

XOO7: Applying OO7 Benchmark to XML Query
Processing Tools

Stéphane Bressan,
Mong Li Lee,
Ying Guang Li
Bimlesh Wadhwa

National University of Singapore

School of Computing
10 Kent Ridge Cresent, Singapore.

65-874-2905.

{steph, leeml, liyinggu,
bimlesh}@comp.nus.edu.sg

Gillian Dobbie
Department of Computer Science

The University of Auckland
Auckland, New Zealand.

64-9-373-7453
gill@cs.auckland.ac.nz

 Zoé Lacroix,
Ullas Nambiar

 Arizona State University

PO Box 876106
Tempe AZ 85287-6106

 USA

1-480-727-6935

{zoe.lacroix, mallu}@asu.edu

ABSTRACT
If XML is to play the critical role of the lingua franca for
Internet data interchange that many predict, it is necessary to
start designing and adopting benchmarks allowing the
comparative performance analysis of the tools being developed
and proposed. The effectiveness of existing XML query
languages has been studied by many who focused on the
comparison of linguistic features, implicitly reflecting the fact
that most XML tools exist only on paper. In this paper, with a
focus on efficiency and concreteness, we propose a pragmatic
first step toward the systematic benchmarking of XML query
processing platforms with an initial focus on the data (versus
document) point of view. We propose XOO7, an XML version
of the OO7 benchmark. We discuss the applicability of XOO7,
its strengths, limitations and the extensions we are considering.
We illustrate its use by presenting and discussing the
performance comparison against XOO7 of three different query
processing platforms for XML.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation
(efficiency and effectiveness)

General Terms
 Measurement, Performance, Experimentation, Standardization.

Keywords

XOO7, XML Management Systems, XML Benchmarks, Native-
XML database, XML aware database.

1. INTRODUCTION
It is becoming increasingly important to effectively and
efficiently manage XML data. In particular, we expect new Web
based applications for e -commerce to require XML query
processing facili ties. Introduced as a schema -less, self -
describing data representation language, XML quickly emerged
as the standard for information interchange for the Web [30].
The development of XML was not furthered directly by the
mainstream database community, yet d atabase researchers
actively participated in developing standards centered on XML,
and particularly query languages for XML. Many XML query
languages have been proposed but only few query-processing
tools are available for use. The languages and tools can be
classified into two groups – those designed with a document
focus e.g. XQL [23], Quilt [20] and KWEELT [27], and those
designed with a database focus e.g. LORE [5] and XML-QL
[12]. Recently, XQuery [33] has been drafted as the query
language for XML, combining both document and data centric
orientation of XML. At this juncture a user intending to setup a
XML based data interchange or storage system would be faced
with the question of which XML query languages to base her
system on. With so many proposals and tools, end-users need
better insight as to which one is most suitable in terms of
features and performance for their application requirements.
Several papers have compared the features of these XML query
languages [15,8] but none have provided a perf ormance
evaluation.

In this paper, we propose XOO7 – a benchmark to evaluate the
performance of XML query processing tools. XOO7 is an
adaptation of the OO7 benchmark [10]. OO7 provides a
comprehensive evaluation of object -oriented database
management system (OODBMS) performance. The main
OODBMS’s and storage managers have been benchmarked
against OO7: E/Exodus, Objectivity/DB, and Ontos. The

rationale underlying both the design of XML, XML query
languages, and the object -oriented data model and query
languages is the need for richer structure for the flexible
modeling and querying of complex data. Although XML also
attempts to provide a framework for handling semi-structured
data, it encompasses most of the modeling features of complex
object models [3, 4]. This observation motivated our study.
There are straightforward correspondences between the object-
oriented schemas and instances and XML DTDs and data. We
mapped the OO7 schema and instances into a DTD and the
corresponding XML data sets. Our purpose here is to evaluate
the performance of query processing facilities, therefore we
translated the eight OO7 queries into the respective languages of
the query processing tools we tested: LORE, a special-purpose
(or semi structured) system university prototype; KWEELT, an
open source university prototype that works on ASCII XML
data files; and a commercial object-relational database system
(OR-DBMS1) that provides a simple but limited mapping of
XML data into object -relational data. The characteristics we
measure are response time for different queries and classes of
queries, time to load the data, and space required to store the
data.

The rest of the paper is organized as follows. Section 2
addresses the expected functionalities of XML query languages.
The design of a benchmark for XML queries is addressed in
Section 3. The XOO7 data model and queries are defined in
Section 4. Section 5 presents the preliminary performance
results. Section 6 summarizes other related work and we
conclude in Section 7 by highlighting the possible extensions to
this work.

2. XML QUERY FUNCTIONALITIES
The performance of the implementation of query languages for
XML depends strongly on their expressive power: the
functionalities they provide. Indeed, some of the expected
functionalities may affect significantly the efficiency of the
system. Many languages claim to be XML query languages,
however their functionalities vary dramatically. Some languages
such as LOREL [5,16] provide the functionalities offered by a
traditional data oriented query language such as SQL. Others
focus on XML integration and restructuring with additional
data-oriented functionalities such as join, nesting and
aggregation as in XML-QL [31], or partial or none of these
data-oriented functionalities as in XSL [32] a nd XQL [23].
More recently, languages such as Quilt [11] and XQuery [33]
extend the data-oriented approach to functionalities to handle
XML documents.

The design of a benchmark for XML query languages shall
address the performance issues connected to the characteristics
of XML query languages, thus their functionalities. XML query
languages functionalities were addressed in a comparative
analysis of XML query Languages [8] and listed as “must have”
in the requirements [19] published by the W3C XML Query
language working group. Table 1 enumerates all these

1 We have chosen to withhold the name of the commercial

system we have tested given the sensitivity of the results of the
benchmark experiments.

requirements. An XML query language should support the
manipulation and extraction of data from multiple documents
(R1), by accessing and combining different parts within
documents (R9), querying the DTD [XML:00], XML Schema
[24, 25, 26] (R1) or along paths (R13), by using data types (R1)
or evaluating conditions over textual elements (R5). XML
queries should support implicit order (order of elements within
the XML document) as well as explicit order (order defined in
the schema) (R2). Complex Data models can be defined using
the XML data model, in par with this, a XML query language
should therefore be able to work with differing data models (R4)
all of which would have a common origin. Since XML is a
semi-structured language, NULL values may be present. A
missing element may or may not be representable as NULL
valued element but vice versa may be true, and hence NULL
value manipulation will take on additional complexity (R7).
Support for quantification and negation in queries (R6) is
needed. XML can capture structured information and hence a
XML query language should have the expressiveness of a
structured query language like SQL for relational databases.
Hence such a language should support various types of join
operations (R9), aggregation (R10), sorting (R11). Unlike XML,
relational model disregards the order. Hence sorting and
aggregation increase in complexity when order and document
structure need to be preserved in some form (R17). The
language must be capable of generating new XML structures
and transforming one XML structure to another (R18). Since
queries can be along paths and paths can consist of recursive
calls to themselves or sub paths, structural recursion should be
supported (R20). A query on a database may change the
underlying data. Hence the query language should provide
methods for updating the underlying database (R15).

3. DESIGNING A BENCHMARK FOR
XML QUERIES
The rationale underlying both the desing of XML, XML query
languages and the obje ct-oriented data model and query
languages is the need for richer structure for the flexible
modeling and querying of complex data. Although XML
attempts to provide a framework for handling semi-structued
data, it encompasses most of the modeling features of complex
object models. There are straight forward correspondences
between the object-oriented schemas and instances and XML
DTDs and data. XOO7 was designed keeping in mind these
similarities in data model of XML and object-oriented approach.
XOO7 is an adaptation of OO7 Benchmark [10].

XML syntax is suited for semi-structured data. Yet XML and
semistructured data have subtle differences [2]. A tree
representation of XML and semi structured data is
interchangeable but a graph structure of both models has
differences. Semistructured data model is based on unordered
collections, while XML is ordered. Unique identifiers can be
associated with elements in XML. References to such elements
can be made by other elements in the XML document. A close
observation of XML model will show its similarity to the object-
oriented data model. XML is probably most similar to object-
oriented data model in as much as it also consists of nodes, and
nodes can contain heterogeneous data. On the other hand, just
how heterogeneous nodes are depends a lot on the particular

DTDs or Schemas used to define the structure of an XML
document. The object-oriented data model is similar to both
XML and semi -structured data model with respect to
representation of objects or entities using trees. Similar to XML
we can assign object identities or ‘oids’ to objects if these have
to be referenced by other objects. An object identifier can
become part of a namespace and can reference other objects
across the Web. This is similar to the notion of Namespaces in
XML. In reality, XML is less natural in representing Relational
databases (RDMBS). Individual tables can be directly
represented literally, but with far more information about the
data (i.e Metadata) than actual RDBMS’s do. Similarly
representing relational query results involving joins, grouping,
sorting, etc. in XML is straightforward and is the most widely
practiced use of XML in existing data management systems. But
the core of an RDBMS is its relations. In particular, the set of
constraints that exist between tables, and that are enforced by
the RDBMS are what make RDBMS’s so useful and powerful.
It is surely possible to represent a constraint set in XML for
purposes of communicating it, but XML has no inherent
mechanism for enforcing constraints of this sort (DTDs and
Schemas are constraints of a sort, but in a different and more
limited way). A data model cannot be present without
constraints or rather without the ability to enforce the
constraints. Also characteristics of RDBMS like fixed record
lengths, compact storage formats etc., designed to improve
reliability and performance cannot be easily mimicked in XML.
In fact XML can be viewed as an object model. The standard
API for XML proposed by W3C called DOM uses the
Document Object Model [13] for XML documents. The
Resource Description Framework used for describing metadata
for XML also has object-oriented flavour [21].

Table 1 Functionalities of XML Query Languages

Id Description
R1 Query all data types and collections of possibly multiple

XML documents.
R2 Allow data-oriented, document-oriented and mixed queries.
R3 Accept streaming data.
R4 Support operations on various data models.
R5 Allow conditions/constraints on text elements.
R6 Support for hierarchical and sequence queries.
R7 Manipulate NULL values.
R8 Support quantifiers (∃,∀, and ~) in queries.
R9 Allow queries that combine different parts of document(s).
R10 Support for aggregation.
R11 Able to generate sorted results.
R12 Support composition of operations.
R13 Allow navigation (reference traversals).
R14 Able to use environment information as part of queries e.g.

current date, time etc.
R15 Able to support XML updates if data model allows.
R16 Support for type coercion.
R17 Preserve the structure of the documents.
R18 Transform and create XML structures.
R19 Support ID creation.
R20 Structural recursion.

Thus while developing the benchmark we based our decisions
on two facts. First, the benchmark is for XML query systems
using XML data and documents stored locally in files or
database. Second, XML data model shows high degree of

similarity to object-oriented model. Hence we decided to take
OO7 – a benchmark designed to test performance of
OOBDMBS and extend it to develop a benchmark for XML
query processing systems. However, adaptations are needed if
we want to use OO7 as a benchmark (refer to requirements of
Table 1).

3.1 THE XOO7 BENCHMARK
XOO7 is an XML version of the OO7 Benchmark. Figure 1
shows the conceptual schema of the database modeled using the
ER diagram given in the OO7 benchmark. We have translated
this conceptual schema into the DTD shown in Figure 2. This
translation involves some arbitrary choices, which are beyond
the scope of this preliminary report. Nevertheless we outline our
main decisions in the sequel of this section.

Table 2 XOO7 database parameters

Parameters Small Medium Large
NumAtomicPerComp 20 200 200
NumConnPerAtomic 3, 6, 9 3, 6, 9 3, 6, 9
DocumentSize (bytes) 500 1000 1000
ManualSize (bytes) 2000 4000 4000
NumCompPerModule 50 50 50
NumAssmPerAssm 3 3 3
NumAssmLevels 5 5 5
NumComPerAssm 3 3 3
NumModules 1 1 10

Since XML does not cater for ISA relationships, we have pre-
processed the inheritance of attributes and relationships. This
transformation is common to many OO7 implementations. We
choose the root of the XML document to be <Module>. There
are three attributes in <Module>: MyID2, type and buildDate.
Each <Module> contains the elements <Manual> and
<ComplexAssembly>. The element <ComplexAssembly>
inherits the attributes of Design Object. Each assembly part has
two integer attributes MyID and buildDate, and a string attribute
type. Each <BaseAssembly> contains <CompositePart>. Each
<CompositePart> has three attri butes: MyID, type and
buildDate, and three elements: <Document>, <AtomicPart> and
<Connection>. The <Document> element has attributes MyID
and title. Every <AtomicPart> has six attributes: MyID, type,
buildDate, x, y and docId. Each <Connection> element has two
attributes: type and length, and two sub-elements: <Part1> and
<Part2>. Both <Part1> and <Part2> have an integer attribute
IDREF. Connection is a recursive relationship. In XML, it can
translate into an attribute of <AtomicPart>, or into an element at
the same level as <AtomicPart> or at a level higher or lower
than <AtomicPart>. We choose a lower level for our
experiments on initial data sets. There are up-to seven levels of
assemblies in the OO7 benchmark. We chose to use five levels
in XOO7 because of the limitations of most existing XML tools
in the volume of data they can manipulate. This is sometimes
due to the naïve representation of tags (as ASCII) in many
systems such as KWEELT.

2 Since ID is a reserved word in XML, we have renamed it to
MyID.

Similarly to OO7, XOO7 benchmark proposes three different
databases of varying size: small, medium, and large. Table 2
summarizes the parameters and their corresponding values that
are uses to control the size of the XML data. We have grouped
the 8 OO7 queries, Q-1 to Q-8, into three groups as shown in
Table 3. Group I involves lookups, Group II involves range
queries, Group III is composed of join queries. To illustrate the
concrete syntax of XML query languages, we give the code of
Q-6 in KWEELT, Lorel for Lore, and SQL for the commercial
OR-DBMS, respectively.

4. PERFORMANCE STUDY
We use XOO7 to evaluate three query processing platforms:
Lore, KWEELT and OR-DBMS. The experiments are run on a
SunOS 5.7 Unix system (333 MHz), with 256 MB RAM and 1.9
GB disk space. The C++ implementation of XOO7 is available
at http://www.comp.nus.edu.sg/~ebh/XOO7.html.

Table 3 Queries in OO7

Group I
Q-1 Exact match lookup. Generate 5 random numbers for

AtomicPart’s MyID. Return the AtomicPart’s MyID
according to the 5 numbers.

Q-4 Path lookup. Generate 5 random titles for Document.
Return the Document’s MyID according to the 5 titles.

Group II
Q-2 Select 1% of AtomicPart (with a buildDate after 1990)

and return their MyID.
Q-3 Select 10% of AtomicP art (with a buildDate after

1900) and return their MyID.
Q-7 Select all AtomicPart and return their MyID.
Group III
Q-5 Single-level “make”. Find the MyID of a

CompositePart if it is more recent than the
BaseAssembly it uses.

Q-6 Multi -level “make”. F ind the MyID of a
CompositePart (recursively) if it is more recent than
the BaseAssembly or the ComplexAssembly it uses.

Q-8 Ad hoc join. Join AtomicPart and Document on the
docId of AtomicPart and the MyID of Document.

LORE, developed in Stanford University, is one of the earliest
systems developed to store and query semi structured data. It has
been extended at Stanford University to query XML data, and is
implemented in C++. While LORE supports many needed
features, it fails to support some important aggregate and update
functions. KWEELT was designed and implemented at the
University of Pennsylvania. It is written in Java and it is open-
source. Its query language is based on Quilt, which in turn
leverages the XPath standard.

KWEELT works from ASCII XML data files but can be
interfaced to other storage back-ends. We have used it with
ASCII XML data files. OR -DBMS is a commercial object -
relational database management system. It is built on top of SQL
and data in the object-relational database tables or views can be
transformed into XML data. OR-DBMS provides a simple but
limited mapping of XML data into object -relational data. We
use XML-DBMS [6] to perform this mapping.

We record the space utilization for each of the systems for the
various databases in the benchmark. The results are illustrated in

Table 4 Representation of Query 6 in 3 Systems

KWEELT <result>
FOR $ca IN
Document(“/home/hon/liyinggu/os/small91.xml”)//C
omplexAssembly,
$ba IN $ca//BaseAssembly, $cp IN
$ba/CompositePart [@buildDate.>.$ba/@buildDate
OR @buildDate.>. $ca/@buildDate]
RETURN $cp/@MyID
</result>

Lorel
for Lore

SELECT cp.MyID FROM
Module(.ComplexAssembly)*ca,
ca(.ComplexAssembly)*.BaseAssembly ba,
ba.CompositePart cp WHERE ba.buildDate <
cp.buildDate or ca.buildDate < cp.buildDate;

SQL for
OR-DBMS

SELECT cp.MyID
FROM COMPLEXASSEMBLY1 c1,
COMPLESASSEMBLY2 c2,
COMPLEXASSEMBLY3 c3,
COMPLEXASSEMBLY4 c4, BASEASSEMBLY ba,
COMPOSITEPART CP WHERE (cp.BUILDDATE
> c1.BUILDATE and c1.MYID = c2.PARENTID and
c2.MYID = c3.PARENTID and c3.MYID =
c4.PARENTID and c4.MYID = ba.COMPLEXID
and ba.MYID = cp.BASEID) or
(cp.BUILDDATE > c2.BUILDDATE and c2.MYID
= c3.PARENTID and c3.MYID = c4.PARENTID and
c4.MYID = ba.COMPLEXID and ba.MYID =
cp.BASEID) or (cp.BUILDDATE . c3.BUILDDATE
and c3.MYID = c4.PARENTID and c4.MYID =
ba.COMPLEXID and ba.MYID = cp.BASEID) or
(cp.BUILDDATE > c4.BUILDDATE and c4.MYID
= ba.COMPLEXID and ba.MYID = cp.BASEID) or
(cp.BUILDDATE > ba.BUILDDATE and ba.MYID
= cp.BASEID);

Figure 3 for varying size of the input XML data. Each query is
executed ten times and the average response time is recorded.
The response time results are presented in Figure 4. Because of
space limitations we present the results by groups of queries for
the small and medium databases. The relatively bad performance
of KWEELT can be explained by the fact that it accesses the
ASCII XML data files. Regardless of the query, the performance
degrades with the database (file) size. Group III involving path
expressions and joins - Q -6 and Q -8, respectively - yield
particularly bad performance. Lore is using a structured storage
and implements access methods. The performance is consistent
with the amount of data accessed by the query regardless of the
overall database size. Only on path expression (Q-6) have we
noticed a significant impact of the overall database size on the
response time. We suspect that the path expression evaluation
involves a systematic browsing of the data. The OR-DBMS
leverages the query processing power of the relational database
engine and yields the best response time. In Q -6, the path
expression is implemented iteratively knowing there are exactly
five levels. Notice finally that, in KWEELT, all the queries for a
medium size database overflow the virtual memory and could
not be executed. The storage requirements of KWEELT are
equal to the size of the input ASCII XML data files. OR-DBMS
takes advantage of the relational storage, economizing on the
storage of the tags.

5. DISCUSSIONS AND RELATED WORK
Semistructured query languages and data models have been
studied widely in [1][7]. In [14] several storage strategies and
mapping schemes for XML data using a relational database are
explored. Domain-specific database benchmarks for OLTP
(TPC-C), decision support (TPC -H, TPC -R, APB -1),
information retrieval, spatial data management (Sequoia) etc are
available at [17], [29].

To our knowledge only two benchmarks, XMach -1 [9] and
XMark [28], designed for XML, are publicly available. XMach-
1 tests multi -user features. It evaluates standard and non -
standard linguistic features such as insertion, deletion, querying
URL, and aggregate operations. Although the proposed
workload and queries are interesting, the benchmark has not
been applied and no performance results exist. XMark is a very
recent proposal to assess the performance of XML query
processors. This benchmark consists of an application scenario
which models an Internet auction site and 20 XQuery challenges
designed to cover the essentials of XML query processing.
These queries have been evaluated on an internal research
prototype, Monet XML, to give a first baseline. Table 3 show
the functionalities covered by queries given in XOO7. For
queries of XMach-1 and XMark and functionalities they cover
refer [34]. These benchmarks cover an average of 5 to 8
functionalities listed in Table 1. While the XMark benchmark 20
query challenges, both XOO7 and XMach-1 have 8 benchmarks
queries. In additional, XMach-1 has 2 queries to test updates.
We note that query Q8 in XMach -1 test several operations:
count, sort, join and existential, making it hard to analyze the
experiment result because it will not be clear which feature
causes poor performance.

Table 5 Current XOO7 Queries

ID Description Coverage
Q1 Randomly generate 5 numbers in the range

of AtomicPart’s MyID. Return the
AtomicPart’s MyIDs according to the 5
numbers.

R1, R2

Q4 Randomly generate 5 titles for Documents.
Return Document’s MyIDs by lookup on
these titles.

R1, R2

Q2 Select 1% of the latest AtomicParts via
buildDate. Return the MyIDs.

R4

Q3 Select 10% of the latest AtomicParts via
buildDate. Return the MyIDs.

R4

Q7 Select all of the AtomicParts and return the
MyIDs.

R4, R8

Q5 Find the MyID of a CompositePart if it is
later than the BaseAssembly it is using.

R1, R2

Q6 Find the MyID of CompositePart (repeatedly)
once there is a BaseAssembly or
ComplexAssembly it is using with a
buildDate more than it is using.

R1, R2

Q8 Join AtomicParts and Documents on
AtomicParts docID and Documents MyID.

R9

6. CONCLUSION
XML is becoming ubiquitous. Numerous of -the-shelf XML
processing systems are becoming available. To check whether
these systems truly harness the power of XML, XML related

technologies like XPath, XPointer etc., and the XML query
languages, a benchmark becomes inevitable. In this paper we
first identify the desirable XML query characteristics. Next we
show similarities between object-oriented data model and XML
and propose XOO7, an XML version of the OO7 benchmark.
This benchmark is a pragmatic first step toward the systematic
benchmarking of XML query processing platforms. We
illustrated its use by presenting and discussing the performance
comparison against XOO7 of three query processing platforms
for XML: LORE, KWEELT, and OR -DBMS. Against this
benchmark, LORE and OR-DBMS consistently outperformed
KWEELT. However, OR -DBMS and KWEELT were more
economical with space. We are heartened by these results and
will extend the benchmark in a number of directions. Given that
XOO7 is an XML version of OO7, there is a possibility that
XOO7 is currently biased towards systems that perform database
features well and against systems that are optimised for
information retrieval. As an initial extension we provide a set of
queries shown in Table 6 to capture document-centric query
processing capabilities of XML systems. While designing these
queries, we assume a document ordered representation of XOO7
data. The complexity involved in satisfying this assumption on
existing XML management systems has to be empirically
evaluated and forms part of our future work. At the moment we
assume single user systems. On the other hand multi -user
systems are highly prevalent and widely used. We plan to extend
XOO7 to include multi-user querying capabilities, querying in
presence of schema information and other aspects of XML data
like Navigation queries.

Table 6 New Queries Added to XOO7

ID Description Coverage

Q9 Randomly generate two phrases among all
phrases in Documents. Select these
documents containing 2 phrases.

R5

Q10 Repeat query Q1 but replace duplicated
elements using IDREF.

R13

Q11 Select all BaseAssemblies from one XML
database where it has the same “MyID”
and “type” attributes as the other
BaseAssemblies but with later buildDate.

R9

Q12 Select all AtomicParts with corresponding
CompositeParts as their sub-elements.

R1, R2

Q13 Select all ComplexAssemblies with type
“type008”.

R1, R2

7. ACKNOWLEDGEMENT
This work is f unded by the National University of Singapore

Academic Research Fund RP082112.

8. REFERENCE

[1] S. Abiteboul. Querying semistructured data. In Proc.

of Int. Conf. On Database Theory (ICDT), pp 1-18,
1997.

[2] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web:
From Relations to Semistructured Data and XML, Morgan
Kaufman Publishers, 2000.

[3] S. Abiteboul, S. Grumbach. COL: A Logic -Based
Language for Complex Objects. In Proc. of Int. Conf. On
Extending Database Technology (EDBT), pp 271 -293,
1988.

[4] S. Abiteboul, M. Sch oll. From Simple to Sophisticate
Languages for Complex Objects. Data Engineering
Bulletin 11(3), pp 15-22, 1988.

[5] S. Abiteboul, D. Quass, J. McHug, J. Widom, J. Wiener.
The Lorel Query Language for Semistructured Data.
International Journal on Digital Libra ries, 1(1):68, April
1997.

[6] R. Bourret. Java Packages for Transferring Data between
XML Documents and Relational Databases.
http://www.rpbourret.com/xmldbms/readme.htm.

[7] P. Buneman. Semistructured Data. In Proc. of Symposium
on Principles of Database Systems (PODS), pp 117-121,
1997.

[8] A. Bonifati, S. Ceri. Comparative Analysis of Five XML
Query Languages. ACM SIGMOD Record, 29(1), 2000.

[9] T. Bohme, E. Rahm. XMach-1: A Benchmark for XML
Data Management. Available at http://dbs.uni-
leipzig.de/projekte/XML/XmlBenchmarking.html

[10] M. J. Carey, D. J. DeWitt, J. F. Naughton. The OO7
benchmark. ACM SIGMOD Int. Conf. On Management of
Data, pp. 12-21, Washington, 1993.

[11] D. Chamberlin, J. Robie, D. Florescu. Quilt: An XML
Query Language for Heterogeneous Data Sources. ACM
SIGMOD Workshop on Web and Databases (WebDB’00),
Dallas, 2000.

[12] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu.
XML -QL: A Query Language for XML.
http://www.w3.org/TR/NOTE-xml-ql/.

[13] V. Apparao, S. Byrne. M Champion, S. Isaacs, I. Jacobs, A.
Le Hors, G. Nicol, J. Robie, R. Sutor, C. Wilson, L. Wood.
Document Object Mo del, 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

[14] D. Florescu, D. Kossman. A Performance Evaluation of
Alternative Mapping Schemes for Storing XML Data in a
Relational Database, Report 3680 INRIA, France, May
1999.

[15] M. Fernandez, J. Simeon, P. Wadler. XML Query
Languages: Experiences and Exemplars, 2000. http://www-
db.research.bell-labs.com/user/simeon/xquery.html

[16] R. Goldman, J. McHugh, J. Widom. From Semistructured
Data to XML: Migrating the Lore Data Model and Query
Language, ACM SIGMOD Workshop on Web and
Databases (WebDB’99), 1999.

[17] J. Gray. The Benchmark Handbook: For Database and
Transaction Processing Systems, 2nd Edition, Morgan
Kaufmann Publishers, Inc., 1993.

[18] B. Chang, M. Scardina, K. Karun, S. Kiritzov, I. Macky, A.
Novoselsky, N. Ramakrishnan. ORACLE XML Handbook
(184-190), 2000.

[19] P. Frankhauser, M. Marchiori, J. Robie. XML Query
Requirements, 2000. http://www.w3.org/TR/xmlquery-req/.

[20] J. Robie, D. Chamberlin, D. Florescu. Quilt: an XML query
language, 2000. Available at
http://www.gca.org/papers/xmleurope2000/papers/s08-
01.html

[21] D. Brickley, R.V. Guha. Resource Description Framework
(RDF) Schema Specification 1.0, 2000.
http://www.w3.org/TR/rdf-schema/.

[22] XML Query Requirements. W3C Working Draft 15 August
2000. http://www.w3.org/TR/xmlquery-req

[23] J. Robie, J. Lapp, D. Schach. XML Query Language
(XQL), 1998.
http://www.w3.org/TandS/QL/QL98/pp/xql.html

[24] D. Fallside. XML Schema Part 0: Primer, 2001.
http://www.w3.org/TR/2001/REC-xmlschema-0-
20010502/.

[25] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn.
XML Schema Part 1: Structures , 2001.
http://www.w3.org/TR/2001/REC-xmlschema-1-
20010502/

[26] P. Biron, A. Malhotra. XML Schema Part 2: Datatypes,
2001. http://www.w3.org/TR/2001/REC-xmlschema-2-
20010502/.

[27] A. Sahuguet, L. Dupont, T. L. Nguyen. Querying XML in
the New Millennium. http://db.cis.upenn.edu/KWEELT/.

[28] A. R. Schmidt, F. Waas, M. L. Kersten, D. Flor escu, I.
Manolescu, M. J. Carey, R. Busse. The XML Benchmark
Project. Technical Report INS-R0103, CWI, Amsterdam,
The Netherlands, April 2001.

[29] Transaction Processing Performance Council.
http://www.tpc.org/.

[30] T. Bray, J. Paoli, C. M. Sperberg -McQueen, E. Maler.
Extensible Markup Language (XML) 1.0 (Second Edition),
2000. http://www.w3.org/TR/2000/REC-xml-20001006/.

[31] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu.
XML -QL: A query language for XML, 1998.
http://www.w3.org/TR/NOTE-xml-ql/.

[32] S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E.
Gutentag. Extensible Stylesheet Language (XSL),2000.
http://www.w3.org/TR/xsl/.

[33] D. Chamberlin, D. Florescu, J. Robie, J. Sim. XQuery: A
Query Language for XML, 2000.
http://www.w3.org/TR/xmlquery/.

[34] S. Bressan, G. Dobbie, Z. Lacroix, M.L. Lee, U. Nambiar,
Y.G. Li, B. Wadhwa. XOO7: Applying OO7 Benchmark to
XML Query Processing Tools, NUS Technical Report
TRB6/01, June 2001.

9. APPENDIX

Figure 3: Space cost for three systems: LORE, Kweelt and OR-DBMS.

Small database Medium database

Query 1, 4:

Query 5, 6, 8:

Query 2, 3, 7:

Figure 4: Response time result for the eight queries.

Space for three systems

0

50

100

150

0 10 20 30 40 50 60 70

Data size (MB)

S
pa

ce
 u

til
ity

 (M
B

)

OR-DBMS

LORE

Kweelt

0

5

10

15

20

0 2 4 6 8
0

50

100

150

0 20 40 60 80

0

50

100

150

0 2 4 6 8
0

200

400

600

800

0 20 40 60 80

0

5

10

15

20

0 2 4 6 8
0

50

100

150

0 20 40 60 80

 LORE Kweelt OR-DBMS

