
Improve Fuzzy Clustering and Force Directed

Algorithms for Visualization of Personal

Social Networks

Yao Yujian

Abstract

To properly visualize one’s social network which typically contains outliers and

sometimes parse communities, we improve a community detection algorithm called

fuzzyclust and implement a better force-directed-based visualization algorithm that

takes into consideration the community structure. We build an online tool based on

these algorithms and present the algorithms in this article.

1 Introduction

The advent of social networking sites such as Facebook has allowed people to digitalize their

real-life social network, making the process of visualizing one’s social network much simpler

as the data gathering process is straight- forward and efficient. This makes it possible to

easily analyze one’s social network structure to find out gather interesting insights such as

detecting communities and outliers. To capitalize this, we build an online social network

analysis tool that shows users overlapping communities and outliers in their personal social

network.

2 Problem Statement

This project aims to build a tool to visualized one’s personal social network by showing

communities and outliers. A personal social network is a social network formed by only

one’s friends. Two friends are considered connected if they are also friends of each other.

1



Communities are a group of people who have denser connections among each other.

Outliers are people in the social network that does not belong to any communities.

We call the network personal social network because it’s a social network with imperfect

information due to one’s limitation in interacting with others. For example, a few of a

person’s friends could have belonged to some obvious community, but that person does not

know many from that community, so such a community cannot be trivially discovered given

only the person’s social network data.

3 Algorithms

The visualization consists of two steps: community detection and positioning of vertexes

based on the graph structure for better representation.

3.1 Community Detection

We utilized the fuzzyclust (Nepusz et al. (2008)) algorithm, with some improvements specific

to personal social networks.

3.1.1 Fuzzyclust Algorithm

The fuzzyclust algorithm works by optimizing a function of posterior similarities of vertex,

defined by the similarity of the communities they belong to, based on the prior assumption

of their similarity.

Formally, let c be the number of communities and N be the number of vertexes, define

a partition matrix U such that for each entry uij:

uij ∈ [0, 1] for all 1 ≤ i ≤ c, 1 ≤ k ≤ N

c∑
i=1

uik = 1 for all 1 ≤ k ≤ N

0 <
N∑
k=1

uik < N for all 1 ≤ i ≤ c

2



Intuitively, uij refers to the degree that Vertex j belongs to community i, such that

uij = 0 means that j does not belong to i at all and uij = 1 means that j belongs to and

only belongs to i.

With the partition matrix, define the similarity of two vertex i and j as:

sij =
c∑

k=1

ukiukj

Also define a prior similarity assumption:

s̃ij =

1, if i and j are adjacent

0, otherwise

Then we have a goal function:

DG(U) =
N∑
i=1

N∑
j=1

wij(s̃ij − sij)2

where wij is the weight between two vertexes that can be varied to tweaked the algorithm.

The simplest case is where wij = 1 for all i, j.

By minimizing DG(U) with regard to U , then, we can find the optimal partition matrix

that is indicative of the communities each vertex belongs to.

We can then utilize a iterative gradient-based method to optimize this function and

obtain a good partition matrix.

Firstly, it’s shown that the gradient of the goal function is:

∂D̃G

∂ukl
= 2

N∑
i=1

(eil + eli)

(
1

c
− uki

)

where eij = wij(s̃ij − sij).

So the following iterative algorithm can be employed:

1. Initialize a randomized partition U (0) and let t = 0

2. Compute
∂D̃G

∂ukl
for all k, l

3



3. If maxk,l
∂D̃G

∂ukl
< ε, stop the iteration and return U (t) as the solution

4. Otherwise, calculate the next partition in the iteration with the following equation:

u
(t+1)
ij = u

(t)
ij + α(t)∂D̃G

∂ukl

where α(t) is the step size constant chosen appropriately.

5. Increase t by 1 and continue from step 2

The above algorithm works if the number of community c is known. In the case that c

is not known, we can increment c from 2 and compute the optimal U , then the modularity

given U , until the modularity does not increase.

3.1.2 Improvement

One problem with fuzzyclust is that pairs of non-adjacent vertexes are ‘treated equally’

because their prior similarities are all 0. Although this can be mitigated with the graph

structure - since the vertexes may be connected to some other vertexes which will dictate

a prior similarity of 1 with them - it frequently lead to situations where disjoint, sparse

vertexes are put into the same community. This can occur quite frequently in personal

social networks, where there can exist some sparse community due to lack of iteration with

that particular group of people.

To prevent this, we make use of the weight parameter wij to penalize heavily when dis-

connected vertexes are joined into the same community. Moreover, to avoid over-penalizing

the goal function due to outlier vertexes, we create one residual community to host outliers.

We also normalize the graph before running fuzzyclust by decomposing the graph into

connected components, such that if the size of connected component is less than 10, we as-

sume the whole component to be one community, otherwise run fuzzyclust on the component

to obtain communities within the component.

Formally, let the distance between two vertexes be dij, and let the maximum distance in

the graph be dmax, we define wij as:

wij =

f(dmax + 1)/(degreei + degreej − 2), if dij = 1,

f(dij), if dij > 1

4



where f(x) is an increasing function. In this project, we pick f(x) = 2x.

We also modify the similarity to:

sij =
c∑

k=1

m2
kukiukj

where mk is a depress factor such that:

mk =

f(d2max) if k = 1

1, if k > 1

Correspondingly, the gradient is now computed as:

∂D̃G

∂ukl
= 2

N∑
i=1

(eil + eli)

(
1

c
−miuki

)
This makes the first community the residual community, which should be regarded as a

haven for outliers and should be discarded in the visualization process.

The definition of w makes sure that vertexes with less neighbors will likely be in the

community as their neighbors, and vertexes far away will be very unlikely to be in the

same communities. However, it still allows vertexes close to each other to be in the same

community, even if they are not connected, if there are enough intermediate connections

between them.

The addition the residual community also makes the algorithm tend to move outliers

into the first communities since two vertexes will not incur a high similarity even if they are

both added to the first community. On the other hand, connected vertexes are unlikely to

be moved into the first community since that will result in a very small similarity, making

the difference between the prior similarity of 1 and the posterior similarity large.

One other simple improvement is to add some heuristic in finding the number of the

communities. We can take a guess of c by assuming cmin = N/k, where k can be some

reasonable number, then start from cmin instead of 2.

5



3.2 Positioning Nodes

To show the communities more clearly, we implement a force directed-based algorithm to

position the vertexes on a 2D plan while taking into consideration the communities they

belong to.

In particular, given the graph and the community structure computed from Section 3.1,

we construct a physics system with each vertex and community:

1. Each pair of vertexes i and j repel each other with a force Fr/dij

2. Each pair of vertexes i and j that are connected by an edge attracts each other with

a force Fadij

3. Each community also has a center, and two communities i and j repel each other with

a force Frc/dij

4. Each community center c attracts every vertex v in the community with force Facdcv

5. A center point in the plan which always attracts vertexes towards it.

With this system, we can run the positioning algorithm as such:

1. Randomly position all vertexes and community centers

2. Initialize velocity of each node to be 0

3. Run for k iterations

1. Apply forces according to the rules above

2. Sum up all forces each node experiences

3. Compute acceleration by assuming masses to be 1

4. Compute new velocity of each node according to the acceleration

5. Compute new positions of each node according to the velocity

The output will be the positions of each vertex. We ignore the community center in the

output.

This way, vertexes in the same community will be even closer to each other, while

communities will be many overlaps will also be closer. On the other hand, vertexes not in

the same communities will be farther apart, and communities without much overlap will

also be further apart, making the community structures more apparent. Lastly, outliers in

the graph will be even further apart compared to those in the community since they do not

experience attraction from the community center.

6



4 Complexity Analysis

The original fuzzyclust algorithm is claimed to run in O(chN2) time, where h is the number

of steps for the iterative gradient decent algorithm to converge. Since we do not modify the

gradient decent component, the run time should still be the same. However, since we are

unsure of c before running the algorithm, we need to increment c from some small value.

So the overall runtime is:

c∑
k=cmin

O(khkN
2) = O(c2hmaxN

2)

Moreover, we also need to compute the shortest distance between every vertexes. This

can be done by running depth-first search from every vertex, resulting in O(NE +N2) run

time, where E is the number of edges. So the total time complexity is O(c2hmaxN
2 +NE+

N2). Assuming that E/N < c2hmax, which is likely in a social network graph which is

usually sparse, the final time complexity will be O(c2hmaxN
2).

5 Results

We have implement a web interface for the above algorithms at http://pals.yjyao.com.

The following images show the final visualization of some real-life personal social net-

works from Facebook with both the original and improved version of fuzzyclust. Note that

vertexes that are not supposed to be in the same communities are circled in red, and outliers

circled in blue.

As seen, there’s less tendency for sparse vertexes to be grouped into the same community

with the new algorithm. Moreover, we can see that the new algorithm also help to identify

outliers, which is not possible in the original algorithm.

Interestingly, not only did it identify outliers who have only one or very few connections

into some dense community, but also ‘outlier bridges’ - people who connect two or more

otherwise very disconnected, but large, communities. This is because if the outlier is to be

grouped into at least one of the communities, the dissimilarity will be large because most of

them have a prior similarity of 0 and quite a large weight. This means that in the optimal

solution, such vertex cannot be grouped into any one of these communities. Intuitively,

this is sensible, because if we have a few large, mostly disconnected communities which

7

http://pals.yjyao.com


(a) Original Fuzzyclust result (b) Improved Fuzzyclust result

(c) Original Fuzzyclust result (d) Improved Fuzzyclust result

8



(e) Original Fuzzyclust result (f) Improved Fuzzyclust result

(g) Original Fuzzyclust result (h) Improved Fuzzyclust result

9



(i) Original Fuzzyclust result (j) Improved Fuzzyclust result

happen to be connected by a person, this person is unlikely to belong to any other them,

for otherwise he should have known a lot more people from all these communities. It is

possible that this person, along with his connections both in and out of this social network,

should form perhaps another community. However, due to the limitation of personal social

network, this cannot be detected nor ascertained.

However, there may still be limitation to the new algorithm, as we can see that some

small communities are also classified as outliers in large graph. Further tuning on the

function f(x) for weight and the depress factor m1 may be needed.

6 Conclusion

In conclusion, we have improved the fuzzyclust algorithm to be able to detect outliers

and prevent disconnected sparse vertexes to be grouped into communities. We have also

implemented a force-directed-based graph visualization algorithm that displays communities

better. Lastly, we have built an online visualization tool with these new algorithms.

7 Future work

We can further investigate the effect of f(x) and m1 on the output of the clustering algorithm

so that the algorithm will correctly identify outliers.

10



8 Acknowledgment

Many thanks to my Supervisor Prof Lenong Hon-Wai, the students taking the same module

and my friends who have volunteered their social network data. Without them, I could not

have finished this project.

9 References

Nepusz, Tams, Andrea Petrczi, Lszl Ngyessy, and Flp Bazs. 2008. “Fuzzy Communities

and the Concept of Bridgeness in Complex Networks.” Physical Review E 77 (1): 016107.

11


	Introduction
	Problem Statement
	Algorithms
	Community Detection
	Fuzzyclust Algorithm
	Improvement

	Positioning Nodes

	Complexity Analysis
	Results
	Conclusion
	Future work
	Acknowledgment
	References

