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Abstract— The SFly project is an EU-funded project, with
the goal to create a swarm of autonomous vision controlled
micro aerial vehicles. The mission in mind is that a swarm
of MAV’s autonomously maps out an unknown environment,
computes optimal surveillance positions and places the MAV’s
there and then locates radio beacons in this environment. The
scope of the work includes contributions on multiple different
levels ranging from theoretical foundations to hardware design
and embedded programming. One of the contributions is the
development of a new MAV, a hexacopter, equipped with
enough processing power for onboard computer vision. A major
contribution is the development of monocular visual SLAM that
runs in real-time onboard of the MAV. The visual SLAM results
are fused with IMU measurements and are used to stabilize
and control the MAV. This enables autonomous flight of the
MAV, without the need of a data link to a ground station.
Within this scope novel analytical solutions for fusing IMU
and vision measurements have been derived. In addition to
the realtime local SLAM, an offline dense mapping process
has been developed. For this the MAV’s are equipped with
a payload of a stereo camera system. The dense environment
map is used to compute optimal surveillance positions for a
swarm of MAV’s. For this an optimiziation technique based
on cognitive adaptive optimization has been developed. Finally,
the MAV’s have been equipped with radio transceivers and
a method has been developed to locate radio beacons in the
observed environment.

I. EXTENDED SUMMARY

The goal of the SFly project [1] was to create a swarm of
autonomous Micro Aerial Vehicles (MAV’s) for applications
in search and rescue missions. This video (additional videos
are available on the SFly Youtube Channel [2]) demonstrates
the use of the developed MAV’s in a simulated disaster
response situation. In the demonstrated mission, the MAV’s
are used to provide an aerial overview of the disaster scene
and to locate victims.

In the first step of the mission a swarm of 3 MAV’s
autonomously explores the environment and captures aerial
image data which is used to compute a 3D model of the
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disaster site. Based on the computed 3D model optimal
coverage positions, to overlook the rescue operations, are
computed and the MAV’s are send to these positions. In the
final step, possible victims are located by scanning for radio
beacons which are worn by by people in the disaster area.
For this the MAV’s are equipped with radio transceivers.

The requirements of the SFly project made it necessary
to develop a new MAV platform (Fig. 1). The SFly MAV
(developed by the project partner Ascending Technologies)
consists of a hexacopter base with a diameter of around
55cm [16]. It is equipped with an IMU for attitude control as
well as pressure sensor and GPS. A highlight is the onboard
computer, an Intel Core2Duo, which is powerful enough to
do the real-time image processing of the onboard cameras.
The MAV is equipped with a downward looking monocular
camera which is used for flight control and a configurable
stereo setup that can be either used for mapping or obstacle
detection. The weight of the system is 1.5kg.

For flight control a local visual SLAM algorithm is run-
ning onboard and in real-time using the downward looking
monocular camera. This allows stable hovering and also take-
off and landing maneuvers [17], [5], [12]. The full state of
the MAV is computed by fusing the visual SLAM poses
with measurements from the IMU. This also resolves the
absolute scale problem of monocular SLAM. The theoretical
background for this is described in [3], [4], [8], [9], [11],
[13], [14], [15]. The system is able to navigate autonomously
by waypoint following.

The stereo system of the MAV can either be configured
as downward looking or front looking. In front looking
configuration the stereo system can be used for obstacle
detection and avoidance. Stereo computation and path plan-
ning for obstacle avoidance runs in real-time on the onboard
processor [10].

In its downward configuration the stereo system can be
used to acquire data for 3D environment mapping. 3D
mapping runs offboard on a ground station and fuses together
the map data from all the MAV’s of the swarm. The 3D
mapping pipeline first computes an initial posegraph from
stereo visual odometry and then performs loop detection
using a vocabulary tree and posegraph optimization and
then merges together the individual results of the MAV’s.
A full bundle adjustment is used as a final optimization step.



Finally, a dense environment model is computed by depth-
map fusion into a grid map [10]. This pipeline makes use
of novel algorithms for camera pose estimation that include
IMU information in the estimation process [18]. Once a 3D
model of the environment is computed, the MAV’s positions
can be computed in this global coordinate frame.

The 3D environment map is used to compute optimal
surveillance positions for a swarm of MAV’s. The surveil-
lance coverage criterion optimized, is defined as the total
surface area monitored in a given time interval. This is a
dynamic optimization problem that strongly depends on the
terrain morphology and has to take into account various
environmental constraints imposed on the MAVs, such as ve-
locity constraints, visibility-imposed constraints by occluding
objects in case of urban or rough terrain [20], [7].

The SFly MAV’s carry as payload a radio transceiver
that allows to locate a radio beacon with the explored en-
vironment. The localization takes RSSI measurements from
multiple positions and determines the beacons location by
this [19].

Fig. 1. The SFly hexacopter MAV.
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