
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Particle Filter Recurrent Neural Networks

Xiao Ma,∗ Peter Karkus,∗ David Hsu, Wee Sun Lee
National University of Singapore

{xiao-ma, karkus, dyhsu, leews}@comp.nus.edu.sg

Abstract

Recurrent neural networks (RNNs) have been extraordinar-
ily successful for prediction with sequential data. To tackle
highly variable and multi-modal real-world data, we intro-
duce Particle Filter Recurrent Neural Networks (PF-RNNs),
a new RNN family that explicitly models uncertainty in its in-
ternal structure: while an RNN relies on a long, deterministic
latent state vector, a PF-RNN maintains a latent state distribu-
tion, approximated as a set of particles. For effective learning,
we provide a fully differentiable particle filter algorithm that
updates the PF-RNN latent state distribution according to the
Bayes rule. Experiments demonstrate that the proposed PF-
RNNs outperform the corresponding standard gated RNNs
on a synthetic robot localization dataset and 10 real-world se-
quence prediction datasets for text classification, stock price
prediction, etc.

Introduction

Prediction with sequential data is a long-standing challenge
in machine learning. It has many applications, e.g., object
tracking (Blake and Isard 1997), speech recognition (Xiong
et al. 2018), and decision making under uncertainty (So-
mani et al. 2013). For effective prediction, predictors require
“memory”, which summarizes and tracks information in the
input sequence. The memory state is generally not observ-
able, hence the need for a belief, i.e., a posterior state dis-
tribution that captures the sufficient statistic of the input for
making predictions. Modeling the belief manually is often
difficult. Consider the task of classifying news text—treated
as a sequence of words—into categories, such as politics,
education, economy, etc. It is difficult to handcraft the belief
representation and dynamics for accurate classification.

State-of-the-art sequence predictors often use recurrent
neural networks (RNNs), which learn a vector h of deter-
ministic time-dependent latent variables as an approxima-
tion to the belief. Real-world data, however, are highly vari-
able and often multi-modal. To cope with the complexity of
uncertain real-world data and achieve better belief approx-
imation, one could increase the length of latent vector h,

∗equal contribution
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

thus increasing the number of network parameters and the
amount of data required for training.

We introduce Particle Filter Recurrent Neural Networks
(PF-RNNs), a new family of RNNs that seeks to improve
belief approximation without lengthening the latent vector
h, thus reducing the data required for learning. Particle fil-
tering (Del Moral 1996) is a model-based belief tracking al-
gorithm. It approximates the belief as a set of sampled states
that typically have well-understood meaning. PF-RNNs bor-
row from particle filtering the idea of approximating the
belief as a set of weighted particles, and combine it with
the powerful approximation capacity of RNNs. PF-RNN
approximates the variable and multi-modal belief as a set
of weighted latent vectors {h1, h2, . . .} sampled from the
same distribution. Like standard RNNs, PF-RNNs follow a
model-free approach: PF-RNNs’ latent vectors are learned
distributed representations, which are not necessarily inter-
pretable. As an alternative to the Gaussian based filters,
e.g., Kalman filters, particle filtering is a non-parametric
approximator that offers a more flexible belief representa-
tion (Del Moral 1996); it is also proven to give a tighter
evidence lower bound (ELBO) in the data generation do-
main (Burda, Grosse, and Salakhutdinov 2015). In our case,
the approximate representation is trained from data to opti-
mize the prediction performance. For effective training with
gradient methods, we employ a fully differentiable particle
filter algorithm that maintains the latent belief. See Fig. 1 for
a comparison of RNN and PF-RNN.

We apply the underlying idea of PF-RNN to gated RNNs,
which are easy to implement and have shown strong per-
formance in many sequence prediction tasks. Specifically,
we propose PF-LSTM and PF-GRU, the particle filter exten-
sions of Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber 1997) and Gated Recurrent Unit (GRU) (Cho
et al. 2014). PF-LSTM and PF-GRU serve as drop-in re-
placements for LSTM and GRU, respectively. They aim
to learn a better belief representation from the same data,
though at a greater computational cost.

We evaluated PF-LSTM and PF-GRU on 13 data sets:
3 synthetic dataset for systematic understanding and 10 real-
world datasets with different sample sizes for performance
comparison. The experiments show that our PF-RNNs out-

5101

RNN

≈ single vector

deterministic
update

input output PF-RNN

≈

input output

... K particles

stochastic
Bayesian update

Figure 1: A comparison of RNN and PF-RNN. An RNN approximates the belief as a long latent vector and updates it with a
deterministic nonlinear function. A PF-RNN approximates the belief as a set of weighted particles and updates them with the
stochastic particle filtering algorithm.

perform the corresponding standard RNNs with a compara-
ble number of parameters. Further, the PF-RNNs achieve the
best results on almost all datasets when there is no restriction
on the number of model parameters used.1

Related Work

There are two general categories for prediction with sequen-
tial data: model-based and model-free. The model-based ap-
proach includes, e.g., the well-known hidden Markov mod-
els (HMMs) and the dynamic Bayesian networks (DBNs)
(Murphy 2002). They rely on handcrafted state representa-
tions with well-defined semantics, e.g., phonemes in speech
recognition. Given a model, one may perform belief track-
ing according to the Bayes’ rule. The main difficulty here
is the state space and the computational complexity of be-
lief tracking grow exponentially with the number of state
dimensions. To cope with this difficulty, particle filters rep-
resent the belief as a set of sampled states and perform ap-
proximate inference. Alternatively, the model-free approach,
such as RNNs, approximates the belief as a latent state vec-
tor, learned directly from data, and updates it through a de-
terministic nonlinear function, also learned from data.

The proposed PF-RNNs build upon RNNs and com-
bine their powerful data-driven approximation capabilities
with the sample-based belief representation and approxi-
mate Bayesian inference used in particle filters. Related
sample-based methods have been applied to generative mod-
els. Importance sampling is used to improve variational
auto-encoders (Burda, Grosse, and Salakhutdinov 2015).
This is extended to sequence generation (Le et al. 2018) and
to reinforcement learning (Igl et al. 2018). Unlike the earlier
works that focus on generation, we combine RNNs and par-
ticle filtering for sequence prediction. PF-RNNs are trained
discriminatively, instead of generatively, with the target loss
function on the model output. As a result, PF-RNN training
prioritizes target prediction over data generation which may
be irrelevant to the prediction task.

PF-RNNs exploit the general idea of embedding algo-
rithmic priors, in this case, filtering algorithms, in neu-
ral networks and train them discriminatively (Jonschkowski
and Brock 2016; Jonschkowski, Rastogi, and Brock 2018;
Karkus, Hsu, and Lee 2018). Earlier work embeds a par-

1More details are publicly available in arXiv:1905.12885. The
code is available at https://github.com/Yusufma03/pfrnns

ticle filter in an RNN for learning belief tracking, but fol-
lows a model-based approach and relies on handcrafted be-
lief representation (Jonschkowski, Rastogi, and Brock 2018;
Karkus, Hsu, and Lee 2018). PF-RNNs retain the model-
free nature of RNNs and exploit their powerful approx-
imation capabilities to learn belief representation directly
from data. Other work explicitly addresses belief repre-
sentation learning with RNNs (Gregor and Besse 2018;
Guo et al. 2018); however, they do not involve Bayesian be-
lief update or particle filtering.

Particle Filter Recurrent Neural Networks

Overview

The general sequence prediction problem is to predict an
output sequence, given an input sequence. In this paper, we
focus on predicting the output yt at time t, given the input
history x1, x2, . . . , xt.

Standard RNNs handle sequence prediction by maintain-
ing a deterministic latent state ht that captures the sufficient
statistic of the input history, and updating ht sequentially
given new inputs. Specifically, RNNs update ht with a deter-
ministic nonlinear function learned from data. The predicted
output ŷt is another nonlinear function of the latent state ht,
also learned from data.

To handle highly variable, noisy real-world data, one key
idea of PF-RNN is to capture the sufficient statistic of the
input history in the latent belief b(ht) by forming multi-
ple hypotheses over ht. Specifically, PF-RNNs approximate
b(ht) by a set of K weighted particles {(hi

t, w
i
t)}Ki=1, for la-

tent state hi
t and weight wi

t; the particle filtering algorithm
is used to update the particles according to the Bayes rule.
The Bayesian treatment of the latent belief naturally cap-
tures the stochastic nature of real-world data. Further, all
particles share the same parameters in a PF-RNN. The num-
ber of particles thus does not affect the number of PF-RNN
network parameters. Given a fixed training data set, we ex-
pect that increasing the number of particles improves the be-
lief approximation and leads to better learning performance,
but at the cost of greater computational complexity.

Similar to RNNs, we used learned functions for updating
latent states and predict the output yt based on the mean par-
ticle: ŷt = fout(h̄t), where h̄t =

∑K
i=1 w

i
th

i
t and fout is a

task-dependent prediction function. For example, in a robot

5102

localization task, fout maps h̄t to a robot position. In a clas-
sification task, fout maps ŷt to a vector of class probabilities.

For learning, we embed a particle filter algorithm in the
network architecture and train the network discriminatively
end-to-end. Discriminative training aims for the best pre-
diction performance within the architectural constraints im-
posed by the particle filter algorithm. We explore two loss
functions for learning: one minimizes the error of predic-
tion with the mean particle and the other maximizes the log-
likelihood of the target yt given the full particle distribu-
tion. Combining the two loss functions gives the best perfor-
mance empirically.

Particle Filter Extension to RNNs

Extending an RNN to the corresponding PF-RNN requires
the latent particle belief representation {(hi

t, w
i
t)}Ki=1 and

the associated belief update function. The new belief is a
posterior distribution conditioned on the previous belief and
the new input. We model the PF-RNN’s latent dynamics as
a controlled system, with the uncontrolled system as a spe-
cial case. The standard belief update consists of two steps:
the transition update b̃t = ftr(bt−1, ut) for control ut and
the observation update bt = fobs(b̃t, ot) for observation ot.
However, ut and ot are not separated a priori in general se-
quence prediction problems. PF-RNNs use input xt in both
ftr and fobs, and learn to extract latent control ut(xt) and
observation ot(xt) from xt through task-oriented discrimi-
native training. This approach is more flexible and provides
a richer function approximation class.

ht−1 ht ht+1

xt

ut ot

Figure 2: The graphical model for PF-RNN belief update.
The dashed circles indicate variables not explicitly defined
in our models.

Stochastic memory update. We apply a learned transi-
tion function ftr to each particle state hi

t:

hi
t = ftr(h

i
t−1, ut(xt), ξ

i
t), ξit ∼ p(ξit|hi

t−1, ut(xt)) (1)

where xt is the input and ξit is a learned noise term. We as-
sume p(ξit|hi

t−1, ut(xt)) to be a Gaussian distribution and
use the reparameterization trick (Kingma and Welling 2014)
to the function to simulate the transition in a differentiable
manner. From the RNN perspective, ξit captures the stochas-
ticity in the latent dynamics. From the particle filtering per-
spective, ξit increases particle diversity, relieving the issue of
particle depletion after resampling.

Particle weight update. We update the weight wi
t of the

particle hi
t recursively in a Bayesian manner, using the like-

lihood p(ot|hi
t). Instead of modeling p(ot|hi

t) as a generative

distribution, we approximate it directly as a learned function
fobs(ot(xt), h

i
t) with ot(xt) and hi

t as inputs, and have

wi
t = ηfobs(ot(xt), h

i
t)w

i
t−1, (2)

where η is a normalization factor. Our observation model
fobs, coupled with discriminative training, significantly im-
proves the performance of PF-RNNs in practice. The gener-
ative distribution p(ot|hi

t) is parameterized for generating ot
and may contain irrelevant features for the actual objective
of predicting yt. In contrast, fobs skips generative model-
ing and learns only features useful for predicting yt, as PF-
RNNs are trained discriminatively to optimize prediction ac-
curacy.

Soft resampling. In particle filter, resampling is required
to avoid particle degeneracy, i.e., most particles having
near-zero weights. Resampling constructs a new particle set
{(h′j

t , w
′j
t)}Kj=1 with constant weights w′j

t = 1/K. Each
new particle h′j

t takes the value of an ancestor particle, haj

t ,
where the ancestor index aj is sampled from a multinomial
distribution defined by the original particle weights, aj ∼ p,
where p is a multinomial distribution with p(i) = wi

t.
However, resampling is not differentiable, which prevents

the use of backpropagation for training PF-RNNs. To make
our latent belief update differentiable, we use soft resam-
pling (Karkus, Hsu, and Lee 2018). Instead of resampling
particles according to p, we resample from q, a mixture of
p and a uniform distribution: q(i) = αwi

t + (1 − α)(1/K),
for α ∈ (0, 1]. The new weights are computed according the
importance sampling formula, which leads to an unbiased
estimate of the belief:

w′j
t =

p(i = aj)

q(i = aj)
=

waj

t

αwaj

t + (1− α)(1/K)
(3)

Soft resampling provides non-zero gradients when α > 0.
We use α = 0.5 in our experiments.

Model Learning

One natural objective is to minimize the total prediction loss
over all training sequences. For each training sequence, the
prediction loss is

Lpred(θ) =
∑

t∈O
�(yt, ŷt, θ) (4)

where θ represents the predictor parameters, O is the set
of time indices with outputs, and � is a task-dependent loss
function measuring the difference between the target output
yt and the predicted output ŷt. Predictions in PF-RNN are
made using the mean particle, ŷt = fout(h̄t), where fout is a
learned function, and h̄t =

∑K
i=1 w

i
th

i
t is the weighted mean

of the PF-RNN particles. In our regression experiments, ŷt is
a real value and � is the squared loss. In our classification ex-
periments, ŷt is a multinomial distribution over classes and
� is the cross-entropy loss.

The PF-RNN prediction ŷt is actually randomized, as its
value depends on random variables used for stochastic mem-
ory updates and soft-resampling; hence, a reasonable objec-
tive would be to minimize E[Lpred(θ)]. In our algorithm, we
optimize Lpred(θ) instead of E[Lpred(θ)].

5103

PF-LSTM PF-GRU

{cit−1}Ki=1

{wi
t−1}Ki=1

{wi
t}Ki=1

{cit}Ki=1

Xt

⊗
σ
f i

σ RPT
BN

ReLU

μ Σ o
σ

tanh

w

⊗ ⊕
⊗

⊗

{c′it}Ki=1

{w′i
t}Ki=1

{�′it}Ki=1

{�it−1}Ki=1

{�it}Ki=1

So
ft-

Re
sa

m
pl

in
g

{wi
t−1}Ki=1Xt

RPT
BN

ReLU

μ Σ
w

⊗

⊕
⊗

σ
r

σ
z

⊗

{wi
t}Ki=1 {wri

t }Ki=1

1-

⊗{�it−1}Ki=1 {�it}Ki=1 {�′it}Ki=1

So
ft-

Re
sa

m
pl

in
g

Figure 3: PF-LSTM and PF-GRU network architecture. Notation (1) green box: activation (2) pink box: learned function
(3) RPT: reparameterization trick (4) BN: batch normalization.

Another possible learning objective applies stronger
model assumptions. To maximize the likelihood, we opti-
mize a sampled version of an ELBO of p(yt|x1:t, θ),

LELBO(θ) = −
∑

t∈O
log

1

K

K∑

i=1

p(yt|τ i1:t, x1:t, θ). (5)

where τ i1:t is a history chain for particle i, consisting of its
ancestor indices during particle resampling and the random
numbers used in stochastic memory updates2.

The p(yt|τ i1:t, x1:t, θ) terms in LELBO(θ) are computed
using appropriate probabilistic models. We apply fout
to each particle at each time step, generating outputs
ŷit = fout(h

i
t). Then, for classification p(yt|τ i1:t, x1:t, θ) =

CrossEntropy(yt, ŷ
i
t), which follows from the multinomial

model; and for regression p(yt|τ i1:t, x1:t, θ) = exp(−||yt −
ŷit||), which follows from a unit variance Gaussian model.

Intuitively, Lpred encourages PF-RNN to make good pre-
dictions using the mean particle, while LELBO encourages
the model to learn a more meaningful belief distribution.
They make different structure assumptions that result in dif-
ferent gradient flows. Empirically, we find that combining
the two learning objectives works well: L(θ) = Lpred(θ) +
βLELBO(θ), where β is a weight parameter. We use β = 1.0
in the experiments.

PF-LSTMs and PF-GRUs

We now apply the PF-RNN to the two most popular RNN
architectures, LSTM and GRU.

For standard LSTM, the memory state ht consists of cell
state ct and hidden state �t. The memory update is a deter-
ministic mapping controlled by input gate it, forget gate ft,
and output gate ot:

ct = ft ◦ ct−1 + it ◦ tanh(c̃t) (6)
c̃t = Wc[�t−1, xt] + bc (7)
�t = ot ◦ tanh(ct) (8)

where xt is the current input and ◦ is the element-wise
product. For PF-LSTM, the memory state consists of a set
of weighted particles {(�jt , c

j
t , w

j
t)}Kj=1. To help PF-LSTM

2We have negated the ELBO to make it consistent with loss
minimization.

track the latent particle belief effectively over a long history
of data, we make two changes to the memory update equa-
tions. One is to add stochasticity:

c̃jt = Wc[�
j
t−1, xt] + bc + ξjt (9)

ξjt ∼ N (0,Σj
t) (10)

Σj
t = WΣ[�

j
t−1, xt] + bΣ (11)

for j = 1, 2, . . . ,K. The motivation for stochastic memory
updates is discussed in Sect. . The other change, inspired by
LiGRU (Ravanelli et al. 2018), is to replace the hyperbolic
tangent activation of LSTM by ReLU activation and batch
normalization (Ioffe and Szegedy 2015):

cjt = f j
t ◦ cjt−1 + ijt ◦ ReLU(BN(c̃jt)), (12)

for j = 1, 2, . . . ,K. Recurrent networks are usually trained
with truncated Back-Propagation-Through-Time (BPTT).
Truncation affects the training of PF-RNNs, more than that
of RNNs, as PF-RNNs maintain the latent belief explic-
itly and may need a long sequence of inputs in order to
approximate the belief well. As shown in (Ravanelli et al.
2018), ReLU activation, combined with batch normaliza-
tion, has better numerical properties for backpropagation
through many time steps, and thus it allows us to use longer
sequence length with truncated BPTT. The update equation
for �jt remains the same as that for LSTM. After updating
the particles and their weights, we perform soft resampling
to get a new set of particles (Section). The PF-LSTM archi-
tecture is shown in Fig. 3 (left side).

The PF-GRU model can be constructed similarly (right
side of Fig. 3). The same idea can be easily applied to other
gated recurrent neural networks as well.

We implement PF-LSTM and PF-GRU in a parallel man-
ner for all operations. In this case, all particles are updated
in parallel benefiting from GPU acceleration.

Experiments

We evaluate PF-RNNs, specifically, PF-LSTM and PF-
GRU, on a synthetic 2D robot localization task and 10 se-
quence prediction datasets from various domains. We com-
pare PF-RNNs with the corresponding RNNs. First, we use
a fixed latent state size for all models. The sizes are chosen
so that the PF-RNN and the RNN have roughly the same

5104

number of trainable parameters. Next, we search over the la-
tent state size for all models independently and compare the
best results achieved. We also perform an ablation study to
understand the effect of individual components of PF-RNNs.

Robot Localization

10 x 10 18 x 18 27 x 27

Figure 4: Localization in a symmetric maze. Each maze is an
N ×N grid, with black and gray obstacles. Black obstacles
serve also as landmarks.

We first evaluate PF-RNNs in a simple synthetic domain
designed to demonstrate the strengths of our approach. The
task is to localize a robot on a 2D map (Fig. 4), given dis-
tance measurements to a set of landmarks. In each environ-
ment, half of the obstructions have landmarks placed on their
corners. The maps are designed to be highly symmetric, thus
maintaining a belief is essential for localization. We evalu-
ate the models’ sensitivity to the amount of uncertainty in
the task by increasing the maze size.

The robot starts at a random location. In each step, it
moves forward a distance d = 0.2+εd, εd ∼ U [−0.02, 0.02]
where U is the uniform distribution, or chooses a new head-
ing direction when about to hit a wall. The input xt consists
of the last action ut−1 and current observation ot, which are
noisy distance measurements to the 5 closest landmarks. The
observation noise is U [−0.1, 0.1] for all mazes. The model
takes xt as input and has no prior information on which com-
ponents represent ut and ot. This information must be ex-
tracted from xt through learning. The task is to predict the
robot pose at each time t, 2D coordinates and heading, given
the history of inputs {xi}ti=1.

We train models on a set of 10, 000 trajectories. We evalu-
ate and test on another 1, 000 and 2, 000 trajectories, respec-
tively. The network architecture is the same for all models.
Map features are extracted from the map using convolutional
layers, two for the smaller maps and 5 for the largest map.
Control and observation features are extracted from the in-
puts by two fully connected layers. The features are concate-
nated and input to the recurrent cell, PF-LSTM/PF-GRU or
LSTM/GRU. The output of the recurrent cell is mapped to
the pose prediction by a fully connected layer. The training
loss is the Mean Square Error (MSE) between the predicted
and ground truth pose, summed along the trajectories. The
last step MSE is used as the evaluation metric.

We make two sets of comparisons. First, we fix the la-
tent state size and number of particles, such that PF-RNNs
and the corresponding RNNs have a similar number of pa-
rameters. Specifically, we use a latent state size of 64 and
30 particles for PF-LSTM and PF-GRU, and a latent state

size of 80 for LSTM and 86 for GRU. Second, we perform
a search over these hyper-parameters independently for all
models and datasets, including learning rate, dropout rate,
batch size, and gradient clipping value, and report the best-
achieved result.

We compare PF-LSTM and PF-GRU with LSTM and
GRU (Fig. 5). Results show that PF-RNNs consistently out-
perform the corresponding RNNs. The performance benefits
become more pronounced, as the size of the maze grows, re-
sulting in increased difficulty of belief tracking.

Fig. 6 visualizes the particle belief progression in a trained
PF-LSTM. PF-LSTM works similarly to a standard particle
filtering algorithm and demonstrates a reasonable belief dis-
tribution. The particle predictions of the robot pose initially
spread out (t = 0). As inputs accumulate, they begin to con-
verge on some features, e.g., horizontal position (t = 22);
and eventually they converge to the true pose (t = 26). The
depicted example also demonstrates an interesting property
of PF-LSTM. Initially, particle predictions converge towards
a wrong, distant pose (t = 6), because of the ambiguous ob-
servations in the symmetric environment. However, particle
predictions spread out again (t = 22), and converge to the
true pose (t = 26). This would be unusual for a standard
particle filtering algorithm under the true robot dynamics:
once particles converge to a wrong pose, it would be diffi-
cult to recover (Thrun et al. 2001). PF-LSTM succeeds here,
because its latent representation and dynamics are learned
from data. Each particle in a PF-LSTM independently ag-
gregates information from the input history, and its dynam-
ics is not constrained explicitly by the robot dynamics.

General Sequence Prediction Tasks

Comparison with RNNs. We evaluate PF-RNNs on various
real-world sequence prediction datasets across multiple do-
mains for both regression and classification tasks. Regres-
sion tasks include stock index prediction (NASDAQ (Qin
et al. 2017)), appliances energy prediction (AEP (Can-
danedo, Feldheim, and Deramaix 2017)), air quality pre-
diction (AIR (De Vito et al. 2008) and PM (Liang et
al. 2015)). Classification tasks include activity recognition
(UID (Casale, Pujol, and Radeva 2012), LPA (Kaluža et al.
2010), AREM (Palumbo et al. 2016) and GAS (Huerta et al.
2016)) and text classification (R52 (Cardoso-Cachopo 2007)
and MR (Maas et al. 2011)). For regression tasks, a predic-
tion is made after each time step, while for classification
tasks prediction is made at the end of each sequence using
the belief at the last time step. We demonstrate PF-RNN is
sample efficient on relatively small datasets in terms of the
sample efficiency (e.g., 9358 instances for AIR dataset) but
also scales to large datasets for the generalization to complex
tasks (e.g., around 1 million instances for GAS dataset).

We compare PF-LSTM and PF-GRU with the correspond-
ing LSTM and GRU models. As PF-RNNs possess a simi-
lar structure with gated RNNs, we can directly use them as
drop-in replacements. We use a similar network architecture
for all models and datasets. We follow the same experiment
setup with the localization experiment and use 20 particles
for PF-LSTM and PF-GRU. The input is passed through
two fully-connected layers and input to the recurrent cell.

5105

Figure 5: Performance comparison of the last-step prediction loss in robot localization. LSTM-80 and GRU-86 indicate LSTM
and GRU with latent state size of 80 and 86, respectively. PF-LSTM-P30 and PF-GRU-P30 indicate PF-LSTM and PF-GRU
with 30 particles and latent state size of 64. These parameters are chosen so that the RNN and the corresponding PF-RNN
have roughly the same number of trainable parameters. LSTM-best, GRU-best, PF-LSTM-best, and PF-GRU-best indicate the
best-performing model after a search over the latent state size and the number of particles.

t = 0 t = 6 t = 22 t = 24 t = 26

Figure 6: Visualization of PF-LSTM latent particles. Each figure shows the true robot pose (blue), predicted pose (red), and 30
predicted poses according to the latent particles (green).

The output of the recurrent cell is processed by another two
fully connected layers to predict an output value. We per-
form grid search over standard training parameters (learn-
ing rate, batch size, gradient clipping value, regularization
weight) for each model and dataset.

Results are shown in Table 1 and Table 2. We observe that
PF-LSTM and PF-GRU are generally better than the LSTM
and GRU, both when the number of parameters is compa-
rable, as well as with the best hyper-parameters within the
model class. PF-RNNs outperform the corresponding RNNs
on 90% of the datasets across different domains, including
classification and regression tasks.

Comparison with the State-of-the-Art. Achieving state-
of-the-art (SOTA) performance is not the focus of this pa-
per. Nevertheless, we include the SOTA results for reference,
when available, in the last row of Table 1 and Table 2. We
use the same training, validation and test sets as the SOTA
methods. PF-RNNs, despite having only simple vanilla net-
work components, perform better than the SOTA on LPA,
AREM, and GAS. For NASDAQ, R52 and MR, SOTAs (Qin
et al. 2017; Zhou et al. 2016; Cardoso-Cachopo 2007) use
complex network structure designed specifically for the task,
thus they work better than PF-RNNs. Future work may in-
vestigate PF-RNNs with larger, more complex network com-
ponents, which would provide a more fair comparison with
the SOTA.

Comparison with Bayesian RNNs. As an alterna-
tive method for handling highly variable and noisy data,
Bayesian RNNs (Fortunato, Blundell, and Vinyals 2017)
maintain a distribution over learned parameters. We com-

Table 1: Regression Loss

NASDAQ AEP AIR PM

LSTM 37.33 6.53 18.34 26.14
PF-LSTM 4.65 4.57 13.12 21.23
LSTM-best 2.53 6.53 17.69 26.14
PF-LSTM-best 1.82 3.72 13.12 19.04

GRU 4.93 6.57 17.7 23.59
PF-GRU 1.33 5.33 19.32 20.77
GRU-best 4.93 5.61 14.78 23.59
PF-GRU-best 1.33 3.73 18.18 20.77
SOTA 0.33 - - -

Table 2: Prediction Accuracy (%)

LPA AREM GAS MR R52 UID

LSTM 91.7 99.1 76.6 73.1 81.1 93.2
PF-LSTM 100 99.1 89.9 78.3 89.1 95.3
LSTM-best 98.3 100 81.2 73.1 81.1 99.1
PF-LSTM-best 100 100 94.1 82.2 90.3 99.6

GRU 97.8 98.4 76.8 75.1 84.2 96.1
PF-GRU 98.1 99.1 83.3 76.2 87.2 94.1
GRU-best 97.8 100 80 75.2 84.2 99
PF-GRU-best 99.2 100 83.3 79.6 89.1 99.5
SOTA 91.3 94.4 80.9 83.1 93.8 -

pare PF-RNNs with Bayesian RNNs on all the datasets. In
particular, we use the same latent vector length with the

5106

Figure 7: Comparison with ensembles and Bayesian RNNs. Scatter plot of classification accuracy (left) and regression
loss (right) over all datasets. The x-axis is the performance of an RNN ensemble or a Bayesian RNN, the y-axis is the per-
formance of a PF-RNN. The dashed line corresponds to equal performance. Note that PF-RNN is better for points above the
dashed line for classification, and for points below the dashed line for regression. Red points compare PF-LSTM with LSTM
ensemble / Bayesian LSTM, blue points compare PF-GRU with GRU ensemble / Bayesian GRU.

Table 3: Ablation study.

PF-LSTM LSTM

P1 P5 P10 P20 P30 NoResample NoBNReLU NoELBO ELBOonly BNReLU

Regression 0.81 0.66 0.59 0.55 0.51 0.76 0.87 0.68 0.73 0.74
Classification 85.88 87.55 91.25 91.28 93.28 89.92 88.55 90.70 88.60 86.28

LSTMs / GRUs for Bayesian RNNs following our setting
in previous experiments. A summary of the results is given
by Fig. 7. Bayesian RNNs can improve over RNNs, but PF-
RNNs outperform Bayesian RNNs in 16 out of 20 cases,
considering both PF-LSTM and PF-GRU.

Comparison with Ensembles. PF-RNN can be consid-
ered as a method for improving an RNN, by maintaining
multiple copies and using particle filter updates. Another
common technique for improving the performance of a pre-
dictor using multiple copies is ensembling. We compare the
performance of PF-RNN with bagging (Breiman 1996), an
effective and commonly used ensembling method. Bagging
trains each predictor in an ensemble by constructing a dif-
ferent training set of the same size through randomly sam-
pling the original training set. We compare PF-RNNs using
K particles, with ensembles of K RNNs. The results are
summarized in Fig. 7.

Bagging reduces the variance of the predictors, but does
not address belief tracking. Indeed, ensembles of RNNs gen-
erally improve over a single RNN, but the performance is
substantially poorer than PF-RNNs for most datasets.

Ablation Study

We conduct a thorough ablation study on all datasets for PF-
LSTMs to better understand their behavior. A summary of
the results, averaged over all datasets, is shown in Table 3.
To compute a meaningful average for regression tasks, we
need values with the same order of magnitude. We rescale
all regression errors across the ablation methods into a range
between 0 and 1.

We evaluate the influence of the following components:
1) number of particles (P1, P5, P10, P20, P30); 2) soft-
resampling (NoResample); 3) replacing the hyperbolic tan-

gent with ReLU activation and batch normalization (NoBN-
ReLU); 4) combining prediction loss and ELBO for training
(NoELBO and ELBOonly). We conduct the same, indepen-
dent hyper-parameter search as in previous experiments.

We observe that: 1) Using more particles makes a bet-
ter prediction in general. The general performance increases
from PF-LSTM P1 to P30. 2) Soft-resampling improves the
performance of PF-LSTM. 3) The combination of predic-
tion loss and ELBO loss leads to better performance. 4) The
ReLU activation with batch normalization helps to train PF-
LSTM. Simply using ReLU with batch normalization does
not make LSTM better than PF-LSTM.

Conclusion

PF-RNNs combine the strengths of RNNs and particle fil-
tering by learning a latent particle belief representation and
updating the belief with a particle filter. We apply the idea
specifically to LSTM and GRU and construct PF-LSTM and
PF-GRU, respectively. Our results show that PF-RNNs out-
perform the corresponding RNNs on various sequence pre-
diction tasks, including text classification, activity recogni-
tion, stock price prediction, robot localization, etc.

Various aspects of the PF-RNN approach provide oppor-
tunities for further investigation. Currently, PF-RNNs make
a prediction with the mean of the particle belief. An alter-
native is to aggregate particles, e.g., by estimating higher-
order moments, estimating the entropy, attaching an addi-
tional RNN (Igl et al. 2018).

PF-RNNs can serve as drop-in replacements for RNNs.
While this work focuses on sequence prediction and clas-
sification, the idea can be applied equally well to sequence
generation and sequence-to-sequence prediction, with appli-
cation to, e.g., image captioning and machine translation.

5107

Acknowledgments

This research is supported in part by the NUS AcRF Tier 1
grant R-252-000-A87-114 and the National Research Foun-
dation Singapore under its AI Singapore Programme grant
AISG-RP-2018-006.

References

Blake, A., and Isard, M. 1997. The condensation algorithm-
conditional density propagation and applications to visual tracking.
In Advances in Neural Information Processing Systems, 361–367.
Breiman, L. 1996. Bagging predictors. Machine learning
24(2):123–140.
Burda, Y.; Grosse, R.; and Salakhutdinov, R. 2015. Importance
weighted autoencoders. arXiv preprint arXiv:1509.00519.
Candanedo, L. M.; Feldheim, V.; and Deramaix, D. 2017. Data
driven prediction models of energy use of appliances in a low-
energy house. Energy and buildings 140:81–97.
Cardoso-Cachopo, A. 2007. Improving Methods for Single-label
Text Categorization. PdD Thesis, Instituto Superior Tecnico, Uni-
versidade Tecnica de Lisboa.
Casale, P.; Pujol, O.; and Radeva, P. 2012. Personalization and user
verification in wearable systems using biometric walking patterns.
Personal and Ubiquitous Computing 16(5):563–580.
Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, 1724–1734.
De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; and Di Francia,
G. 2008. On field calibration of an electronic nose for benzene
estimation in an urban pollution monitoring scenario. Sensors and
Actuators B: Chemical 129(2):750–757.
Del Moral, P. 1996. Non-linear filtering: interacting particle reso-
lution. Markov processes and related fields 2(4):555–581.
Fortunato, M.; Blundell, C.; and Vinyals, O. 2017. Bayesian recur-
rent neural networks. arXiv preprint arXiv:1704.02798.
Gregor, K., and Besse, F. 2018. Temporal difference variational
auto-encoder. arXiv preprint arXiv:1806.03107.
Guo, Z. D.; Azar, M. G.; Piot, B.; Pires, B. A.; Pohlen, T.; and
Munos, R. 2018. Neural predictive belief representations. arXiv
preprint arXiv:1811.06407.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation 9(8):1735–1780.
Huerta, R.; Mosqueiro, T.; Fonollosa, J.; Rulkov, N. F.; and
Rodriguez-Lujan, I. 2016. Online decorrelation of humidity
and temperature in chemical sensors for continuous monitoring.
Chemometrics and Intelligent Laboratory Systems 157:169–176.
Igl, M.; Zintgraf, L.; Le, T. A.; Wood, F.; and Whiteson, S. 2018.
Deep variational reinforcement learning for POMDPs. In Proceed-
ings of the International Conference on Machine Learning, 2117–
2126.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In
Proceedings of the International Conference on Machine Learning,
448–456.
Jonschkowski, R., and Brock, O. 2016. End-to-end learnable his-
togram filters. In NeurIPS Workshop on Deep Learning for Action
and Interaction.

Jonschkowski, R.; Rastogi, D.; and Brock, O. 2018. Differentiable
Particle Filters: End-to-End Learning with Algorithmic Priors. In
Proceedings of Robotics: Science and Systems (RSS).
Kaluža, B.; Mirchevska, V.; Dovgan, E.; Luštrek, M.; and Gams,
M. 2010. An agent-based approach to care in independent living.
In International Joint Conference on Ambient Intelligence, 177–
186. Springer.
Karkus, P.; Hsu, D.; and Lee, W. S. 2018. Particle filter networks
with application to visual localization. In Proceedings of the Con-
ference on Robot Learning, 169–178.
Kingma, D. P., and Welling, M. 2014. Auto-encoding variational
Bayes. In Proceedings of the International Conference on Learning
Representations.
Le, T. A.; Igl, M.; Rainforth, T.; Jin, T.; and Wood, F. 2018. Auto-
encoding sequential monte carlo.
Liang, X.; Zou, T.; Guo, B.; Li, S.; Zhang, H.; Zhang, S.; Huang,
H.; and Chen, S. X. 2015. Assessing Beijing’s pm2.5 pollution:
severity, weather impact, APEC and winter heating. Proceedings
of the Royal Society of London Series A 471(2182):20150257.
Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.; and
Potts, C. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, 142–
150.
Murphy, K. P. 2002. Dynamic bayesian networks: representation,
inference and learning. Ph.D. Dissertation, University of Califor-
nia, Berkeley.
Palumbo, F.; Gallicchio, C.; Pucci, R.; and Micheli, A. 2016. Hu-
man activity recognition using multisensor data fusion based on
reservoir computing. Journal of Ambient Intelligence and Smart
Environments 8(2):87–107.
Qin, Y.; Song, D.; Cheng, H.; Cheng, W.; Jiang, G.; and Cottrell,
G. W. 2017. A dual-stage attention-based recurrent neural network
for time series prediction. In Proceedings of the International Joint
Conference on Artificial Intelligence, 2627–2633.
Ravanelli, M.; Brakel, P.; Omologo, M.; and Bengio, Y. 2018.
Light gated recurrent units for speech recognition. IEEE Trans-
actions on Emerging Topics in Computational Intelligence.
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT: On-
line POMDP planning with regularization. In Advances in neural
information processing systems, 1772–1780.
Thrun, S.; Fox, D.; Burgard, W.; and Dellaert, F. 2001. Robust
Monte Carlo localization for mobile robots. Artificial intelligence
128(1-2):99–141.
Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X.; and Stolcke,
A. 2018. The Microsoft 2017 conversational speech recognition
system. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, 5934–5938.
Zhou, P.; Qi, Z.; Zheng, S.; Xu, J.; Bao, H.; and Xu, B. 2016.
Text classification improved by integrating bidirectional lstm with
two-dimensional max pooling. arXiv preprint arXiv:1611.06639.

5108

