Max-Mixture model (bottom row). (a)-(e) 1000 Random Constraints,
(b)-(f) 1000 Local Constraints, (c)-(g) 50 sets of 20 Randomly Grouped Constraints, and (d)-(h) 50 sets of 20 Locally Grouped Constraints.

1) Comparison with Switchable Constraints: It was
shown in [6] that the Switchable Constraints method fails
with the ParkingGarage dataset. We re-create the results
with the Vertigo SLAM for comparisons. Figure 5(a) and
5(e) shows the results from our algorithm and Switchable
Constraints method. The dataset is corrupted with 1000
Random Constraints shown as red lines. The correct loop-
closure constraints are shown as green lines. Note that the
z-axis in the figures are scaled up to have a clearer view
of the results. We can see from Figure 5(a) that the pose-
graph converges to the correct solution with our method.
All the outlier loop constraints are correctly identified. The
pose-graph however fails to converge to a correct solution
with the Switchable Constraints method in Figure 5(e). In
particular, the failure occurs at the connections between
different levels of the parking garage where there are more
wrong than correct loop constraints. Similar failure for the

Switchable Constraints method is observed in Figure 5(g)
when the dataset is corrupted with 50 sets of 20 Randomly
Grouped Constraints. In contrast, Figure 5(c) shows the
correct convergence of the pose-graph with our algorithm.
Results from Figure 5(b) and 5(f), and Figure 5(d) and 5(h)
show that both our algorithm and the Switchable Constraints
method work well for 1000 Local Constraints and 50 sets
of 20 Locally Grouped Constraints outliers. The reason for
the success of our algorithm on the ParkingGarage dataset
is because our method iteratively discriminates against the
outliers by the weights computed from the errors as the pose-
graph converges. In comparison, the Switchable Constraints
method optimizes for the switch values within the non-
linear least squares without taking the errors into account
and this proves to be detrimental at the connections between
different levels of the parking garage where correct loop-
closure constraints are scarce.



2) Comparison with Max-Mixture Model: It was men-
tioned in [8] that the success of the Max-Mixture model
depends on the outliers to inliers ratio. The Max-Mixture
model fails when this ratio becomes too high. Figure 6(a) and
6(e) show the results from the City10000 dataset corrupted
with 1000 Random Constraints with our algorithm and Max-
Mixture model. The red lines are the outlier loop constraints
and green lines are the correct loop constraints. Figure 6(a)
shows a correct convergence of the pose-graph with our
method. All the outliers are correctly detected. Figure 6(e)
shows the wrong convergence of the pose-graph with the
Max-Mixture model. Failures to converge to the correct
solutions are also observed for the Max-Mixture model with
the City10000 dataset corrupted 50 sets of 20 Randomly
Grouped Constraints and Locally Grouped Constraints in
Figures 6(g) and 6(h). The Max-Mixture model converges
to the correct solution with the City10000 dataset corrupted
with Local Constraints shown in Figure 6(f). In contrast, our
algorithm correctly detects all the outliers and converged
to the correct pose-graph with outliers generated from all
the four different policies. The results from this comparison
suggest that our algorithm is able to suppress the influence
from the outliers better than the Max-Mixture model even
when the outliers to inliers ratio is high.

3) Relative Pose Metric Errors: We run our algorithm on
all the datasets shown in Table I corrupted with simulated
outliers. For each dataset, we generate 10 times each with
1000 outliers based on the four different policies, i.e. 6
x 10 x 4 corrupted datasets with 1000 outliers each. We
compare the results from our algorithm with the results from
the outlier-free datasets since we do not have the ground
truth. The relative pose metric error from [15] is computed.
Our algorithm had successfully detected the outliers and
converged to the correct solutions for all the datasets with
100% success rate. The maximum relative pose metric error
from all results is 3.84×10−5. Figure 7(a) shows an example
of the Manhattan3500 (Olson) dataset corrupted with 1000
Random Constraint outliers stuck at a local minima after the
first EM process. Figure 7(b) shows the correct convergence
after the third EM process.

(a) (b)

Fig. 7. Manhattan3500 (Olson) dataset corrupted with 1000 Random
Constraint outliers. (a) Local minima after the first EM process with 5 outlier
constraints wrongly classified. (b) Correct convergence after the third EM
process.

B. Real-World Datasets

We also make evaluations of our algorithm on two real-
world datasets - Carpark01 and Carpark02. These datasets
were collected with cameras mounted on a car which was

driven approximately 3.5km and 1km around two differ-
ent parking garages. The pose-graphs for both datasets
are formed using the wheel odometry readings. The loop-
closures constraints are computed with a vocabulary-tree
based [16] place recognizer and geometric verification. The
Carpark01 dataset consists of 3997 vertices and 1352 loop-
closure edges. The Carpark02 dataset consists of 2180 ver-
tices and 642 loop-closure edges. Both datasets are equipped
with the GPS/INS readings as the ground truth. Figures 8(a)
and 8(b) show the pose-graphs of the two datasets before
loop-closure. In contrast to the simulated datasets, the real-
world datasets possess very few outlier loop-constraints in
grossly wrong locations because the place recognizer and
geometric verification are usually capable of identifying and
removing these outliers. Instead, we observed that the main
source of error comes from the uncertainties in the estimation
of the relative poses for the loop-constraints. Figures 9(a)
and 10(a) show the pose-graphs from the two datasets after
non-robust loop-closures. It can be seen that in addition to
a few outliers that caused huge errors in the pose-graph,
the uncertainties in the estimation of the relative poses for
the loop-constraints caused small kinks to appear in the
pose-graph. Figures 9(b) and 10(b) show the results from
the Max-Mixture model [8]. Figures 9(c) and 10(c) show
the results from the Switchable Constraints [6]. The plots
clearly show that both methods detected the outliers but are
unable to smooth out the uncertainties that are present in
the loop-constraints. In comparison, Figures 9(d) and 10(d)
show that our algorithm is able to handle the uncertainties in
the estimation of the relative poses for the loop-constraints
because the pose-graphs after loop-closure clearly align with
the GPS/INS ground truth for both datasets.

(a) (b)

Fig. 8. Pose-graph before loop-closure. Loop-constraints are shown in
green. (a) Carpark01 dataset. (b) Carpark02 dataset.

C. Runtime Performance

TABLE II
CONVERGENCE TIME COMPARISONS

Runtime (secs)
Dataset Non-Robust EM
City10000 2.2701 2.2926
Intel 0.0813 0.0819
Manhattan3500 (Olson) 0.9900 1.0047
Manhattan3500 (g2o) 0.6662 0.6675
Sphere2500 16.6994 17.1384
ParkingGarage 4.43296 4.49716
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Fig. 9. Results from Carpark01 dataset. (a) Pose-graph after non-robust
loop-closure. (b) Pose-graph after Max-Mixture model loop-closure. (c)
Pose-graph after Switchable Constraints loop-closure. (d) Pose-graph after
loop-closure with our algorithm.
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Fig. 10. Results from Carpark02 dataset. (a) Pose-graph after non-robust
loop-closure. (b) Pose-graph after Max-Mixture model loop-closure. (c)
Pose-graph after Switchable Constraints loop-closure. (d) Pose-graph after
loop-closure with our algorithm.

Table II shows the time taken for each dataset to con-
verge to the correct solution with the non-robust pose-graph
optimization and our algorithm. Both non-robust pose-graph
optimization and our algorithm are implemented with Google
Ceres solver [14]. The tests were run on a Intel Core2 Quad
CPU @ 2.40GHz x 4 computer and the datasets were not
corrupted with any outlier. It is important to note that our
algorithm still computes the weights in the Expectation steps
because it does not have any prior information that none of
the loop constraint is an outlier. Our algorithm is able to
correctly identify that all loop-closure constraints are correct
and converges to the correct solution for all the datasets. We

observe from Table II that our algorithm incurs a very slight
increase in runtime as compared to the non-robust pose-graph
optimizations.

VI. CONCLUSION

We showed in this paper that the robust pose-graph loop-
closure problem can be modeled with the Bayesian network
and solved with the EM algorithm. We further proved that
our robust pose-graph loop-closure algorithm with EM is
conceptually similar to the M-Estimator and our choice of
the Cauchy function has a better capability in suppressing the
effects from outliers than the commonly used Huber cost
function. We showed that our algorithm performed better
than the existing algorithms - (a) Switchable Constraints
and (b) Max-Mixture Model by showing results from both
simulated and large-scale real-world datasets.
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