

The Tourist Problem: And Fun with Graph Modeling

Hon Wai Leong

Department of Computer Science National University of Singapore leonghw@comp.nus.edu.sg

Experience the fun of problem solving

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 1

The Tourist Problem

□ Organization

- National University of Singapore

 School of Computing
- ***** The Tourist Problem
- Analysis and Simplifications
- **❖ Problem Modeling (with** *Graphs***)**
- **Solving the** *Graph* **Model**
- **❖** Mapping back the Solution
- Moral of the Story

Experience the fun of problem solving

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem (KL/PJ)...

Given: A list of parents, each with his/her list of places to visit.

To do: Schedule guided tours for them so that each parent visits all the places in his/her list.

An Instance of Tourist Problem			
Tourist	Places of Interest		
Aaron	KLCC, SLTP, BB		
Betty	MW^{TP} , BH , SL^{TP}		
Cathy	tC, Bgs, MVM		
David	BH, MW ^{TP} , MVM		
Evans	MW ^{TP} , BH, KLCC		
Frances	SL ^{TP} , KLCC, BB		
Gary	MW ^{TP} , MVM		
Harry	BH, MW ^{TP}		

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem (KL/PJ Entities)

- ☐ Good to know the entities we are dealing with...
 - ***** The Tourists:

$$T = \{A, B, C, D, E, F, G, H\}$$

***** The Attractions (Places):

 $P = \{BB, Bgs, BH, KLCC, MVM, MW^{TP}, SL^{TP}, tC\}$

Places of Attraction					
Place Common Name Place Common Name					
SLTP	Sunway Lagoon TP	MW^{TP}	Mines Wonderland TP		
BB Bukit Bintang BH Berjaya Hill					
MVM Mid Valley Mall Bgs Bangsar					
KLCC	KL City Centre	tC	The Curve		

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 4

The Tourist Problem...

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that each tourist visits all the places in his/her list.

An Insta		
Tourist	Places of Interest	
Aaron	SZG, BG, JB	
Betty	CG, JG, BG	
Cathy	VC, SI, OR	
David	JG, CG, OR	
Evans	CG, JG, SZG	
Frances	BG, SZG, JB	
Gary	CG, OR	
Harry	JG, CG	
2.1116	(T	he Tourist Problem) Pag

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem (Entities)

- ☐ Good to know the entities we are dealing with...
 - ***** The Tourists:

 $T = \{A, B, C, D, E, F, G, H\}$

***** The Attractions (Places):

 $P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$

Places of Attraction					
Place Common Name Place Common Name					
BG	Botanical Gardens	CG	Chinese Gardens		
JB	JB Jurong Birdpark JG Japanese Gardens				
OR Orchard Road SI Sentosa Island					
SZG	Spore Zoological Gardens	VC	VivoCity		

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

Some Simplifications: Consider

Aaron { SZG, BG, JB }

Frances { SZG, BG, JB }

Also consider

* David { JG, CG, OR }

Gary { CG, OR }

An Instance of Tourist Problem

Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG
Frances	BG, SZG, JB
Gary	CG, OR
Harry	JC, CC

Hon Wai Leong, SoC, NUS

Simplification Rule:

If $P(T_1) \subseteq P(T_2)$, then tourist T_1 can just "follows" tourist T_2 . Thus, we can omit T_1 from consideration.

Oh, can also omit Harry

* Betty { CG, JG, BG }
Harry { CG, JG

(The Tourist Problem) Page 7

Copyright © 2007 by Leong Hon Wai

The (Reduced) Tourist Problem...

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list.

An Instance of Tourist Problem			
Tourist Places of Interest			
Aaron SZG, BG, JB			
Betty CG, JG, BG			
Cathy VC, SI, OR			
David JG, CG, OR			
Evans CG, JG, SZG			

 $T = \{A, B, C, D, E\}$

 $P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem - v0

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list.

Solution: (Singapore 1-Day Tour)

Put all the tourists on one bus. Visit all eight places in 1 day.

An Instance of Tourist Problem				
Tourist Places of Interest				
Aaron	SZG, BG, JB			
Betty	CG, JG, BG			
Cathy	Cathy VC, SI, OR			
David JG, CG, OR				
Evans	CG, JG, SZG			

What's Good: It works! One bus, one-day.

What's Bad: Too rushed. NO time to see anything!

Not interesting!

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem – v0.5

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list, and

C1: Each tourist visits at most one place a day.

Simple Solution:

Schedule one trip to every place every day.

An Instance of Tourist Problem				
Tourist Places of Interest				
Aaron	SZG, BG, JB			
Betty	CG, JG, BG			
Cathy	VC, SI, OR			
David	JG, CG, OR			
Evans	CG, JG, SZG			

What's Good: It works! Finish in 3 days. (minimum!)

What's Bad: Wasteful! 24 bus trips.

Also, not so interesting!

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem – v0.8

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list,

C1: Each tourist visits at most one place a day, and

C2: There is at most one bus trip to each place

Simple Solution:

Schedule *one trip per day*, each to a *different* place.

What's Good: It works! 8 trips. What's Bad: It takes 8 days!

An Instance of Tourist Problem

Tourist Places of Interest

Aaron SZG, BG, JB

Betty CG, JG, BG

Cathy VC, SI, OR

David JG, CG, OR

Evans CG, JG, SZG

But wait... Did you see something interesting?

(The Tourist Problem) Page 11

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Tourist Problem – v1.0

Given: A list of tourist, each with his/her list of places to visit.

To do: Schedule bus rides for them so that

each tourist visits all the places in his/her list,

C1: Each tourist visits at most one place a day,

C2: There is at most one bus trip to each place, and

C3: minimize the number of days to complete mission.

Observation:

On the same day, cannot schedule SZG and BG can schedule SZG and OR

How to model all these constraints?

An Instance of Tourist Problem				
Tourist Places of Interest				
Aaron	SZG, BG, JB			
Betty	CG, JG, BG			
Cathy VC, SI, OR				
David JG, CG, OR				
Evans CG, JG, SZG				

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

Activity Period #1:

Bus Scheduling DIY (Do It Yourself) (5 minutes)

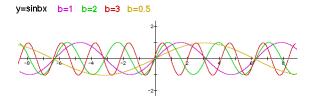
Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 13

Review of Activity #1

- ☐ How many days did you use?
 - **❖** ____ days
- **□** What was the main difficulty?
 - ***** What if we are talking about 100 tourists?
 - * ... and 20 different attractions?
- **□** Was there a lot of repetitive task?
 - **❖** How was the task?
- **☐** How can we do better?

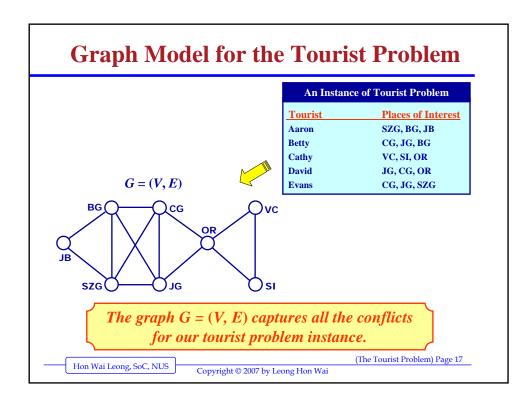

Hon Wai Leong, SoC, NUS

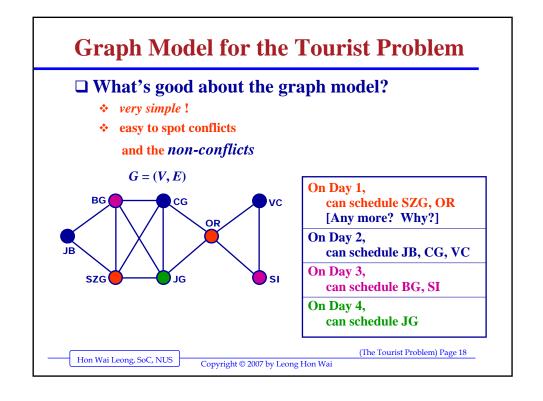
Copyright © 2007 by Leong Hon Wai

The Graph Model

□ What is a graph?

$$\Leftrightarrow$$
 eg: $y = sin(bx)$

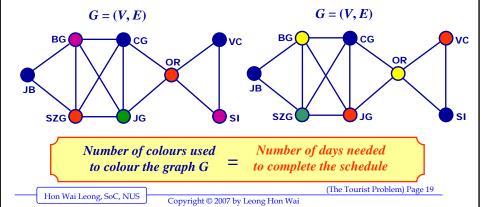

 \square No. Not this type of graph.


Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 15

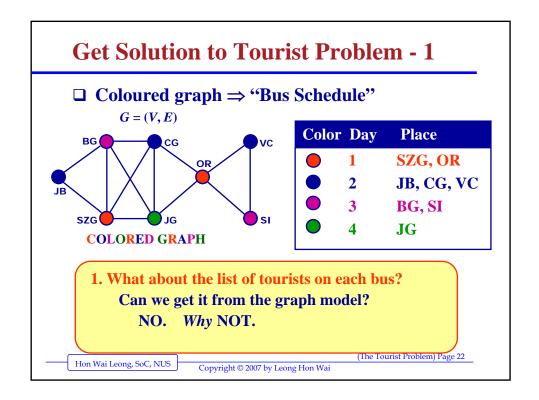
The Graph Model \Box Graph G = (V, E)**❖** *V* is a set of vertices, nodes (circles) Nodes are **&** *E* is a set of edges (connections) **Places An Instance of Tourist Problem** BG(**Tourist Places of Interest** SZG, BG, JB Aaron CG, JG, BG Betty VC, SI, OR Cathy **Edges** David JG, CG, OR szg represent CG, JG, SZGEvans "conflicts" In our graph, nodes are places, and edges in the graph means conflicts. (The Tourist Problem) Page 16 Hon Wai Leong, SoC, NUS Copyright © 2007 by Leong Hon Wai

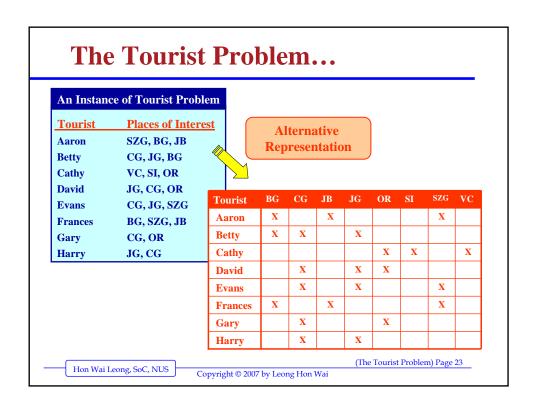


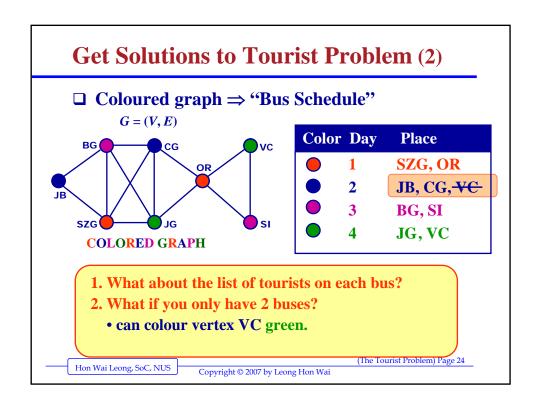
Graph Coloring Problem

☐ Given a graph G = (V, E), colour the vertices in V so that any two vertices that are connected by an edge in E will have *different* colors.

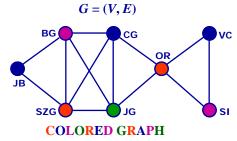
We want to minimize the number of colors.


Activity Period #2:


Graph Colouring Exercises (10 minutes)

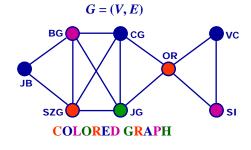

Hon Wai Leong, SoC, NUS

(The Tourist Problem) Page 20 Copyright © 2007 by Leong Hon Wai


Review of Activity #2 Is Graph Colouring fun? Did you really used different colours? How many colours was did you use (Q1)? What about the cycles (Q2): Q2(a): C₆ (a cycle of length 6)? Q2(b): C₅ (a cycle of length 5)? What else can you say? What about the graph in Q3? What about Q4? Why (The Tourist Problem) Page 21

Get Solutions to Tourist Problem (3) \square Coloured graph \Rightarrow "Bus Schedule"

Color	Day	Place
•	1	SZG, OR
	2	JB, CG, VC
	3	BG, SI
	4	JG

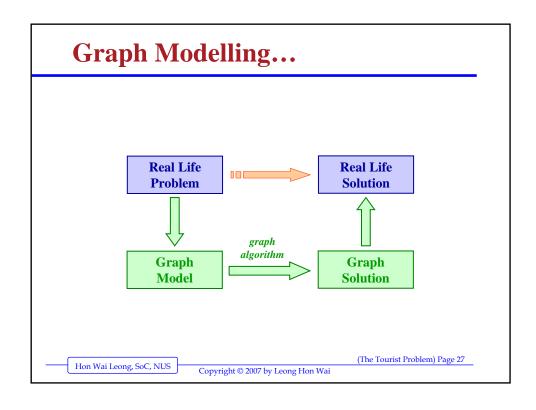

- 1. What about the list of tourists on each bus?
- 2. What if you only have 2 buses?
- 3. What if BG is closed on Day 3?
 - Can we re-order the colours?

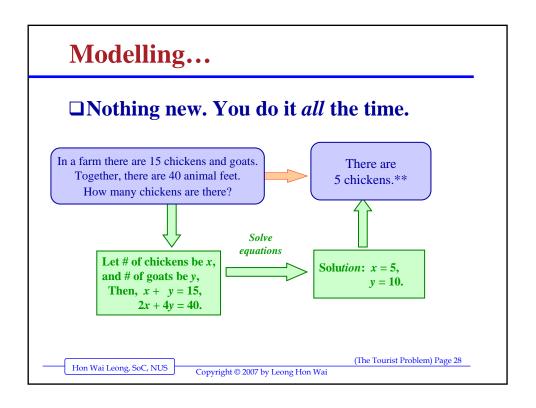
Hon Wai Leong, SoC, NUS

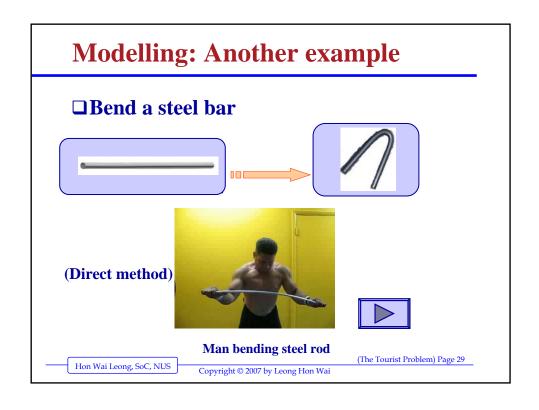
Copyright © 2007 by Leong Hon Wai

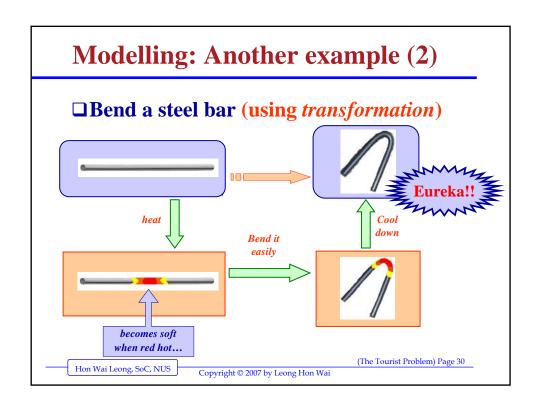
Get Solutions to Tourist Problem (3)

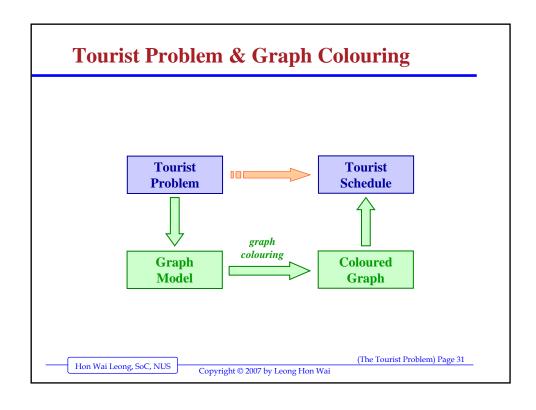
☐ Coloured graph ⇒ "Bus Schedule"




Color	Day	Place
	1	SZG, OR
	2	JB, CG, VC
	3	BG, SI
	4	JG


- 1. What about the list of tourists on each bus?
- 2. What if you only have 2 buses?
- 3. What if BG is closed on Day 3?
- 4. Can we use fewer colours (fewer days)?


Hon Wai Leong, SoC, NUS


Copyright © 2007 by Leong Hon Wai

Modelling in Tourist Problem Recap: Our Graph modelling...

Graph Model	Tourist Problem		
Nodes	places		
Edges / Conflicts	tourist want to visit both places		
Colors	bus trips to places		
Others	The tourists		

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

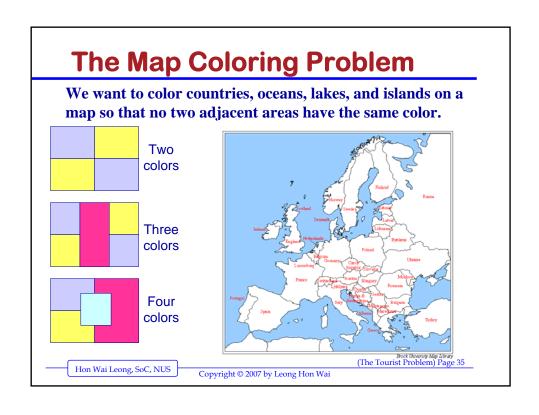
Moral of the Story

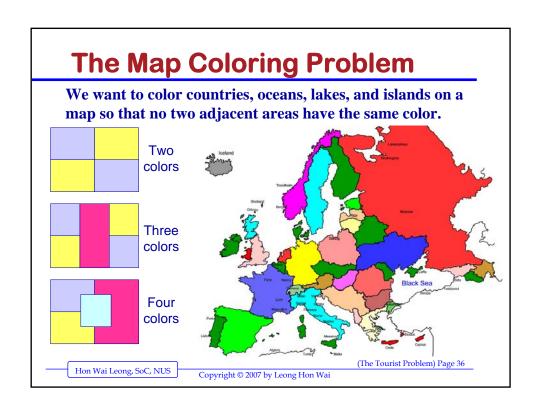
- **☐** The Tourist Problem:
 - **Some problems are EASY.** (don't complicate them)
 - Get a simple solution first.
 then analyze it, improve it, refine it.
 - Solution depend on the questions asked
 - ***** It is important to ask questions.
 - **❖** Theoretical modeling and analysis are beneficial
- **□** Modeling
 - **Abstract modeling simplifies problem and solution!**
 - ***** Abstract model is *transferable*.
 - ***** Models don't answer everything.

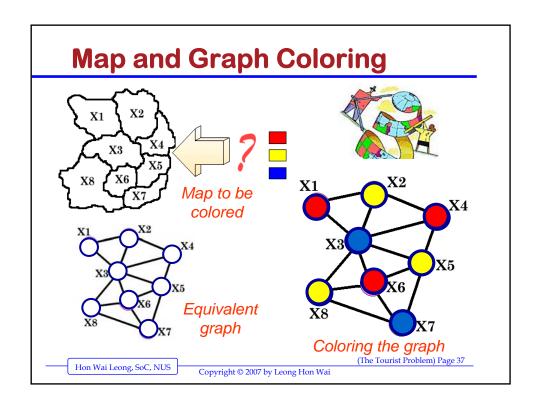
Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 33


Graph Colouring & Applications

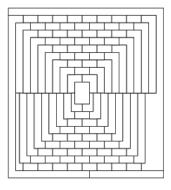

- ☐ Where *else* is Graph Colouring used?
 - ***** The Tourist Problem [done]
 - **❖ Map Colouring**
 - Fish in a Tank
 - Frequency assignment in wireless networks
 - Time Table Scheduling
 - * And a whole lot more...

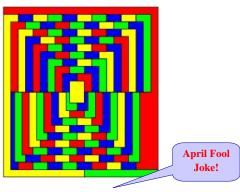

Experience the fun of problem solving

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

The Four Color Theorem


Question:


Can *all* map be coloured using only four colours?

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

Martin Gardner published in Scientific American (*April* 1975) this map of 110 regions. He claimed that the map *requires five colors* and constitutes a counterexample to the four-color theorem.

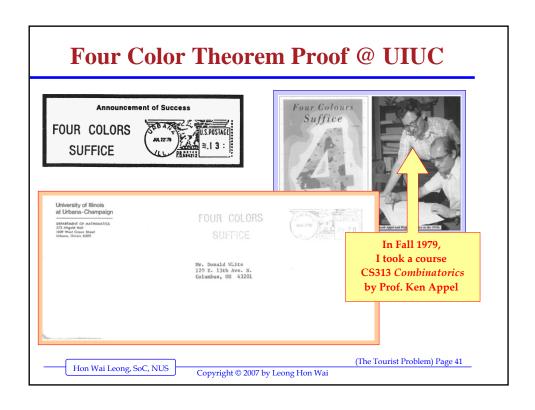
However, the coloring of Wagon, obtained algorithmically using <u>Mathematica</u>, clearly shows that this map is, in fact, four-colorable.

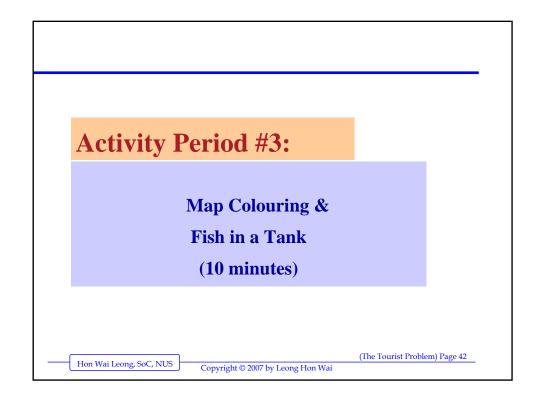
Source: http://mathworld.wolfram.com/Four-ColorTheorem.html

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 39


150 years of history...


- **□** 1852 Conjecture (*Guthrie* → *DeMorgan*)
- ☐ 1878 Publication (Cayley)
- □ 1879 First proof (*Kempe*)
- □ 1880 Second proof (*Tait*)
- ☐ 1890 Rebuttal (*Heawood*)
- □ 1891 Second rebuttal (*Petersen*)
- □ 1913 Reducibility, connexity (*Birkhoff*)
- ☐ 1922 Up to 25 regions (Franklin)
- □ 1969 Discharging (*Heesch*)
- □ 1976 Four Color Thm (Appel & Haken) @UIUC
- □ 1995 Streamlining (Robertson & al.)
- □ 2005 COQ proof (Gonthier)

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

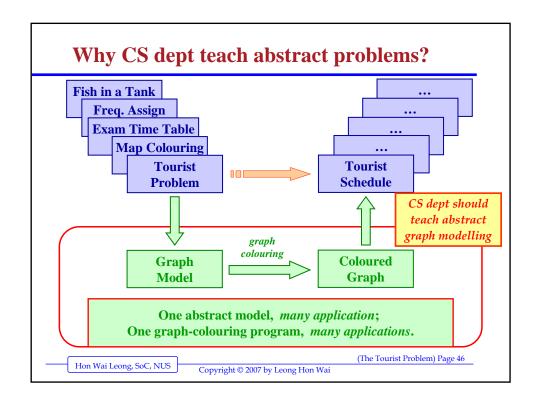
Review of Hands-on Activity #3

- ☐ How many colours did the map need?
 - **❖** You should never need more than 4 colours
- ☐ Did you know about the "Four-Colour Theorem"?
- ☐ How many fish tanks did you need?

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 43



Summary of Problem Modelling

	Tourist Problem	Fish in a tank	Frequency Assignment	Map Coloring
Nodes	places	fishes	radio stations	Countries
Edges / Conflicts	tourist want to visit both places	cannot be placed in same tank	interference if placed too near	share a common border
Colors	bus trips to places	fish tanks	signal frequencies	color
Others	The tourists			

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

References...

On Graph Coloring and Applications:

- 1. http://www.geom.uiuc.edu/~zarembe/graph3.html
- ${\color{blue} 2. \quad \underline{http://www.colorado.edu/education/DMP/activities/graph/ddghnd03.html}}$
- 3. Lots of other links available

On the Four Color Theorem:

- 1. http://en.wikipedia.org/wiki/Four_color_theorem
- 2. http://www.maa.org/reviews/fourcolors.html
- ${\it 3.} \quad http://www.math.gatech.edu/{\it \sim} thomas/FC/fourcolor.html$
- 4. http://www.mathpages.com/home/kmath266/kmath266.htm

Hon Wai Leong, SoC, NUS

Copyright © 2007 by Leong Hon Wai

(The Tourist Problem) Page 47

End of Talk on Tourist Problem!

If you want to contact me, go email, MSN, FB at leonghw@comp.nus.edu.sg

Copyright © 2007 by Leong Hon Wai

Hon Wai Leong, SoC, NUS