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Abstract

Most of the successful deep neural network architectures are structured,
often consisting of elements like convolutional neural networks and gated
recurrent neural networks. Recently, graph neural networks (GNNs) have
been successfully applied to graph-structured data such as point cloud and
molecular data. These networks often only consider pairwise dependencies,
as they operate on a graph structure. We generalize the GNN into a
factor graph neural network (FGNN) providing a simple way to incorporate
dependencies among multiple variables. We show that FGNN is able to
represent Max-Product belief propagation, an approximate inference method
on probabilistic graphical models, providing a theoretical understanding on
the capabilities of FGNN and related GNNs. Experiments on synthetic and
real datasets demonstrate the potential of the proposed architecture.

1 Introduction

Deep neural networks are powerful approximators that have been extremely successful in
practice. While fully connected networks are universal approximators, successful networks in
practice tend to be structured, e.g., grid-structured convolutional neural networks and chain-
structured gated recurrent neural networks (e.g., LSTM, GRU). Graph neural networks [7,
34, 35] have recently been successfully used with graph-structured data to capture pairwise
dependencies between variables and to propagate the information to the entire graph.
The dependencies in the real-world are often beyond pairwise connections. E.g., in the LDPC
encoding, the bits of a signal are grouped into several clusters. In each cluster, the sum of all
bits should be equal to zero [36]. Then in the decoding procedure, these constraints should
be respected. In this paper, we show that the GNN can be naturally extended to capture
dependencies over multiple variables by using the factor graph structure. A factor graph is a
bipartite graph with a set of variable nodes connected to a set of factor nodes; each factor
node indicates the presence of dependencies among its connected variables. We call a neural
network formed from the factor graph a factor graph neural network (FGNN).
Factor graphs have been used extensively to specify Probabilistic Graph Models (PGMs)
for modeling dependencies among multiple random variables. In PGMs, the specification or
learning of the model is usually separate from the inference process. Approximate inference
algorithms such as Belief Propagation which is often used, since inference over PGMs are
often NP-hard. Unlike PGMs, graph neural networks usually learn a set of latent variables
and the inference procedure at the same time in an end-to-end manner; the graph structure
only provides information on the dependencies along which information propagates. For
problems where domain knowledge is weak, or where approximate inference algorithms do
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Figure 1: The structure of the Factor Graph Neural Network (FGNN): the Variable-to-Factor (VF)
module is shown on the left while the Factor-to-Variable (FV) module is shown on the right.

poorly, being able to learn an inference algorithm jointly with the latent variables, specifically
for the target data distribution, often produces superior results.
We take the approach of jointly learning the inference algorithm and latent variables in
developing the factor graph neural network (FGNN). The FGNN is defined using two types
of modules, the Variable-to-Factor (VF) module and the Factor-to-Variable (FV) module
(see Figure 1). These modules are combined into a layer, and the layers are stacked together
into an algorithm. We show that the FGNN is able to exactly parameterize the Max-Product
Belief Propagation, which is a widely used approximate maximum a posteriori (MAP)
inference algorithm for PGMs. Theoretically, this shows that FGNN is at least as powerful
as Max-Product and hence can solve problems solvable by Max-Product, e.g., [2, 11].
The simplest representation of PGMs uses a tabular potential for the factors. Unfortunately,
its size grows exponentially with the number of variables in the factors, which makes higher
order tabular factors impractical. We design FGNN to naturally allow approximation of the
factors by parameterizing factors in terms of the maximum of a set of rank-1 tensors. The
parameterization can represent any factor exactly with a large enough set of rank-1 tensors;
the number of rank-1 tensors required can grow exponentially for some problems but may be
small for easier problems. Using this representation, the size of the FGNN that can simulate
Max-Product grows polynomially with the number of rank-1 tensors in approximating the
factors, giving a practical approximation scheme that can be learned from data.
The theoretical relationship with Max-Product provides understanding on the representational
capabilities of GNNs in general, and of FGNN in particular. From the practical perspective,
the factor graph provides a flexible way for specifying dependencies. Furthermore, inference
algorithms for many types of graphs, e.g., graphs with typed edges or nodes, are easily
developed using the factor graph representation. Edges, or more generally factors, can be
typed by tying together parameters of factors of the same type, or can also be conditioned
from input features by making the edge or factor parameters a function of the features; nodes
can similarly have types or features with the use of factors that depend on a node variable.
With typed or conditioned factors, the factor graph can also be assembled dynamically for
each graph instance. FGNN provides a flexible learnable architecture for exploiting these
graphical structures – just as factor graph allows easy specification of different types of PGMs,
FGNN allows easy specification of both typed and conditioned variables and dependencies
as well as a corresponding data-dependent approximate inference algorithm.
To be practically useful, the FGNN architecture needs to be practically learnable without
being trapped in poor local minimums. We performed experiments to explore the practical
potential of FGNN. FGNN performed well on a synthetic PGM inference problem with
constraints on the number of elements that may be present in subsets of variables. We also
experimented with applying FGNN on the LDPC decoding and long term human motion
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prediction. We outperform the standard LDPC decoding method under some noise conditions
and achieve state-of-the-art results on human motion prediction, demonstrating the potential
of the architecture.

2 Background

Probabilistic Graph Models (PGMs) use graphs to model dependencies among random
variables. These dependencies are conveniently represented using a factor graph, which is
a bipartite graph G = (V, C, E) where each vertex i ∈ V in the graph is associated with a
random variable xi ∈ X, each vertex c ∈ C is associated with a function fc and an edge
connects a variable vertex i to factor vertex c if fc depends on xi.

Figure 2: A factor graph where f1 depends
on x1, x2, and x3 while f2 depends on x3.

Let x be the set of all variables and let xc be the
subset of variables that fc depends on. Denote
the set of indices of variables in xc by s(c). We
consider discrete PGM as follows

p(x) = 1
Z

exp
[∑
c∈C

θc(xc) +
∑
i∈V

θi(xi)
]
, (1)

where exp(θc(·)), exp(θi(·)) are positive functions
called potentials (with θc(·), θi(·) as the corre-
sponding log-potentials) and Z is a normalizing
constant. The goal of maximum a posteriori (MAP) inference [16] is to find the assignment
which maximizes p(x), that is

x∗ = argmax
x

∑
c∈C

θc(xc) +
∑
i∈V

θi(xi). (2)

As Eq. (2) is NP-hard in general [29], approximation are often required. One common
method is Max-Product Belief Propagation, which is an iterative method formulated as

bi(xi) = θi(xi) +
∑

c:i∈s(c)

mc→i(xi); mc→i(xi) = max
x̂c:x̂i=xi

[
θc(x̂c) +

∑
i′∈s(c),i′ 6=i

bi′(x̂i′)
]
. (3)

Max-product type algorithms are fairly effective in practice, achieving moderate accuracy in
various problems [6, 8, 32].
Related Works Various graph neural network models have been proposed for graph
structured data, including methods based on the graph Laplacian [3, 4, 13], gated networks
[18], and various other neural networks structures for updating the information [1, 5, 9, 28].
Gilmer et al. [7] show that these methods can be viewed as applying message passing on
pairwise graphs and are special cases of Message Passing Neural Networks (MPNNs).
In this work, we seek to go beyond pairwise interactions by using message passing on factor
graphs. Recent works on the expressive power of graph neural networks have also consider
using higher order networks, e.g. Morris et al. [25] and Maron et al. [21] consider networks
based on higher order Weisfeiler-Lehman tests that can be used for testing graph isomorphism.
In contrast to graph isomorphism, FGNN builds on probabilistic graphical models, which
provide a rich language allowing the designer to specify prior knowledge in the form of
pairwise as well as higher order dependencies in a factor graph.

3 Factor Graph Neural Network

Previous works on graph neural networks focus on learning pairwise information exchanges.
The Message Passing Neural Network (MPNN) [7] provides a framework for deriving different
graph neural network algorithms by modifying the message passing operations. We aim at
enabling the network to efficiently encode higher order features and to propagate information
between higher order factors and the nodes by performing message passing on a factor graph.
We describe the FGNN network and show that for specific settings of the network parameters
we obtain the Max-Product Belief Propagation algorithm for the corresponding factor graph.
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3.1 Factor Graph Neural Network

First we give a brief introduction to the Message Passing Neural Network (MPNN), and then
we propose one MPNN architecture which can be easily extended to a factor graph version.
Given a graph G = (V,N ), where V is the node set and N is the adjacency list, assume that
each node is associated with a feature f i and each edge (i, j) : i ∈ V, j ∈ N (i) is associated
with an edge feature eij . Then a message passing neural network layer is defined in [7] as

mi =
∑

j∈N (i)

M(f i, f j , eij), f̃ i = U t(f i,mi), (4)

where M and U are usually parameterized by neural networks. The summation in (4)
can be replaced with other aggregator, e.g., maximization [31]. The main reason to use
maximization is that summation may be corrupted by a single outlier, while maximization
is more robust. Thus in our paper we also use the maximization as aggregator. There are
also multiple choices of the architecture ofM and U . We propose an MPNN architecture as
follows

f̃ i = max
j∈N (i)

Q(eij)M(f i, f j), (5)

whereM maps feature vectors to a length-n feature vector, and Q(eij) maps eij to a m× n
matrix. Then by matrix multiplication and aggregation a new length-m feature is generated.

Algorithm 1 The FGNN layer
Input: G=(V, C, E), [f i]i∈V , [gc]c∈C , [tci](c,i)∈E

Output: [f̃ i]i∈V , [g̃c]c∈C

1: Variable-to-Factor:

2: g̃c= max
i:(c,i)∈E

Q(tci |ΦVF) M([gc, fi]|ΘVF)

3: Factor-to-Variable:

4: f̃i = max
c:(c,i)∈E

Q(tci |ΦFV) M([ gc, fi]|ΘFV)

MLPMLP

tci

m × n

Matrix ×

n
×

1
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Figure 3: Left: The pseudo code for the FGNN layer. Here the Variable-to-Factor (VF)
module and the Factor-to-Variable (FV) modules are MPNN layers with similar structure
but different parameters. Right: The detailed architecture for our VF or FV module.

The MPNN encodes unary and pairwise edge features, but higher order features are not
directly encoded. Thus we extend the MPNN by introducing extra factor nodes. Given a
factor graph G = (V, C, E), unary features [f i]i∈V and factor features [gc]c∈C , assume that for
each edge (c, i) ∈ E , with c ∈ C, i ∈ V, there is an associated edge feature vector [tci]. Then,
the Factor Graph Neural Network layer on G can be extended from (5) as shown in Figure 3
and Algorithm 1, where [ΦVF,ΘVF] are parameters for the Variable-to-Factor module, and
[ΦFV,ΘFV] are parameters for the Factor-to-Variable module.
We use the same architecture for sending the messages from variables to factors as well as
for the messages from factors to variables. If the aim is only to simulate the Max-Product
algorithm, it would be more direct to have different architectures for the two types of
messages. However, having the same architecture is simpler to implement. In addition,
it is also possible to have a variant where messages from variables and factors are sent
simultaneously instead of alternately; in this case we simply have a MPNN on a bipartite
(factor) graph with the same structure for the variable and factor nodes.

3.2 FGNN for Max-Product Belief Propagation

In this section, we prove that a widely used approximate inference algorithm, Max-Product
Belief Propagation can be exactly parameterized by the FGNN. The sketch of the proof is as
follows. First we show that any higher order potentials can be decomposed as maximization
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over a set of rank-1 tensors, and that the decomposition can be represented by a FGNN layer.
After the decomposition, a single Max-Product iteration only requires two operations: (1)
maximization over rows or columns of a matrix, and (2) summation over a group of features.
We show that the two operations can be exactly parameterized by the FGNN and that k
Max-Product iterations can be simulated using O(k) FGNN layers.
In general, the size of a potential grows exponentially with the number of variables that
it depends on. In that case the size of FGNN may explode. However, if the potential can
be well approximated as a moderate number of rank-1 tensors, the corresponding FGNN
will also be of moderate size. In practice, the potential functions may be unknown and only
features of the of the factor nodes are provided; FGNN can learn the approximation from
data, potentially exploiting regularities such as low rank approximations if they exist.
Tensor Decomposition For discrete variables x1, . . . , xn, a rank-1 tensor is a product
of univariate functions of the variables

∏n
i=1 φi(xi). A tensor can always be decomposed

as a finite sum of rank-1 tensors [15]. This has been used to represent potential functions,
e.g. in [33], in conjunction with sum-product type inference algorithms. For max-product
type algorithms, a decomposition as a maximum of a finite number of rank-1 tensors is more
appropriate. It has been shown that there is always a finite decomposition of this type [14].
Lemma 1 ([14]). Given an arbitrary potential function φc(xc), there exists a variable
zc ∈ Zc with | Zc | <∞ and a set of univariate potentials {φic(xi, zc)|i ∈ c}, s.t.

log φc(xc) = log max
zc

∏
i∈s(c)

φic(xi, zc) = max
zc

∑
i∈s(c)

ϕic(xi, zc), (6)

where ϕic(xi, zc) = log φic(xi, zc).

Using ideas from [14], we show that a PGM can be converted into single layer FGNN with
the non-unary potentials represented as a finite number of rank-1 tensors.
Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

The proof of Proposition 2 and the following propositions can be found in the supplementary
material. With the decomposed higher order potential, one iteration of the Max-Product (3)
can be rewritten using the following two equations:

bc→i(zc) =
∑

i′∈s(c),i′ 6=i

max
x′

i

[
ϕi′c(xi′ , zc) + bi′(xi′)

]
, (7a)

bi(xi) =θi(xi) +
∑

c:i∈s(c)

max
z

[ϕic(xi, zc) + bc→i(zc)]. (7b)

Given the log potentials represented as a set of rank-1 tensors at each factor node, we show
that each iteration of the Max-Product message passing update can be represented by a
Variable-to-Factor (VF) layer and a Factor-to-Variable (FV) layer, forming a FGNN layer,
followed by a linear layer (that can be absorbed into the VF layer for the next iteration).
With decomposed log-potentials, belief propagation mainly requires two operations: (1)
maximization over rows or columns of a matrix; (2) summation over a group of features. We
first show that the maximization operation in (7a) (producing max-marginals) can be done
using neural networks that can be implemented by theM units in the VF layer.
Proposition 3. For arbitrary feature matrix X ∈ Rm×n with xij as its entry in the ith row
and jth column, the feature mapping operation x̂ = [maxj xij ]mi=1 can be exactly parameterized
with a 2log2 n-layer neural network with at most O(n2 log2 n) parameters.

Following the maximization operations, Eq. (7a) requires summation of a group of features.
However, the VF layer uses max instead of sum operators to aggregate features. Assuming
that theM operator has performed the maximization component of equation (7a) producing
max-marginals, Proposition 4 shows how the Q layer can be used to produce a matrix
W that converts the max-marginals into an intermediate form to be used with the max
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aggregators. The output of the max aggregators can then be transformed with a linear layer
(Q in Proposition 4) to complete the computation of the summation operation required in
equation (7a). Hence, equation (7a) can be implemented using the VF layer together with a
linear layer that can be absorbed in theM operator of the following FV layer.
Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rm×n>0 with xij as
its entry in the ith row and jth column, there exists a constant tensor W ∈ Rm×n×mn that
can be used to transform X into an intermediate representation yik =

∑
ij xijwijk, such that

after maximization operations are done to obtain ŷk = maxi yik, we can use another constant
matrix Q ∈ Rn×mn to obtain [

∑
i xij ]nj=1 = Q[ŷk]mnk=1.

Eq. (7b) can be implemented in the same way as (7a) by the FV layer. First the max
operations are done by theM units to obtain max-marginals. The max-marginals are then
transformed into an intermediate form using the Q units which are further transformed by
the max aggregators. An additional linear layer is then sufficient to complete the summation
operation required in (7b). The final linear layer can be absorbed into the next FGNN layer,
or as an additional linear layer in the network in the case of the final Max-Product iteration.
Using the above two proposition, we can implement all important operations (7). Firstly, by
Proposition 3, we can construct the Variable-to-Factor module using the following proposition.
Proposition 5. The operation in (7a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc | parameters followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

Meanwhile, by Proposition 3 and Proposition 4 the Factor-to-Variable module can be
constructed using the following proposition.
Proposition 6. The operation in (7b) can be parameterized by one MPNN layer, where the
Q network is identity mapping and theM network consists of a O(maxc∈C log2 | Zc |)-layer
neural network with at most O(maxc∈C | Zc |2 log2 | Zc |) parameters and a linear layer with
O(maxc∈C |c|2|X|2) parameters.

Using the above two proposition, we achieves the main theory result in this paper as follows.
Corollary 7. The max-product algorithm in (3) can be exactly parameterized by the FGNN,
where the number of parameters are polynomial w.r.t |X|, maxc∈C | Zc | and maxc∈C |c|.

4 Experiments

In this section, we evaluate the models constructed using FGNN for three types of tasks:
MAP inference over higher order PGMs, LDPC decoding and human motion prediction.

4.1 MAP Inference over PGMs

Data We construct four synthetic datasets (D1, D2, D3 and D4) for this experiment. All
models start with a length-30 chain structure with binary-states nodes with node potentials
randomly sampled from U [0, 1], and the pairwise potentials encourage two adjacent nodes to
take state 1, i.e., it gives high value to configuration (1, 1) and low value to others. In D1,
the pairwise potentials are fixed, while in the others, they are randomly generated. For D1,
D2 and D3, a budget higher order potential [23] is added at every node; these potentials
allow at most k of the 8 variables within their scope to take the state 1; specifically, we set
k = 5 in D1 and D2 and set randomly in D3. In D4, there is no higher order potential at all.
In this paper, we use the simplest, but possibly most flexible method of defining factors
in FGNN: we condition the factors on the input features. Specifically, for the problems in
this section, all parameters that are not fixed are provided as input factor features. We test
the ability of the proposed model to find the MAP solutions, and compare the results with
MPNN [7] as well as several MAP inference solver, namely AD3 [23] which solves a linear
programming relaxation using subgradient methods, Max-Product Belief Propagation [32],
implemented by [24], and a convergent version of Max-Product – MPLP [8], also based on
a linear programming relaxation. The approximate inference algorithms are run with the
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Table 1: Results (percentage agreement with MAP and standard error) on synthetic datasets with
runtime in microseconds in bracket (exact followed by approximate inference runtime for AD3).

AD3 Max-Product MPLP MPNN Ours

D1 80.7±0.0014 (5 / 5) 57.3±0.0020 (6) 65.8±0.0071 (57) 71.9±0.0009 (131) 92.5±0.0012 (144)
D2 83.8±0.0014 (532 / 325) 50.5±0.0053 (1228) 68.5±0.0074 (55) 74.3±0.0009 (131) 89.1±0.0010 (341)
D3 88.1±0.0006 (91092 / 1059) 53.5±0.0081 (4041) 64.2±0.0056 (55) 82.1±0.0008 (121) 93.2±0.0006 (382)
D4 100 (6 / 5) 100 (6) 99.9±0.0005 (0.04) 91.2±0.0005 (137) 98.0±0.0003 (216)

correct models while the graph neural network models use learned models, trained with exact
MAP solutions generated by a branch-and-bound solver that uses AD3 for bounding [23].
Architecture and training details In this task, we use a factor graph neural network
consisting of 8 FGNN layers (the details is provided in the supplementary file). The model
is implemented using pytorch [27], trained with Adam optimizer [12] with initial learning
rate lr = 3× 10−3 and after each epoch, lr is decreased by a factor of 0.98. All the models in
Table 1, were trained for 50 epoches after which all models achieve convergence.
Results The percentage of agreement with MAP solutions is shown in Table 1. Our model
achieves far better result on D1, D2 and D3 than all others. D4 consists of chain models,
where Max-Product works optimally 1. The linear programming relaxations also perform
well. In this case, our method is able to learn a near-optimal inference algorithm.
Traditional method including Max-Product, MPLP perform poorly on D1, D2 and D3.
In these even though FGNN can emulate traditional Max-Product, it is better to learn a
different inference algorithm. AD3 have better performance than others, but worse than our
FGNN. The accuracy of FGNN is noticeably higher than that of MPNN as MPNN does not
use the higher order structural priors that are captured by FGNN.
We also did a small ablation study on the size of the FGNN high order potentials (HOPs)
using D1 and D2. On D1, the accuracies are 81.7 and 89.9 when 4 and 6 variables are used
in place of the correct 8 variables; on D2, the accuracies are 50.7 and 88.9 respectively. In
both cases, the highest accuracies are achieved when the size of the HOPs are set correctly.

4.2 LDPC Decoding

The low-density parity check (LDPC) codes is widely used in wired and wireless communica-
tion, where the decoding can be done by sum/max-product belief propagation [36].
Data Let x be the 48-bit original signal, and y be the 96-bit LDPC encoded signal
by encoding scheme “96.3.963”[19]. Then a noisy signal ỹ is obtained by transferring y
through a channel with Gaussian and burst noise, that is, for each bit i, ỹi = yi + ni + pizi,
where ni ∼ N (0, σ2) , zi ∼ N (0, σ2

b ), and pi is a bernoulli random variable s.t. P (pi =
1) = η; P (pi = 0) = 1 − η. In the experiment, we set η = 0.05 as [10] to simulate
unexpected burst noise during transmission. By tuning σ, we can get different signal with
SNRdB = 20 log10(1/σ).
In the experiment, for all learning based methods, we generate ỹ from randomly sampled
x on the fly with SNRdB ∈ {0, 1, 2, 3, 4} and σb ∈ {0, 1, 2, 3, 4, 5}. For each learning based
method, 108 samples are generated for training. Meanwhile, for each different SNRdB and
σb, 1000 samples are generated for validating the performance of trained model.
In LDPC decoding, the SNRdB is usually assumed to be known and fixed, and the burst
noise is often unexpected and its parameters are unknown to the decoder. Thus for learning
based methods and traditional LDPC decoding method, the noisy signal ỹ and the SNRdB
are provided as input. In our experiments, the baselines includes bits decoding, sum-product
based LDPC decoding and the Message Passing Neural Networks (MPNN).
Architecture and training details In this task, we use a factor graph neural network
consisting of 8 FGNN layers (the details are provided in the supplementary file). The model
is implemented using pytorch [27], trained with Adam optimizer [12] with initial learning

1Additional experiment on tree can be found in Appendix B.3 along with details on all experiments.
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Table 2: Long-term prediction error (the smaller the better) of joint angles (top) and 3D
joint positions (bottom) on H3.6M

Walk Eating Smoking Discussion Average
milliseconds 560 1000 560 1000 560 1000 560 1000 560 1000

convSeq2Seq[17] N/A 0.92 N/A 1.24 N/A 1.62 N/A 1.86 N/A 1.41
GNN[20] 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27
Ours 0.67 0.70 0.76 1.12 0.88 1.57 1.35 1.70 0.91 1.27

convSeq2Seq[17] 69.2 81.5 71.8 91.4 50.3 85.2 101.0 143.0 73.1 100.3
GNN[20] 55.0 60.8 68.1 79.5 42.2 70.6 93.8 119.7 64.8 82.6
Ours 44.1 53.5 59.5 73.0 33.0 61.9 86.9 113.5 55.9 75.5
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Figure 4: Experimental results on LDPC decoding.

rate lr = 1× 10−2 and after every 10000 samples, lr is decreased by a factor of 0.98. After
training over 108 samples, the training loss converges. For MPNN, we use a 8 layer MPNN,
and the same training protocol is used.
Results We compare FGNN with two public available LDPC decoder MacKay-Sum-
Product [19] and Commpy-Sum-Product [30]. Both the two decoder are using Sum-Product
belief propagation to propagate information between higher order factors and nodes, but
with different belief clipping strategy and different belief propagation scheduler. Meanwhile,
our FGNN uses a learned factor-variable information propagation scheme, and the other
learning based method, MPNN ignores the higher order dependencies. The decoding
accuracy is provided in Figure 4. The MacKay-Sum-Product [19] is known to be near
optimal for Gaussian noise and thus its performance is the best for lower burst noise level.
The Commpy-Sum-Product have better performance than MacKay for high burst noise,
but worse performance for low burst noise. Our FGNN always perform better than the
Commpy-Sum-Product and MPNN, it achieves comparable but lower performance than the
MacKay-Sum-Product for low burst noise level(0-2dB), and outperforms all other methods
for high burst noise level(3-5dB).

4.3 Human Motion Prediction

The human motion prediction aims at predicting future motion of a human given a history
motion sequence. As there are obviously higher order dependencies between joints, the factor
graph neural network may help to improve the performance of the predictor. In this section,
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we consider human motion prediction problem for the skeleton data, where the angle and 3d
position of each joints are predicted. We build a factor graph neural network model for the
skeleton data and compare the FGNN model with the state-of-the-art model based on GNN.
Architecture and training details We train our model on the Human3.6M dataset
using the standard training-val-test split as previous works [17, 20, 22], and we train and
evaluate our model using the same protocol as [20] (For details, see the supplementary file).
Results The results is provided in Table 2. For angle error, our FGNN model achieves
similar results compared to the previous state-of-the-art GNN-based method [20], while for
3D position error, our model achieves superior performance. This is because compared to
pairwise GNN, our model captures better higher order structural prior.

5 Conclusion

We extend graph neural networks to factor graph neural networks, enabling the network to
capture higher order dependencies among the variables. The factor graph neural networks
can represent the execution of the Max-Product algorithm on probabilistic graphical models,
providing theoretical understanding on the representation power of graph neural networks.
The factor graph provides a convenient method of capturing arbitrary dependencies in graphs
and hypergraphs, including those with typed or conditioned nodes and edges, opening up
new opportunities for adding structural bias into learning and inference problems.

Broader Impact

Our work on the factor graph neural networks aims to make it easier to effectively specify
structural inductive biases in the form of dependencies among sets of variables. This will
impact on learning algorithms on structured data, particularly graph structured data. On the
positive side, with well specified inductive biases, more effective learning would be possible
on applications that require structured data. These include data with physical constraints
such as human motion data, as well as data with abstract relationships such as social network
data. On the negative side, in applications on some types of data such as social network
data, better inference could mean less privacy. Research, guidelines, and possibly regulations
on privacy can help to mitigate the negative effects.
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Factor Graph Neural Net—Supplementary File

A Proof of propositions

First we provide Lemma 8, which will be used in the proof of Proposition 2 and 4.
Lemma 8. Given n non-negative feature vectors f i = [fi0, fi1, . . . , fim], where i = 1, . . . , n,
there exists n matrices Qi with shape nm×m and n vector f̂ i = Qi fTi , s.t.

, [f1, f2, . . . , fn] = [max
i
f̂i0,max

i
f̂i1, . . . ,max

i
f̂i,mn].

Proof. Let

Qi =

0m×m, . . . ,0m×m︸ ︷︷ ︸
i−1 matrices

, I,0m×m, . . . ,0m×m︸ ︷︷ ︸
n−i matrices

> , (8)

then we have that

f̂ i = Qi fTi =

 0, . . . , 0︸ ︷︷ ︸
(i−1)m zeros

, fi0, fi1, . . . , fim, 0, . . . , 0︸ ︷︷ ︸
(n−i)m zeros


>

.

By the fact that all feature vectors are non-negative, obviously we have that [f1, f2, . . . , fn] =
[maxi f̂i0,maxi f̂i1, . . . ,maxi f̂i,mn].

Lemma (8) suggests that for a group of feature vectors, we can use the Q operator to produce
several Q matrices to map different vector to different sub-spaces of a high-dimensional
spaces, and then our maximization aggregation can sufficiently gather information from the
feature groups.
Proposition 2. A factor graph G = (V, C, E) with variable log potentials θi(xi) and factor
log potentials ϕc(xc) can be converted to a factor graph G′ with the same variable potentials
and the decomposed log-potentials ϕic(xi, zc) using a one-layer FGNN.

Proof. Without loss of generality, we assume that log φc(xc) > 1. Then let

θic(xi, zc) =
{ 1
|s(c)| log φc(xzc

c ), if x̂i = xzc
i ,

−cxi,zc , otherwise, (9)

where cxi,zc
can be arbitrary real number which is larger than maxxc

θc(xc). Obviously we
will have

log φc(xc) = max
zc

∑
i∈s(c)

θic(xi, zc) (10)

Assume that we have a factor c = 1, 2, . . . n, and each nodes can take k states. Then xc can
be sorted as

[ x0
c = [x1 = 0, x2 = 0, . . . , xn = 0],

x1
c = [x1 = 1, x2 = 0, . . . , xn = 0],
. . . ,

xk
n−1
c = [x1 = k, x2 = k, . . . , xn = k]],

and the higher order potential can be organized as vector gc =
[log φc(x0

c), log φc(x1
c), . . . , log φc(xk

n−1
c )]. Then for each i the item θic(xi, zc) in (9)

have kn+1 entries, and each entry is either a scaled entry of the vector gc or arbitrary
negative number less than maxxc

θc(xc).
Thus if we organize θic(xi, zc) as a length-kn+1 vector f ic, then we define a kn+1× kn matrix
Qci, where if and only if the lth entry of f ic is set to the mth entry of gc multiplied by
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1/|s(c)|, the entry of Qci in lth row, mth column will be set to 1/|s(c)|; all the other entries
of Qci is set to some negative number smaller than −maxxc θc(xc). Due to the assumption
that log φc(xc) > 1, the matrix multiplication Qci gc must produce a legal θic(xi, zc).
If we directly define a Q-network which produces the above matrices Qci, then in the
aggregating part of our network there might be information loss. However, by Lemma 8 there
must exists a group of Q̃ci such that the maximization aggregation over features Q̃ci Qci gc
will produce exactly a vector representation of θic(xi, zc), i ∈ s(c). Thus if every tci is a
different one-hot vector, we can easily using one single linear layer Q-network to produce all
Q̃ci Qci, and with aM-network which always output factor feature, we are able to output a
vector representation of θic(xi, zc), i ∈ s(c) at each factor node c.

Given the log potentials represented as a set of rank-1 tensors at each factor node, we need
to show that each iteration of the Max Product message passing update can be represented
by a Variable-to-Factor layer followed by a Factor-to-Variable layer (forming a FGNN layer).
We reproduce the update equations here.

bc→i(zc) =
∑

i′∈s(c),i′ 6=i

max
x′

i

[log φi′c(xi′ , zc) + bi′(xi′)] , (11a)

bi(xi) =θi(xi) +
∑

c:i∈s(c)

max
z

[log φic(xi, zc) + bc→i(zc)]. (11b)

In the max-product updating procedure, we should keep all the decomposed log φi′c(xi′ , zc)
and all the unary potential θi(xi) for use at the next layer. That requires the FGNN to
have the ability to fit the identity mapping. Consider letting the Q network to always
output identity matrix,M([gc, fi]|ΘVF) to always output gc, andM([gc, fi]|ΘFV) to always
output fi. Then the FGNN will be an identity mapping. As Q always output a matrix
and M output a vector, we can use part of their blocks as the identity mapping to keep
log φi′c(xi′ , zc) and θi(xi). The other blocks are used to updating bc→i(zc) and bi(xi).
First we show thatM operators in the Variable-to-Factor layer can be used to construct the
computational graph for the max-marginal operations.
Proposition 3. For arbitrary real valued feature matrix X ∈ Rm×n with xij as its entry in
the ith row and jth column, the feature mapping operation x̂ = [maxj xij ]mi=1 can be exactly
parameterized with a 2log2 n-layer neural network with Relu as activation function and at
most 2n hidden units.

Proof. Without loss of generality we assume that m = 1, and then we use xi to denote x1i.
When n = 2, it is obvious that

max(x1, x2) = Relu(x1 − x2) + x2 = Relu(x1 − x2) + Relu(x2)−Relu(−x2)
and the maximization can be parameterized by a two layer neural network with 3 hidden
units, which satisfied the proposition.
Assume that when n = 2k, the proposition is satisfied. Then for n = 2k+1, we can find
max(x1, . . . , x2k ) and max(x2k+1, . . . , x2k+1) using two network with 2k layers and at most
2k+1 hidden units. Stacking the two neural network together would results in a network with
2k layers and at most 2k+2. Then we can add another 2 layer network with 3 hidden units
to find max(max(x1, . . . , x2k ),max(x2k+1, . . . , x2k+1)). Thus by mathematical induction the
proposition is proved.

The update equations contain summations of columns of a matrix after the max-marginal
operations. However, the VF and FV layers use max operators to aggregate features produced
byM and Q operator. Assume that theM operator has produced the max-marginals, then
we use the Q to produce several weight matrix. The max-marginals are multiplied by the
weight matrices to produce new feature vectors, and the maximization aggregating function
are used to aggregating information from the new feature vectors. We use the following
propagation to show that the summations of max-marginals can be implemented by one
MPNN layer plus one linear layer. Thus we can use the VF layer plus a linear layer to
produce bc→i(zc) and use the FV layer plus another linear layer to produce bi(xi). Hence to
do k iterations of Max Product, we need k FGNN layers followed by a linear layer.
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Proposition 4. For arbitrary non-negative valued feature matrix X ∈ Rm×n>0 with xij as
its entry in the ith row and jth column, there exists a constant tensor W ∈ Rm×n×mn that
can be used to transform X into an intermediate representation yik =

∑
ij xijwijk, such that

after maximization operations are done to obtain ŷk = maxi yik, we can use another constant
matrix Q ∈ Rn×mn to obtain

[
∑
i

xij ]nj=1 = Q[ŷk]mnk=1. (12)

Proof. The proposition is a simple corollary of Lemma 8. The tensor W serves as the same
role as the matrices Qi in Lemma 8, which can convert the feature matrix X as a vector,
then a simple linear operator can be used to produce the sum of rows of X, which completes
the proof.

In Lemma 8 and Proposition 4, only non-negative features are considered, while in log-
potentials, there can be negative entries. However, for the MAP inference problem in (2),
the transformation as follows would make the log-potentials non-negative without changing
the final MAP assignment,

θ̃i(xi) = θi(xi)−min
xi

θi(xi), θ̃c(xc) = θc(xc)−min
xc

θc(xc). (13)

As a result, for arbitary PGM we can first apply the above transformation to make the log-
potentials non-negative, and then our FGNN can exactly do Max-Product Belief Propagation
on the transformed non-negative log-potentials.

A.1 A Factor Graph Neural Network Module Recovering the Belief
Propagation

In this section, we give the proofs of Proposition 5 and 6 by constructing two FGNN layers
which exactly recover the belief propagation operation. As lower order factors can always
shrank by higher order factors, we will construct the FGNN layers on an factor graph
H = (V,F , Ê), which satisfies the following condition

1. ∀i ∈ V, the associated θi(xi) satisfies that θi(xi) > 0∀xi ∈ X;

2. ∀f1, f2 ∈ F , |f1| = |f2|;

3. ∀f ∈ F , the corresponding ϕf (xf ) can be decomposed as

ϕf (xf ) = max
zf∈Z

∑
i∈f

ϕfi(xi, zf ), (14)

and ∀i ∈ f, ϕfi(xi, zf ) satisfies that ϕfi(xi, zf ) > 0.

On factor graph H, we construct a FGNN layer on the directed bipartite graph in Figure 5.

Variable-to-Factor Factor-to-Variable

Figure 5: Directed bipartite graph for constructing FGNN layers. In the Variable-to-Factor sub-
graph, each factor receives the messages from the same number of nodes. On the other hand, for
each Factor-to-Variable sub-graph, each nodes may receives messages from different number of
factors.
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FGNN Layer to recover (7a) Here we construct an FGNN layer to produce all bf→i(zf ).
First we reformulate (7a) as

bf→i(zf ) = ϕ̃f (zf )−max
xi

[ϕif (xi, zf ) + bi(xi)],

ϕ̃c(zf ) =
∑
i∈f

max
xi

[ϕif (xi, zf ) + bi(xi)]. (15)

Here we use the Variable-to-Factor sub-graph to implement (15). For each variable node i,
we associated it with an length-|X| vector [bi(xi)]x∈X (Initially bi(xi) = θi(xi)). For each
edge in the sub-graph, assume that f = [i1, i2, . . . , i|f |], then for some ij ∈ f , the associated
feature vector is as length-|f | one-hot vector as follows

[0, 0, . . . , 1︸︷︷︸
The jth entry.

, . . . , 0].

For each factor node f = [i1, i2, . . . , i|f |] in the sub-graph, it is associated with an |f |×|X||Z|
feature matrix as follows 

[ϕfi(xi1 , zf )]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[ϕfi(xi2 , zf )]xi2 =|X|,zf =|Z|
xi2 =1,zf =1
. . .

[ϕfi(xi|f| , zf )]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
Then we construct an MPNN

f̃ i = max
i∈f
Q(ef→i)M(f i, ff ), (16)

as follows. The Q(ef→i) is an identity mapping. The M(f i, ff ) consists of |f | addition
networks, where the ithj networks will have an |f | × |X||Z| parameter

−∞
−∞
. . .

[ϕfi(xij , zf )]
xij

=|X|,zf =|Z|
xij

=1,zf =1
. . .
−∞

 .

In theM-network, the |f | × |X||Z| parameter will be added to the |f | × |X||Z| and then
the result will be reshaped to an |f | × |X| × |Z| tensor. After that the tensor will be added
to the length-|X| feature vector of each nodes (reshaped to 1× 1× |X| × 1 tensor). In that
case, for each ij ∈ f , the ithk will produce

−∞
−∞
. . .

[ϕfi(xik , zf ) + bij (xij )]
xik

=xij
=|X|,zf =|Z|

xik
=xij

=1,zf =1
. . .
−∞

 .

The |f | |f | × |X| × |Z| tensors will be stacked into an |f | × |f | × |X| × |Z| tensor, and it will
be multiplied by the length-|f | one-hot edge feature vector. That will produce

−∞
−∞
. . .

[ϕfi(xij , zf ) + bij (xij )]
xij

=|X|,zf =|Z|
xij

=1,zf =1
. . .
−∞

 .
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Then the max operation over all i ∈ f will produce edge feature matrix
[ϕfi1(xi1 , zf ) + bi1(xi1)]xi1 =|X|,zf =|Z|

xi1 =1,zf =1

[ϕfi2(xi2 , zf ) + bi2(xi2)]xi2 =|X|,zf =|Z|
xi2 =1,zf =1

. . .

[ϕfi|f|(xi2 , zf ) + bi|f|(xi|f|)]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
Then by Proposition 3, we can recover the maximization operation in (15) using an
O(log2 |X|)-layer neural network with at most O(|X|2 log2 |X|) hidden units. After that,
all the other operations are simple linear operations, and they can be easily encoded in
a neural-network without adding any parameter. Thus we can construct an FGNN layer,
which produces factor features for each factor f as follows

[bf→i1(zf )]zf =|Z|
zf =1

[bf→i2(zf )]zf =|Z|
zf =1

. . .

[bf→i|f|(zf )]zf =|Z|
zf =1

 .

Finally we constructed an FGNN to parameterize the operation in (7a), and this construction
also proves Proposition 5 as follows.
Proposition 5. The operation in (7a) can be parameterized by one MPNN layer with
O(|X|maxc∈C | Zc | hidden units followed by a O(log2 |X|)-layer neural network with at most
O(|X|2 log2 |X|) hidden units.

FGNN Layer to recover (7b) Here we construct an FGNN layer to parameterize (7b)
in order to prove Proposition 6. Using the notation in this section the operation in (7b) can
be reformulated as

bi(xi) =θi(xi) +
∑
f :i∈f

max
z

[ϕif (xi, zf ) + bc→i(zf )].

In previous paragraph, the new factor feature
[bf→i1(zf )]zf =|Z|

zf =1

[bf→i2(zf )]zf =|Z|
zf =1

. . .

[bf→i|f|(zf )]zf =|Z|
zf =1

 .
Considering the old factor feature

[ϕfi(xi1 , zf )]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[ϕfi(xi2 , zf )]xi2 =|X|,zf =|Z|
xi2 =1,zf =1
. . .

[ϕfi(xi|f| , zf )]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 ,
we can use broadcasted addition between these two features to get

[bf→i1(zf ) + ϕfi(xi1 , zf )]xi1 =|X|,zf =|Z|
xi1 =1,zf =1

[bf→i2(zf ) + ϕfi(xi2 , zf )]xi2 =|X|,zf =|Z|
xi2 =1,zf =1

. . .

[bf→i|f|(zf ) + ϕfi(xi|f| , zf )]
xi|f| =|X|,zf =|Z|
xi|f| =1,zf =1

 .
After that we have an |f |×|X|×|Z| feature tensor for each factor f ∈ F . By 3, a O(log2 | Z |)-
layer neural network with at most O(| Z |2 log2 | Z |) parameters can be used to convert the
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above feature to 
[maxzf

[bf→i1(zf ) + ϕfi(xi1 , zf )]]xi1 =|X|
xi1 =1

[maxzf
[bf→i2(zf ) + ϕfi(xi2 , zf )]]xi2 =|X|

xi2 =1
. . .

[maxzf
[bf→i|f|(zf ) + ϕfi(xi|f| , zf )]]

xi|f| =|X|
xi|f| =1

 .
We will use this as the first part of our M network. For the second part, as we need
to parameterize the

∑
f :i∈f maxz[ϕif (xi, zf ) + bc→i(zf )] from feature maxz[ϕif (xi, zf ) +

bc→i(zf ), by Proposition 4, it will require another linear layer with O(maxi∈V deg(i)2|X|2),
where deg(i) = |{f |f ∈ F , i ∈ f}|. After that, the Q network can be a simple identity
mapping, and the FGNN would produce feature

∑
f :i∈f maxz[ϕif (xi, zf ) + bc→i(zf )] for each

node. Adding these feature with the initial node feature would results new node feature
bi(xi). Thus by constructing a FGNN layer to parameterize (7b) we complete the proof of
Proposition 6.

B Experiments

B.1 Additional Ablation Study

Aggregation Function In the Message Passing Neural Network module, various aggre-
gation function such as “max”, “sum” or “average” can be used. In our implementation,
we choose the “max” aggregation function because theoretically “max” is invariant to the
duplication of a element in the set, while “sum” or “average” is not. In real applications
such as human motion prediction, different factor may have different size, but for better
parallelization we may need to pad all factor to the same size. In this case, we may simply
duplicate a node in factor to do this. We replaced the “max” aggregation with “sum”
aggregation in the LDPC experiment and typical result is shown in Figure 6, where both
algorithm achieve almost the same performance.

0 1 2 3 4

10 1

Bits Baseline
Max
Sum

Figure 6: Comparison of “sum” and “max” aggregation.

B.2 Additional Information on MAP Inference over PGM

Data We construct four datasets. All variables are binary. The instances start with a chain
structure with unary potential on every node and pairwise potentials between consecutive
nodes. A higher order potential is then imposed to every node for the first three datasets.
The node potentials are all randomly generated from the uniform distribution over [0, 1].
We use two kinds of pairwise potentials, one randomly generated (as in Table 4), the other
encouraging two adjacent nodes to both take state 1 (as in Table 3 and Table 5), i.e.
the potential function gives high value to configuration (1, 1) and low value to all other
configurations. For example, in Dataset1, the potential value for x1 to take the state 0 and
x2 to take the state 1 is 0.2; in Dataset3, the potential value for x1 and x2 to take the state
1 at the same time is sampled from a uniform distribution over [0, 2].
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pairwise potential x2 = 0 x2 = 1

x1 = 0 0 0.1

x1 = 1 0.2 1

Table 3: Pairwise Potential for
Dataset1

pairwise potential x2 = 0 x2 = 1

x1 = 0 U[0,1] U[0,1]

x1 = 1 U[0,1] U[0,1]

Table 4: Pairwise Potential for
Dataset2,4

pairwise potential x2 = 0 x2 = 1

x1 = 0 0 0

x1 = 1 0 U[0,2]

Table 5: Pairwise Potential for
Dataset3

For Dataset1,2,3, we additionally add the budget higher order potential [23] at every node;
these potentials allow at most k of the 8 variables that are within their scope to take the
state 1. For the first two datasets, the value k is set to 5; for the third dataset, it is set to a
random integer in {1,2,3,4,5,6,7,8}. For Dataset4, there is no higher order potential.
As a result of the constructions, different datasets have different inputs for the FGNN; for
each dataset, the inputs for each instance are the parameters of the PGM that are not
fixed. For Dataset1, only the node potentials are not fixed, hence each input instance is a
factor graph with the randomly generated node potential added as the input node feature
for each variable node. Dataset2 and Dataset4 are similar in terms of the input format,
both including randomly generate node potentials as variable node features and randomly
generated pairwise potential parameters as the corresponding pairwise factor node features.
Finally, for Dataset3, the variable nodes, the pairwise factor nodes and the high order factor
nodes all have corresponding input features.

Architecture We use a multi-layer factor graph neural network with architecture
FGNN(64) - Res[FC(64) - FGNN(64) - FC(64)] - MLP(128) - Res[FC(64) -
FGNN(64) - FC(128)] - FC(256) - Res[FC(256) - FGNN(64) - FC(256)] - FC(128) -
Res[FC(128) - FGNN(64) - FC(128)] - FC(64) - Res[FC(64) - FGNN(64) - FC(64)]
- FGNN(2). Here one FGNN(Cout) is a FGNN layer with Cout as output feature dimension
with ReLU [26] as activation. One FC(Cout) is a fully connected layer with Cout as output
feature dimension and ReLU as activation. Res[·] is a neural network with residual link from
its input to output; these additional architecture components can assist learning.

Running Time We report the inference time of one instance and the training time of one
epoch for the synthetic datasets in Table 6. The results show that our method runs in a
reasonable amount of time.

(µs) PointNet DGCNN AD3 (exact/approx) Max-Product MPLP MPNN Ours

D1 45 (43) 285 (107) 5 / 5 6 57 131 (72) 144 (75)
D2 – – 532 / 325 1228 55 131 (72) 341 (162)
D3 – – 91092 / 1059 4041 55 121 (74) 382 (170)
D4 – – 6 / 5 6 0.04 137 (71) 216 (101)

Table 6: Inference time in microseconds of one instance on synthetic datasets and GPU training
time of one epoch in milliseconds (in bracket) for applicable methods.

B.3 Experiment on tree structured PGM

Apart from the chain structured PGM in Section 4.1, we also have an additional experiment
on tree structured PGM. The training set includes 90000 different PGM as randomly
generated binary trees whose depth are between 3 and 6. Each node is associated with
a random variable xi ∈ {0, 1} along with a log potential θi(xi) randomly sampled from
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Gaussian distribution N (0, 1). Each edge (i, j) in the tree is associated with a pairwise log
potential θij(xi, xj) which is randomly sampled from Gaussian distribution N (0, 1). There
is also 10000 testing instances which is generated in the same way as the training set. The
experiment result is shown in Table 7.

AD3 Max-Product MPLP MPNN Ours

Agreement
on MAP 1.0 1.0 0.9997 – 0.9835

Table 7: Experimental result on tree structured PGM.

For a tree structured PGM, it is not as easy to shrink the pairwise features to the nodes
as an adaptation for MPNN as in the case of chain PGM in Section 4.1, so we omit the
experiment on MPNN. Still, our Factor Graph Neural Network achieves a good performance
even when compared with Max-Product which is optimal on tree PGMs and also with the
linear programming relaxations.

B.4 Testing on novel graph structures for synthetic data

We conducted a new experiment to train the FGNN on fixed length-30 MRFs using the
same protocol as Dataset3, and test the algorithm on 60000 random generated chain MRF
whose length ranges from 15 to 45 (the potentials are generated using the same protocol as
Dataset3). The result is in Table 8, which shows that the model trained on fixed size MRF
can be generalized to MRF with different graph structures.

Chain length AD3 FGNN

(15, 25) 88.95% 94.31%
(25, 35) 88.18% 93.64%
(35, 45) 87.98% 91.50%

Table 8: Accuracy on dataset with different chain size.

B.5 Implementation details on MAP Solvers

In the experiment, the AD3 code is from the official code repo 2, which comes with a python
interface. For Max-Product algorithm, we use the implementation from libdai and convert
the budget higher potential as a table function. For the MPLP algorithm, we implemented it
in C++ to directly support the budget higher order potential. The re-implemented version
is compared with the original version 3, and its performance is better than the original one
in our experiment. So we provide the result of the re-implemented version.

B.6 Dataset Generation and Training Details of LDPC decoding

Data Each instance of training/evaluation data is generated as follows:
During the training of MPNN and FGNN, the node feature include the noisy signal ỹ and
the signal-to-noise ratio SNRdB . For MPNN, no other feature are provided, while for FGNN,
for each factor f , the vector [ỹi]i∈f is provided as feature vector. Meanwhile, for each edge
from factor node f to one of its variable node i, the factor feature and the variable node
feature are put together to get the edge feature.

Architecture In our FGNN, every layer share the same Q network, which is 2-layer
network as follows MLP(64)-MLP(4). Here the first layer comes with a ReLU activation
function and the second layer is with no activation function.

2https://github.com/andre-martins/AD3
3https://people.csail.mit.edu/dsontag/code/mplp_ver2.tgz
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Algorithm 2 Data Generation for LDPC decoding
Output: y: a 96-bit noisy signal; SNRdB : signal-to-noise ratio, a scalar

Uniformly sample a 48-bit binary signal x, where for each 0 < i 6 48, P (xi = 1) = P (xi =
0) = 0.5
Encode x using the “96.3.963” scheme [19] to get a 96-bit signal y
sample SNRdB ∈ {0, 1, , 2, 3, 4} and σb ∈ {0, 1, , 23, 4, 5} uniformly
For each 0 < i 6 96,uniformly, sample

• ηi ∈ U(0, 1),
• ni ∈ N (0, σ2) s.t. SNRdB = 20 log10 1/σ
• zi ∈ N (0, σ2

b )
Set noisy signal ỹ to

• ỹi = yi + ni + I(ηi 6 0.05)zi

The overall structure of our FGNN is as follows Input - Res[FC(64) - FGNN(64) -
FC(64)] - Res[FC(64) - FGNN(64) - FC(64)] - FC(64) - FGNN(64) - FC(128) -
FC(256) - FGNN(128) - FC(256) - - Res[FC(256) - FGNN(128) - FC(256)] - FC(128)
- FGNN(128) - FC(128) - FC(64) - FGNN(64) - FC(64) - Res[FC(64) - FGNN(64) -
FC(64)] - FC(128) - FC(128) - FC(1). In the network, a batch-normalization layer and
a ReLU activation function is after each FC layer and FGNN layer except for the last FC
layer.

B.7 Details of Human Motion Prediction

For human motion prediction, we are using the Human 3.6M (H3.6M) dataset. In this
experiment, we replace the last two GNN layer in Mao et al. [20]’s model with FGNN
layer with the same number of output channels. The H3.6M dataset includes seven actors
performing 15 varied activities such as walking, smoking etc.. The poses of the actors are
represented as an exponential map of joints, and a special pre-processing of global translation
and rotation. In our experiments, as in previous work[17, 20], we only predict the exponential
map of joints. That is, for each joints, we need to predict a 3-dimensional feature vector.
Thus we add a factor for the 3 variable for each joint 4. Also for two adjacent joint, a factor
of 6 variables are created. The factor node feature are created by put all its variable node
feature together. For the edge feature, we simply use one hot vector to represent different
factor-to-variable edge. For evaluation, we compared 4 commonly used action — walk, eating,
smoking and discussion. The result of GNN and convSeq2Seq are taken from [20], and our
FGNN model also strictly followed the training protocol of [20].

4In practice, those angles with very small variance are ignored, and these variables are not added
to the factor graph
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