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Abstract
We extend first-order semi-Markov conditional
random fields (semi-CRFs) to include higher-
order semi-Markov features, and present ef-
ficient inference and learning algorithms, un-
der the assumption that the higher-order semi-
Markov features are sparse. We empirically
demonstrate that high-order semi-CRFs outper-
form high-order CRFs and first-order semi-CRFs
on three sequence labeling tasks with long dis-
tance dependencies.

1. Introduction
Sequence labeling is the task of labeling a sequence of cor-
related observations with their class labels. For this task,
discriminative models such as conditional random fields
(CRFs) (Lafferty et al., 2001) are often preferred over gen-
erative hidden Markov models and stochastic grammars,
mainly due to their ability to easily incorporate features
which can depend on the observations in an arbitrary man-
ner. Inference problems for general CRFs are intractable
(Istrail, 2000) in general. However, efficient learning and
inference algorithms have been found for special cases un-
der sparsity assumptions on the structure of the label se-
quences. Examples include high-order CRFs under a label
sparsity assumption (Ye et al., 2009; Qian et al., 2009), and
first-order semi-CRFs (Sarawagi & Cohen, 2004).

In this paper, we extend algorithms for both high-order
CRFs as well as first-order semi-CRFs to obtain efficient
inference algorithms for high-order semi-CRFs under a la-
bel pattern sparsity assumption: the number of observed
sequences of k consecutive segment labels is much smaller
than nk, where n is the number of distinct labels. Incorpo-
rating long distance dependencies between the label seg-
ments can be useful in segmenting tasks with long seg-
ments. Table 1 illustrates useful long distance dependen-

Table 1. Examples of the information that can be captured by the
different types of CRFs for a bibliography extraction task. The
x+ symbol represents a segment of “1 or more” labels of class x.

Type of CRF Feature example

First-order (Lafferty et al., 2001) author year
High-order (Ye et al., 2009) author year title title
Semi-CRF (Sarawagi & Cohen, 2004) author+ year+
High-order semi-CRF (this paper) author+ year+ title+

cies in bibliography extraction.

Under the label pattern sparsity assumption, our inference
algorithms for high-order semi-CRFs run in time poly-
nomial in the number of high-order semi-Markov fea-
tures. These inference algorithms can be used to compute
marginals and maximum-a-posteriori sequence labels. We
empirically demonstrate that high-order semi-CRFs outper-
form high-order CRFs and first-order semi-CRFs on three
sequence labeling tasks: relation argument detection, punc-
tuation prediction, and bibliography extraction.

2. Semi-CRF with High-order Features
Let Y = {1, 2, . . . , n} be the set of distinct labels. We use
x = (x1, . . . , x|x|) to denote an input sequence, where |x|
is the sequence length. We denote sub-sequences of x as
xa:b = (xa, . . . , xb), for 1 ≤ a ≤ b ≤ |x|. A segment of x
is defined as a triplet (u, v, y), where y is the common label
of the segment xu:v . A segmentation for xa:b is a segment
sequence s = (s1, . . . , sp), with sj = (uj , vj , yj) such that
uj+1 = vj+1 for all j, u1 = a and vp = b. A segmentation
for xa:b is a partial segmentation for x.

We assume m features f1, . . . , fm. Each fi is associated
with a segment label pattern zi ∈ Y |zi|, such that

fi(x, s, t) =

{
gi(x, ut, vt) if yt−|zi|+1 . . . yt = zi

0 otherwise
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where s is a segmentation or a partial segmentation for x.
Thus, the feature fi has order |zi| − 1. We define a high-
order semi-CRF as

P (s|x) =
1

Zx
exp(

m∑
i=1

|s|∑
t=1

λifi(x, s, t))

where Zx =
∑

s exp(
∑m
i=1

∑|s|
t=1 λifi(x, s, t)).

Let Z denote the segment label pattern set {z1, . . . , zM},
which is the set of distinct segment label patterns of the m
features. Let the forward-state set P = {p1, . . . ,p|P|}
consist of all the labels and proper prefixes of the seg-
ment label patterns. Define the backward-state set S =
{s1, . . . , s|S|} = PY , which consists of elements of P
concatenated with a label in Y .

Transitions between states in our algorithm are defined us-
ing the suffix relationships between them. We use z1 ≤s z2
to denote that z1 is a suffix of z2. The longest suffix re-
lation on a set A is denoted by z1 ≤sA z2. Formally,
z1 ≤sA z2 if and only if z1 ∈ A and z1 ≤s z2 and
∀z ∈ A, z ≤s z2 ⇒ z ≤s z1.

2.1. Training

Given a training set T , we estimate the model parame-
ters ~λ = (λ1, . . . , λm) by maximizing the regularized log-
likelihood function

LT (~λ) =
∑

(x,s)∈T logP (s|x)−
∑m
i=1

λ2
i

2σ2

where σ is a regularization parameter. A gradient-ascent
type optimization algorithm for this function will need to
compute the value of LT (~λ) and its partial derivatives
∂LT /∂λi = Ẽ(fi) − E(fi) − λi/σ

2, where Ẽ(fi) and
E(fi) are the empirical feature sum and expected feature
sum of fi respectively. In these computations, we need to
efficiently compute Zx and E(fi)’s.

2.1.1. PARTITION FUNCTION

For any pi ∈ P , let pj,pi be the set of all segmentations
for x1:j whose segment label sequences contain pi as the
longest suffix among all elements in P . We define the for-
ward variables αx(j,pi) as follows

αx(j,pi) =
∑

s∈pj,pi

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t))

Let L be the longest possible length of a segment and let
Ψx(u, v,p) = exp(

∑
i:zi≤sp λigi(x, u, v)). We use the

notation
∑
i:Pred(i) to denote summation over all i’s satisfy-

ing the predicate Pred(i). We have

αx(j,pi) =
L−1∑
d=0

∑
(pk,y):pi≤s

Ppky

Ψx(j − d, j,pky)αx(j − d− 1,pk)

The partition function can be computed from the forward
variables by Zx =

∑
pi∈P αx(|x|,pi).

2.1.2. EXPECTED FEATURE SUM

Let sj be the set of all partial segmentations for xj:|x|. For
s ∈ sj and sk ∈ S, we define for each feature fi a con-
ditional feature function fi(x, s, t|sk), which is evaluated
according to the definition of fi(x, s, t), but assuming sk is
the longest suffix (in S) of the segment label sequence for
x1:j−1. For each si ∈ S, we define the backward variables
βx(j, si) as follows

βx(j, si) =
∑
s∈sj

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t|si))

These variables can be computed by

βx(j, si) =

L−1∑
d=0

∑
(sk,y):sk≤s

Ssiy

Ψx(j, j + d, siy)βx(j + d+ 1, sk)

We can now compute the marginals P (u, v, z|x) for each
z ∈ Z and u ≤ v, where P (u, v, z|x) denotes the proba-
bility that a segmentation of x contains label pattern z and
has (u, v) as z’s last segment boundaries

P (u, v, z|x) =
1

Zx
×∑

(pi,y):z≤spiy

αx(u− 1,pi)Ψx(u, v,piy)βx(v + 1,piy)

We compute the expected feature sum for fi by

E(fi) =
∑

(x,s)∈T

∑
u≤v

P (u, v, zi)gi(x, u, v)

Note that the marginal computation algorithms in (Ye et al.,
2009) cannot be generalized directly as their algorithm re-
quires knowledge of the lengths of the overlapping seg-
ments when the forward sums and backward variables are
combined together, while for semi-Markov features the
lengths are unspecified. We handled this difficulty using the
conditional version of the backward sums defined above.

2.2. Decoding

We compute the most likely segmentation for high-order
semi-CRF by a Viterbi-like algorithm. Define

δx(j,pi) = max
s∈pj,pi

exp(

m∑
k=1

|s|∑
t=1

λkfk(x, s, t))
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Table 2. F1 scores of different CRF taggers for relation argument
detection on six types of relations.

TAG C1 C2 C3 SC1 SC2 SC3

PART-WHOLE 38.61 41.88 47.22 38.51 42.76 44.80
PHYS 33.41 33.64 34.30 33.40 42.00 42.24

ORG-AFF 60.50 62.61 63.85 60.78 64.08 64.86
GEN-AFF 31.10 34.81 39.72 31.35 35.38 37.93
PER-SOC 53.63 57.83 56.98 53.46 57.29 57.12

ART 39.73 43.33 47.33 40.07 48.79 48.58
AVERAGE 42.83 45.68 48.23 42.93 48.38 49.26

These variables can be computed by

δx(j,pi) =

max
(d,pk,y):pi≤s

Ppky
Ψx(j − d, j,pky)δx(j − d− 1,pk)

Note that the value of d is inclusively between 0 and L− 1
in the above equation. The most likely segmentation can be
obtained using back tracking from maxpi δx(|x|,pi).

2.3. Time complexity

For simplicity, we assume that the features gi(·, ·, ·) can
be computed in unit time. The time complexity to
pre-compute all the values of Ψx in the worst case is
O(mT 2|P||Y|2) = O(mn2T 2|P|), where T is the max-
imum length of an input sequence. After pre-computing
the values of Ψx, we can compute all the values of αx in
O(T 2|Y||P|) time. Similarly, the time complexity to com-
pute all the values of βx is O(T 2|Y||S|). Then, with these
values, we can compute all the marginal probabilities in
O(T 2|Z||P|). Finally, the time complexity for decoding is
O(T 2|Y||P|). These bounds are pessimistic, and the com-
putation could be done more quickly in practice.

3. Experiments
3.1. Relation argument extraction

We consider binary relation argument detection, which la-
bels words in a sentence for a given relation type as fol-
lows: A word both appearing as the first argument and the
second argument for some relation instances is labeled as
Arg1Arg2. A word appearing only as the first (second) ar-
gument is labeled as Arg1 (Arg2). Otherwise, label it as
O.

The dataset used is the ACE 2005 English corpus (Walker
et al., 2006), which contains six source domains and six
labeled relation types. We trained a separate tagger for
each type of relations. The training set and the test set con-
tain 70% and 30% of the sentences respectively from each
source domain. We balanced the training set so that there
are equal numbers of sentences containing no relation and

sentences containing some relation(s). We also assumed
the manually annotated named entity mentions are known.

For linear-chain CRF, the zeroth-order features are: sur-
rounding words before and after the current word and their
capitalization patterns; letter n-grams in words; surround-
ing named entity mentions, part-of-speeches before and
after the current word and their combinations. The first-
order features are: transitions without any observation,
transitions with the current or previous words or combina-
tions of their capitalization patterns. The high-order CRFs
and semi-CRFs include additional high-order Markov and
high-order semi-Markov transition features.

In Table 2, Ck and SCk refer to kth-order CRF and semi-
CRF respectively. SC2 give an improvement of 5.45% on
F1 score when compared to the SC1 on average. SC3 fur-
ther improves the performance of SC2 by 0.88% F1 score.
High-order CRF showed significant improvement on all ex-
cept for PHYS, which has arguments located further apart
compared to other relations .

3.2. Punctuation Prediction

In this experiment, we used high-order semi-CRF to cap-
ture long-range dependencies in punctuation prediction
task (Lu & Ng, 2010) and showed that it outperforms high-
order CRFs and first-order semi-CRF on movie transcripts
data. We collected 5450 annotated conversational speech
texts from various movie transcripts online for the exper-
iment. We used 60% of the texts for training and the re-
maining 40% for testing.

Originally, there are 4 labels: None, Comma, Period, and
QMark, which indicate that no punctuation, a comma, a pe-
riod, or a question mark comes immediately after the cur-
rent word respectively. To help capture the long-range de-
pendencies, we added 6 more labels: None-Comma, None-
Period, None-QMark, Comma-Comma, QMark-QMark,
and Period-Period. The left parts of these labels serve the
same purpose as the original four labels. The right parts of
the labels indicate that the current word is the beginning of
a text segment which ends in comma, period, or question
mark. This part is used to capture useful information at the
beginning of the text.

We used the combinations of words and their positions rel-
atively to the current position as zeroth-order features. For
first-order features, we used transitions without any obser-
vation, and transitions with the current or previous words
or their combinations. Ck uses kth-order Markov features,
while SCk uses kth-order semi-Markov transition features
with the observed words in the last segment. We see in
Table 3 that high-order semi-CRFs can capture long-range
dependencies with the help of additional labels and can
achieve around 3% improvement in F1 score compared to
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Table 3. F1 scores for punctuation prediction task. The last row
contains the micro-averaged scores.

TAG C1 C2 C3 SC1 SC2 SC3

COMMA 58.31 59.03 60.76 61.13 59.27 58.91
PERIOD 75.01 75.69 76.28 75.03 78.84 78.41

QMARK 52.33 53.61 57.10 57.61 73.48 73.00
ALL 65.10 65.86 67.17 66.73 70.06 69.66

Table 4. F1 scores for bibliography extraction task. The last row
contains the micro-averaged scores.

TAG C1 C2 C3 SC1 SC2 SC3

AUTHOR 93.97 91.65 93.67 93.97 94.74 94.00
BOOKTITLE 75.29 75.00 70.81 75.74 78.11 76.47

DATE 95.19 96.68 93.57 95.19 95.43 95.70
EDITOR 62.86 72.73 66.67 57.14 58.82 54.55

INSTITUTION 66.67 64.71 64.71 70.27 70.27 64.86
JOURNAL 78.08 78.32 78.62 77.55 77.55 75.68

LOCATION 71.11 69.66 70.33 68.13 67.39 65.22
NOTE 57.14 57.14 30.77 57.14 66.67 66.67

PAGES 84.96 87.83 84.12 85.96 86.96 87.18
PUBLISHER 84.62 84.62 82.93 84.62 86.08 86.08

TECH 77.78 80.00 74.29 77.78 77.78 77.78
TITLE 90.18 85.42 89.06 90.18 92.23 90.95

VOLUME 69.74 75.68 72.97 71.90 72.37 75.00
ALL 85.60 85.47 84.67 85.67 86.67 86.07

first-order semi-CRF. SCk also outperforms Ck for all k.

3.3. Bibliography Extraction

Bibliography extraction is the task of extracting various
fields, such as Author, Booktitle, of a reference, and can
be naturally seen as a sequence labeling problem. We eval-
uated the performance of high-order semi-CRFs on this
problem with the Cora Information Extraction dataset1.
The dataset contains 500 instances of references. We used
300 instances for training and the remaining 200 instances
for testing.

In C1, zeroth-order features include the surrounding words
at each position and letter n-grams, and first-order features
include transitions with words at the current or previous
positions. Ck and SCk (1 ≤ k ≤ 3) use additional kth-
order Markov and semi-Markov transition features.

From Table 4, high-order semi-CRFs perform generally
better than high-order CRFs and first-order semi-CRF. SC2

achieves the best overall performance with 86.67% F1-
score.

4. Conclusions and Future Work
In this paper, we give efficient inference and decoding al-
gorithms for high-order semi-Markov models. The algo-

1http://www.cs.umass.edu/∼mccallum/data.html

rithms are guaranteed to run in polynomial time under the
segment pattern sparsity assumption and can be used for
developing efficient learning algorithms. For future work,
it would be interesting to investigate how we can automati-
cally choose a smaller subset of the segment label patterns
that are most informative to a certain task, rather than us-
ing all the label patterns found in the training data. If such
a small pattern set can be chosen, we can improve the in-
ference time since the complexity of our algorithms depend
on the size of the pattern set.
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