R Clustering Notes

Help on Getting Started with Your Project

The different CD (community detection) algorithms have been implemented in
R and this quick tutorial is meant to just get your started. You will need to
explore more in your project. First, we cover the different representation of
graphs that are needed by the different CD algorithms.

Graphs, Adjacency Lists, and Distance matrices
There are several ways to create a distance matrix
1. Compute from table of features
o Atable of features is a data frame like,

row.names Murder Assault UrbanPop Rape
1 Alabama 13.2 236 58 21.2
2 Alaska 12.e 263 48 44.5
3 Arizona 8.1 294 ge 31.e
4 Arkansas 8.8 192 5e 19.5
5 California 9.2 276 91 49.6
6 Colorado 7.9 284 78 38.7
7 Connecticut 3.3 11@ 77 11.1
8 Delaware 5.9 238 72 15.8

a Elarida 1c 4 22K -7 21 a

(You can load the above by entering “data(usArrests)”

o Suppose your features are in a data frame called “feat”
Note: you can easily plot out pairwise features for inspection. Install the packages
“ggplot2” and “calibrate” by “install.packages(c('ggplot2', 'calibrate'))”,
“Tibrary('ggplot2')”, “library('calibrate"')” then enter, e.g.
“plot(USArrests$Murder, USArrests$Assault)”, followed by
“textxy(USArrests$Murder, USArrests$Assault, row.names(USArrests))”
enter “dist(feat, method)”, where method can be: "euclidean",

"maximum"”, "manhattan", "canberra"”, "binary" or "minkowski"

2. Convert from a (symmetric) matrix which contains the pairwise distances
o Suppose the matrix is in a data frame called “mdat”
o as.dist(mdat)
o Example:
= First, create a matrix
mdat <- matrix(c(1, 2, 1, 1, 7, 7, 2, 1, 7, 7,
11 1! 1’ 7’ 1’ 1’ 7’ 7’ 11 7! 1’ 1’ 7’ 7’ 7’ 1’
7, 7, 1, 1), nrow = 6, ncol = 6)
= Then, convert into distance matrix
as.dist(mdat)

R Clustering Notes

3. From edge list

O

Install igraph, netmeta by

install.packages(c('igraph', 'netmeta')), and
Tibrary('igraph'), library('netmeta').

Load edges into a data frame called “edges”. Remember to
uncheck “Strings as factors” to preserve the vertex labels. Also,
remember to set “Heading” to “Yes” or “No” accordingly.

Heading () Yes @ No

Separator [Comma v]
Decimal [Period A]
Quote [Double quote (") ']
na.strings INA v

£ iStrings as factors

o Then, you can generate a distance matrix with

as.dist(netdistance(get.adjacency(graph.edgelist(as.
matrix(edges), directed=FALSE))))

o Try with the included file “edges.csv”.

R Clustering Notes

Single Linkage
To perform single linkage, you can use the hclust function. The function

accepts a distance matrix as input. So, you will have to prepare your data as a
distance matrix.

Clustering with hclust

Assume that you already have a distance matrix called “dist”. To perform single

linkage clustering with hclust, simply enter “hcTust(dist, "single")”.
Note: you can also try other clustering methods beside “single”. Other methods are "ward.D",
"ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (=
WPGMC) or "centroid" (= UPGMC).

Displaying hclust result

If you ran hclust with “C <- hcTust(dist)” (the default method is
“complete”) and hence stored the result in C, you can view it with “plot (C)”.

This will give you the clustering like below for the graph in “edges.csv”:

Cluster Dendrogram

30

Height
2.0

1.0

(See details in http://www.inside-r.org/r-doc/stats/hclust)

R Clustering Notes

Girvan-Newman (GN)

GN clustering is similarly performed.

The function call to perform GN is called “edge.betweenness.community”, and
is included in the “igraph” package. If you have not installed igraph earlier,
install it with packages.instal1('igraph') and Tibrary('igraph').

The function accepts a graph as input.

Creating a graph with hclust
Graphs can be created from edge lists. Assume that your edge list is available
as a data frame (e.g. loaded from “edges.csv”).

You generate the graph by

G <- graph_from_data_frame(d=edges, vertices=
unique(c(edges$vl, edges$v2)), directed=F)

You can examine G by plotting it with “plot(G)”. ®

®

@
@
Performing the GN clustering

Finally, you can call enter “C <- edge.betweenness.community(G)” to
perform the clustering.

To display the community, enter “pTot(C, G)”.

(See http://www.inside-r.org/packages/cran/igraph/docs/edge.betweenness.community)

R Clustering Notes

Markov Cluster Algorithm (MCL)

The function call to perform MCL is called mcl, and is included in the “MCL”
package. Install it with packages.install('MCL') and Tibrary('mMCL")

mcl accepts an adjacency matrix as input.

Creating an adjacency matrix
Adjacency matrices can be created from edge lists. Assume that your edge list
is available as a data frame (e.g. loaded from “edges.csv”).

You can obtain an adjacency matrix by

adj <- get.adjacency(graph.edgelist(as.matrix(edges),
directed=FALSE))

And you can convert the adjacency matrix into a graph by

G <- graph.adjacency(adj, mode="undirected")
Which will allow you to examine it via “plot (G)”.
Performing the MCL clustering

Finally, you can call enter “C <- mc1(x=adj, addLoops=T, ESM=T)” to
perform the clustering. The result is given in the following parameters:

K the number of clusters
n.iterations the number of iterations
Cluster a vector of integers indicating the cluster to which

each vertex is allocated
Equilibrium.state.matrix a matrix; rows contain clusters

For “edges.csv”, you will find {a, d, c} in one cluster, and {b, e, f} in another.

(See details in https://cran.r-project.org/web/packages/MCL/MCL.pdf)

Getting clustering results into pals Notes

Guide on getting clustering results into pals

Your clustering result may be stored in different data types, and my may need
to convert it to make it suitable for the pals system. This guide tlls you how.

Girvan-Newman (GN)

Steps to convert a Girvan-Newman clustering result into pals format:

Assume that the command executed is

C <- edge.betweenness.community(G)

That is, C now stores the clustering result of graph G. Now, to convert the
graph G and clusters C into pals input,

edgs <- get.edgelist(G)
clus <- data.frame(1l:1ength(v(G)),C$membership)
clus <- clus[unique(c(edgs[,1], edgs[,2])),]

write.table(edgs, "G.dat"', sep="\t", row.names=F, col.names=F)
write.table(clus, "C.dat", sep="\t", row.names=F, col.names=F)

The graph is then stored in G.dat while the clusters are stored in C.dat.

Markov Cluster Algorithm (MCL)

To convert an MCL clustering result into pals format, use the following.

Assume that the command executed is
C <- mcl(x=adj, addLoops=T, ESM=T)

That is, C now stores the clustering result of graph adjacency matrix adj. Now,
to convert adj and clusters C into pals input,

G <- graph.adjacency(adj, mode="undirected")

edgs <- get.edgelist(G)

clus <- data.frame(1l:Tength(v(G)),C$Cluster)

clus <- clus[unique(c(edgs[,1], edgs[,2])),]

write.table(edgs, "G.dat", sep="\t", row.names=F, col.names=F)
write.table(clus, "C.dat", sep="\t", row.names=F, col.names=F)

The graph is then stored in G.dat while the clusters are stored in C.dat.

Getting clustering results into pals Notes

Single Linkage

Without loss of generality assume that your original data is in the form of a
graph G (otherwise how are you going to input it into pals), which you
converted into a dist object D through the function call netdistance as follows.

D <- as.dist(netdistance(get.adjacency(G)))

(You may have needed to perform D[!is.finite(D)] <- Tength(v(G)) in
order to get rid of the “Inf” entries in D, which signify the distance between
unreachable vertices.)

To convert a single linkage clustering result into pals format, use the following.

Assume that the command executed is

hc <- hclust(b, method="single")

That is, hc now stores the hierarchical clustering result of graph G. Now, to
convert the graph G and clusters C into pals input,

edgs <- get.edgelist(G)
clus <- data.frame(1l:1ength(v(G)), cutree(hc, k = 15))
clus <- clus[unique(c(edgs[,1], edgs[,Z])),]

write.table(edgs, "G.dat"', sep="\t", row.names=F, col.names=F)
write.table(clus, "C.dat", sep="\t", row.names=F, col.names=F)

You will need to choose a suitable value of k for cutree —in the codes above,
15 is specified, but that may not be suitable for every case.

	Cluster-Guide
	Pals

