UIT2201: Computer Science and the IT Revolution

IDEA Project Report

By:

Boh Tse Kwang, Kenneth

Tay How Kwang, Daniel

Table of Contents

3Introduction

3IDEA Requirements Assigned to Team

3IDEA Function Implementation and Testing

3Read Message Function

4Overview

4Pseudo Code

4Testing

4Comments and suggestions on future enhancements

5Leave Message Function

5Overview

5Pseudo Code

5Testing

6Comments and suggestions on future enhancements

6Joke Function

6Overview

6Pseudo Code

6Testing

7Comments and suggestions on future enhancements

7Clock Function

7Input

7Output

7Explanation of Code

9Testing

10Comments and suggestions on future enhancements

10Weather Report Function

10Input

10Output

10Explanation of Code

11Testing

14Comments and suggestions on future enhancements

14Summary and Conclusion

14Contribution of the team

14Division of Labour

14What we have learnt from the project

15Possible Future Improvements

16Appendix

16ReadMsg.java

17Test Program

18Testdata

19LeaveMsg.java

21Test Program

24Testdata

25joke.java

25Testdata

26clock.cpp

28weather.cpp

Introduction

The aim of this report is to provide some details about the implementation of the certain functions of the IDEA so that interested parties may continue to add to the functions, or enhance existing ones. In this report, we include the details of how the functions were implanted, as well as some comments on what was learnt from the project and possible future enhancements.

IDEA Requirements Assigned to Team

Our team was in charge of implementing 5 functions:

1. Read Message Function – This function is used to display messages that were left for the current user. Sender ID, recipient ID and time information is included with the message

2. Leave Message Function – This function allows users to leave messages for other users. Inputs are sender ID, recipient ID and the message itself. Time information will be generated by the program

3. Joke Function – This function displays a random joke.

4. Clock Function – When activated, this function displays the current time

5. Weather Function – This function displays the weather by linking with a webpage containing the relevant information.

IDEA Function Implementation and Testing

Read Message Function

Filename: ReadMsg.java

Overview

This was implemented as a Java program taking the user’s own ID as the single string input parameter. It is assumed that the input is a valid user name though an invalid user would just not return any message. Output contains all messages sent to the user along with sender ID, recipient ID and time information.

Pseudo Code

Create output stream

Retrieve relevant information from the database

Parse data

Print data into output stream

Flush output stream

Testing

The program was tested by using different values for user ID as input. Test cases included user IDs that were found in the message database and those that were not.

“java ReadMsg 1” - ok

“jave ReadMsg 2” - ok

“java ReadMsg 10” – ID no in database so no messages

“java ReadMsg” – rejected because incorrect number of parameters

Comments and suggestions on future enhancements

The basic function is simple to implement. The biggest problem is displaying the date the desired format after retrieving the information from the database. It may be better to leave the date field in the database as a string field for convenience. Ensuring that entries are added only through the associated Leave Message function can solve the problem of standardizing the dates. For future implementations, perhaps a search for messages containing particular words could be included.

Leave Message Function

Filename: LeaveMsg.java

Overview

This was implemented as a Java program. It takes 3 inputs: senderID, recipient handle and the text message itself. If multiple words are used, the text message parameter has to be enclosed in inverted commas as shown in the example below. The maximum length of the message is 500 characters. The program checks if the recipient exists in the IDEA people database before sending the message. The request is rejected if the recipient handle is not found. The output is a message confirming that the message has been sent.

Pseudo Code

Get input

Check message length < 500

Check if handle exists

Look up corresponding ID for handle.

Parse date into the desired format

Insert message into the database

Testing

The following test cases were tried

“java LeaveMsg 1 leonghw testing” – ok

“java LeaveMsg 1 leonghw ‘good afternoon’” – ok (use of inverted commas)

 “java LeaveMsg 1 leonghw”
- rejected because incorrect number of parameters

“java LeaveMsg 1 loenghw testing” – recipient name not found

“java LeaveMsg 1 3 aaaaaaaaaa” – rejected because message too long

Comments and suggestions on future enhancements

Like the Read Message function, getting the date into the right format was the most problematic area of the program. This problem could be solved similarly by having a string field for the date field in the date base. This program may be enhanced by the ability to send multiple messages. The program could also be modified to cater for users who may want to send directly to a particular ID or name without going through the handle.

Joke Function

Filename: joke.java

Overview

This function prints out a random joke from the database. It creates a random number for the jokeID and prints the corresponding joke in the database. There is no input and the output is a text message of the joke.

Pseudo Code

Create random number

Print out joke corresponding to number

Testing

“java joke”

There is only one test case for this program as it does not take input. It has been able to print out all 5 jokes in the database.

Comments and suggestions on future enhancements

Since the range of the random number generated has to correspond with the number of jokes in the database, as the database for the jokes is enlarged, this program will have to be modified accordingly.

Clock Function

Filename: clock.cpp

Input

None required

Output

Text in the following format:

[Day], [Month] [Numerical Date], [Year] – [Hours]:[Minutes]:[Seconds] hrs

Explanation of Code

const int Display_Day = 1;

const int Display_Date = 1;

const int Display_Year = 1;

const int Display_Time = 1;

The integers represent the modes of display for the properties day, date, year and time respectively. At present, all of them are set to ‘1’ by default, so all these properties will be displayed in the output. To toggle off any of the properties, change the corresponding number ‘1’ to ‘0’.

time(current_time);

The variable current_time captures the time (all the properties) in long integer form.

ptrclock = localtime(current_time);

Command localtime reads the integer form of time stored in current_time and interprets it into its various elements to be stored in structure that ptrclock is pointing to (note that ptrclock is a pointer to a structure).

 if (Display_Day)

 {

 cout << days[ptrclock->tm_wday];

 }

Displays the day of the week in words (eg Sunday) if Display_Day is not ‘0’ (switched off)

if (Display_Date)

 {

if (Display_Day)

 cout << ", ";

cout << months[ptrclock->tm_mon] << " ";

 if (ptrclock->tm_mday < 10)

 cout << "0";

 cout << ptrclock->tm_mday;

 }

Displays the current day (eg April 16) if Display_Date is not ‘0’ (switched off). Notice that the month and numerical dates are stored in different elements of the structure (tm_mon and tm_mday respectively)

 if (Display_Year)

 {

if ((Display_Day) || (Display_Date))

 cout << ", ";

 cout << (ptrclock->tm_year) + 1900;

 }

Displays the day of the current year if Display_Year is not ‘0’ (switched off). Notice that the element tm_year contains the number of years elapsed after 1900.

 if (Display_Time)

 {

if ((Display_Day) || (Display_Date) || (Display_Year))

 cout << " - ";

 if (ptrclock->tm_hour < 10)

 cout << "0";

 cout << ptrclock->tm_hour << ":";

 if (ptrclock->tm_min < 10)

 cout << "0";

 cout << ptrclock->tm_min << ":";

 if (ptrclock->tm_sec < 10)

 cout << "0";

 cout << ptrclock->tm_sec << " hrs";

 }

Displays the current time in 24-hr format (eg 04:01:53) if Display_Time is not ‘0’ (switched off).

Testing

Testing is done on the modes of display.

const int Display_Day = w;

const int Display_Date = x;

const int Display_Year = y;

const int Display_Time = z;

where w, x, y, z are numerical integers

Case: w = 0, x = 1, y = 1, z = 1

Output: April 16, 2003 – 16:25:46 hrs

[Desired result]

Case: w = 2, x = 0, y = 2.4, z = 94935

Output: Wednesday, 2003 – 16:27:30 hrs

[Desired result]

Case: w = 3.23, x = 11.65, y = 0, z = 5

Output: Wednesday, April 16 – 16:30:57 hrs

[Desired result]

Case: w = 0.2, x = 15, y = 3.23, z = 0

Output: April 16, 2003

[Desired result]

Case: w = 1.2, x = 0.99, y = 55.1, z = 0.123

Output: Wednesday, 2003

[Desired result]

Case: w = 35432.2, x = 8.09, y = 1.00001, z = 1.63

Output: Wednesday, April 16, 2003 – 16:35:38 hrs

[Desired result]

As with C++ language, any floating value is automatically converted to integer value by truncating the decimal values. Also, the displays are toggled on with any integer value except zero.

Comments and suggestions on future enhancements

At present, the clock toggles on all the displays. The program can be updated to accept arguments from the controller to vary the mode of display, according to the user’s preference.

Weather Report Function

Filename: weather.cpp

Input

Numerical integer (from controller)

Output

Local Weather

Forecast for the next 3 hours

General weather outlook

Weather outlook for next 3 days

(The texts in blue represent hyperlinks to the external website)

(Note:

· An output can be obtained using floating values as input arguments. For example, if 1.23 is passed into the program, the program will convert it into an integer by truncating the decimal point and all decimal values (ie. 1).

· The program interprets any non-numerical character input as integer zero.

· Any invalid input passed into the program produces the message “Input Error”.

· The program terminates with message “Assertion failed: argc==2…Abnormal program termination” if more than one argument is passed into the program.)

Explanation of Code

assert(argc==2);

Checks that the number of arguments passed into the program is correct (ie. one argument).

region = atoi(argv[1]);

Converts the input (read as a string) into integer form and stores it into integer variable region.

const char local_3hr[] = "http://app10.internet.gov.sg/scripts/nea/cms/htdocs/mss3.asp";

const char local_gen[] = "http://app10.internet.gov.sg/scripts/nea/cms/htdocs/mss2.asp";

const char local_3days[] = “http://app10.internet.gov.sg/data/nea/mss/docs/3dayotlk.htm";

Names of the web pages that report local weather.

if (region == 1)

 { […code omitted…]

 cout << "<a href=\"" << local_3hr << "\" TARGET=\"_blank\">Next 3 hour forecast" << endl;

cout << "<a href=\"" << local_gen << "\" TARGET=\"_blank\">General weather outlook" << endl;

 cout << "<a href=\"" << local_3days << "\" TARGET=\"_blank\">Weather outlook for next 3 days" <<endl;

 }

Displays the hyperlinks if argument passed into program is ‘1’. Hyperlinks “Forecast for the next 3 hours”,”General weather outlook” and “Weather outlook for next 3 days” link the pages stored in strings local_3hr, local_gen and local_3days respectively.
else

 {

cout << "Input Error" << endl;

 }

Invalid argument passed into program. Displays error message “Input Error”.

Testing

(Remarks: the testing is done in command prompt, upon compilation using Borland C++ 5.5, hence the output will differ slightly if implemented in IDEA)

· Command entered: weather 1 2

Output:

Assertion failed: argc==2, file C:\weather.cpp, line 15

Abnormal program termination

[Desired result]

· Command entered: weather 1

Output:

Content-type: text/html

Local Weather

Forecast for the next 3 hours

Forecast for the next 3 hours

Forecast for the next 3 hours

[Desired result]

· Command entered: weather 1.9823

Output:

Content-type: text/html

Local Weather

Forecast for the next 3 hours

Forecast for the next 3 hours

Forecast for the next 3 hours

[Expected result]

· Command entered: weather 2.654

Output:

Content-type: text/html

Input Error

[Desired result]

· Command entered: weather $

Output:

Content-type: text/html

Input Error

[Expected result]

· Command entered: weather r1

Output:

Content-type: text/html

Input Error

[Expected result]
· Command entered: weather 1&trs

Output:

Content-type: text/html

Local Weather

Forecast for the next 3 hours

Forecast for the next 3 hours

Forecast for the next 3 hours

‘trs’ is not recognized as an internal or external command,

operable program or batch file

[Unexpected result: It appears that there is unexpected output if symbolic characters are used as part of the argument input. This is a problem inherent in the operating environment itself and no easy solution is observed to be available. A possible solution is to read the characters in string argv[]to detect these key symbols – which is tedious and requires exhaustive testing. Controller should take note of this flaw in the program and be cautious in the arguments passed.]

Comments and suggestions on future enhancements

At present, argument ‘1’ is used to represent inquiry of local weather. The program can expand to include inquiries into different regions using different arguments (eg ‘2’ for Southeast Asian cities, ‘3’ for European cities). The number of hyperlinks will also consequently increase. When this happens, it will be more ideal to make the program more modular, to facilitate easier housekeeping. Perhaps a crawler program can be implemented to update/notify the user of any dead links.

Summary and Conclusion

Contribution of the team

We were mainly involved in the message functions. These include sending user messages, reading user message, generating random jokes, a weather report and a clock.

Division of Labour

Kenneth: Read/Leave message function (and test programs) and joke function

Daniel: Weather function and Clock

The work in writing the report was divided up according to the functions we worked on.

What we have learnt from the project

The hardest part about the project to do well was the co-ordination among the team members. The lack of communication slowed progress down considerably. It also took a while to get used to working with the database.

One of the more useful things we learnt from this project is how to divide up the work in such a manner that we can work independently. Through the use of tools such as stub programs we were able to carrying out individual testing of our programs, even though some programs were written in different languages.

Many difficulties arise due to a lack of proficiency in language. A person trained only in C is unable to develop many of the features without C++ knowledge. Also, there is only a limited number of reference source codes in C++, making the programming process even more difficult. Coordination efforts are also extraneous due to ambiguity in function description and it usually take quite some time to be respond to queries concerning these ambiguities – resulting in inefficient work progression.

Possible Future Improvements

More time is needed for coding, since programmers usually meet up with many unforeseen technical problems in the coding process. The tight dateline exacerbates the situation and this frequently results in an “imperfect” product that has yet to be thoroughly tested. Specifications (eg. input/output format etc) requested by teams on other teams should also be as precise as possible to improve clarity and efficiency in the working process.

Appendix

ReadMsg.java

import java.io.*;

import DBClasses.*;

import java.sql.*;

class ReadMsg {

public static void main (String [] args) {

if(args.length!=1) System.out.println("Usage: java ReadMsg <userID>");

else {

PrintWriter stdout=new PrintWriter(new OutputStreamWriter(System.out));

String msg_to_id = args[0];

dbManager dbman = new dbManager();

Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select * from message where msg_to_id = " + msg_to_id;

 ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

 String a = rs.getString("MSG_FROM_ID");

 String b = rs.getString("MSG_TO_ID");

 String c = rs.getString("MSG_TIME").substring(0,19);// Get date/time trimming of unwanted portion

 String day = c.substring(8,10); // Parsing the

 String month = c.substring(5,7); // date into

 String year = c.substring(0,4); // the desired

 String time = c.substring(11,19);// format

 String d = rs.getString("MSG_TXT");

 String date = day +"/"+ month +"/"+ year +" "+ time;

 stdout.print(a + " " + b + " " + date + " " + d);

 stdout.println();

}

 stdout.flush();

 rs.close();

 stmt.close();

 conn.close();

 } //end try

 catch (Exception e) {

 System.out.println("DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

 } // end else

} //end main

}// end ReadMsg

Test Program

TestReadMsg.java

import java.io.*;

import DBClasses.*;

import java.sql.*;

class TestReadMsg {

public static void main (String [] args) throws Exception {

if(args.length!=1) {System.out.println("Usage: java TestReadMsg <inputfilename>");}

else {

String s;

BufferedReader stdin=new BufferedReader(new InputStreamReader(new FileInputStream(args[0])));

while((s=stdin.readLine())!=null) {

System.out.println("Messages for: "+s);

PrintWriter stdout=new PrintWriter(new OutputStreamWriter(System.out));

String msg_to_id = s;

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select * from message where msg_to_id = " + msg_to_id;

 ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

 String a = rs.getString("MSG_FROM_ID");

 String b = rs.getString("MSG_TO_ID");

 String c = rs.getString("MSG_TIME").substring(0,19);// Get date/time trimming of unwanted portion

 String day = c.substring(8,10); // Parsing the

 String month = c.substring(5,7); // date into

 String year = c.substring(0,4); // the desired

 String time = c.substring(11,19);// format

 String d = rs.getString("MSG_TXT");

 String date = day +"/"+ month +"/"+ year +" "+ time;

 stdout.print(a + " " + b + " " + date + " " + d);

 stdout.println();

}

 stdout.flush();

 rs.close();

 stmt.close();

 conn.close();

 } //end try

 catch (Exception e) {

 System.out.println("DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

 System.out.println();

}//end while

}// end else

 } //end main

}// end TestReadMsg

Testdata

TestReadMsg.txt

1

2

3

4

5

20

LeaveMsg.java

import DBClasses.*;

import java.sql.*;

import java.lang.*;

import java.util.*;

import java.io.*;

class LeaveMsg {

public static void main (String [] args) {

if(args.length!=3) {System.out.println("Usage: java ReadMsg <userID> <receipientID> <text>");}

else if (args[2].length()>500) {System.out.println("Message too long (> 500 characters)");}

else if (!NameExists(args[1])) {System.out.println("Recepient does not exist");}

else {

String persid = args[0]; //id of sender

String recepient_id = getID(args[1]); //id of receipient

String msg_txt= args[2];

java.util.Date thedate = new java.util.Date(); //specify because it's ambigious in util and sql

String time = thedate.toLocaleString();

int j = time.length();

int k = 0;

if(thedate.getDate() >=10) {k+=1;}

String s = time.substring(4,5+k); //day

String t = time.substring(7+k,11+k); // year

int i = (thedate.getMonth()+1);

String u = i+""; // month

String v = time.substring(12+k,time.length()); // time

String w ="";

String x ="";

if(i<10) {w = "0";}

if(thedate.getDate() <10) {x = "0";}

String finaldate = x+s + "-" + w+u + "-" + t+ " " +v; //parse the date into desired format

String date = x+s + "/" + w+u + "/" + t;

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "insert into message (msg_from_id,msg_to_id,msg_time,msg_txt) values (" +persid+"," + recepient_id +"," +"TO_DATE('" +date+" "+v+"','DD/MM/YYYY HH12:MI:SS AM'),'" +msg_txt+"')";

 stmt.executeQuery(sql);

 stmt.close();

 conn.close();

 System.out.println("Message sent to " + args[1]);

 } //end try

 catch (Exception e) {

 System.out.println("Message DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

} // end else

} //end main

public static boolean NameExists(String name) { // checks if name exists in database

 boolean flag = false;

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select pers_handle from people";

 ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

 if (rs.getString(1).trim().equals(name)) {

 flag = true;

 break;

 }

 }

} //end try

catch (Exception e) {

 System.out.println("People DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

return flag;

} // end NameExists()

public static String getID(String handle) {

String ID = "";

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select * from people where PERS_HANDLE = '" + handle +"'";

 ResultSet rs = stmt.executeQuery(sql);

 rs.next();

 ID = rs.getString("PERS_ID");

} //end try

catch (Exception e) {

 System.out.println("People DB Error!"); // error message if exception occurs

 e.printStackTrace();

} //end catch

return ID;

} // end getID

}// end LeaveMsg

Test Program

TestLeaveMsg.java

import DBClasses.*;

import java.sql.*;

import java.lang.*;

import java.util.*;

import java.io.*;

class TestLeaveMsg {

public static void main (String [] args) throws Exception {

if(args.length!=1) {System.out.println("Usage: java TestLeaveMsg <inputfilename>");}

else {

 BufferedReader stdin=new BufferedReader(new InputStreamReader(new FileInputStream(args[0])));

String input;

while((input=stdin.readLine())!=null) {

StringTokenizer st = new StringTokenizer(input," ");

String persid = st.nextToken(); //id of sender

String recepient_handle = st.nextToken(); //id of receipient

String msg_txt= st.nextToken();

System.out.println("persid: "+ persid);

System.out.println("recepient_handle: "+ recepient_handle);

System.out.println("msg_txt: " + msg_txt);

System.out.print("Result: ");

if (msg_txt.length()>500) {System.out.println("Message too long (> 500 characters)");System.out.println();}

else if (!NameExists(recepient_handle)) {System.out.println("Recepient does not exist"); System.out.println();}

else {

String recepient_id = getID(recepient_handle);

java.util.Date thedate = new java.util.Date(); //specify because it's ambigious in util and sql

String time = thedate.toLocaleString();

int j = time.length();

int k = 0;

if(thedate.getDate() >=10) {k+=1;}

String s = time.substring(4,5+k); //day

String t = time.substring(7+k,11+k); // year

int i = (thedate.getMonth()+1);

String u = i+""; // month

String v = time.substring(12+k,time.length()); // time

String w ="";

String x ="";

if(i<10) {w = "0";}

if(thedate.getDate() <10) {x = "0";}

String finaldate = x+s + "-" + w+u + "-" + t+ " " +v; //parse the date into desired format

String date = x+s + "/" + w+u + "/" + t;

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "insert into message (msg_from_id,msg_to_id,msg_time,msg_txt) values (" +persid+"," + recepient_id +"," +"TO_DATE('" +date+" "+v+"','DD/MM/YYYY HH12:MI:SS AM'),'" +msg_txt+"')";

 stmt.executeQuery(sql);

 stmt.close();

 conn.close();

 System.out.println("Message sent to " + recepient_handle);

 System.out.println();

 } //end try

 catch (Exception e) {

 System.out.println("Message DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

} // end else

} // end while

} //else

} //end main

public static boolean NameExists(String name) { // checks if name exists in database

 boolean flag = false;

 dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select pers_handle from people";

 ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

 if (rs.getString(1).trim().equals(name)) {

 flag = true;

 break;

 }

 }

} //end try

catch (Exception e) {

 System.out.println("People DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

return flag;

} // end NameExists()

public static String getID(String handle) {

String ID = "";

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select * from people where PERS_HANDLE = '" + handle +"'";

 ResultSet rs = stmt.executeQuery(sql);

 rs.next();

 ID = rs.getString("PERS_ID");

} //end try

catch (Exception e) {

 System.out.println("People DB Error!"); // error message if exception occurs

 e.printStackTrace();

} //end catch

return ID;

} // end getID

}// end TestLeaveMsg

Testdata

TestLeaveMsg.txt

1 leonghw testing

1 leonghw ‘good afternoon’

1 leonghw

1 loenghw testing

1 3 aaaaaaaaaa

joke.java

import java.io.*;

import DBClasses.*;

import java.sql.*;

import java.util.*;

class joke {

public static void main (String [] args) {

Random randomInt = new Random();

int i = randomInt.nextInt(5) + 1;

dbManager dbman = new dbManager();

 Connection conn = dbman.getConnection();

 try {

 Statement stmt = conn.createStatement();

 String sql = "select * from joke where joke_id = " + i;

 ResultSet rs = stmt.executeQuery(sql);

while (rs.next()) {

String a = rs.getString("joke_txt");

System.out.println(a);

}

rs.close();

 stmt.close();

 conn.close();

}//end try

catch (Exception e) {

 System.out.println("DB Error!"); // error message if exception occurs

 e.printStackTrace();

 } // end catch

} //end main

} //end joke

Testdata

N.A

clock.cpp

#include <fstream.h>

#include <iostream.h>

#include <time.h>

#include <stdlib.h>

using std::cout;

using std::cin;

void main()

{

 // All displays are set to on (1) by default. Can be switched off (0).

 const int Display_Day = 1;

 const int Display_Date = 1;

 const int Display_Year = 1;

 const int Display_Time = 1;

 char days[7][10] = { "Sunday", "Monday", "Tuesday", "Wednesday",

 "Thursday", "Friday", "Saturday" };

 char months[12][10] = { "January", "February", "March", "April", "May",

 "June", "July", "August", "September",

 "October", "November", "December" };

 tm *ptrclock;

 long int *current_time;

 // Captures the current time.

 time(current_time);

 // Creates the structure containing info of the time.

 ptrclock = localtime(current_time);

 // Display the day of the week if requested.

 if (Display_Day)

 {

 cout << days[ptrclock->tm_wday];

 }

 // Display the date if requested.

 if (Display_Date)

 {

if (Display_Day)

 cout << ", ";

cout << months[ptrclock->tm_mon] << " ";

 if (ptrclock->tm_mday < 10)

 cout << "0";

 cout << ptrclock->tm_mday;

 }

 // Display the year if requested.

 if (Display_Year)

 {

if ((Display_Day) || (Display_Date))

 cout << ", ";

 cout << (ptrclock->tm_year) + 1900;

 }

 // Display the time if requested.

 if (Display_Time)

 {

if ((Display_Day) || (Display_Date) || (Display_Year))

 cout << " - ";

 if (ptrclock->tm_hour < 10)

 cout << "0";

 cout << ptrclock->tm_hour << ":";

 if (ptrclock->tm_min < 10)

 cout << "0";

 cout << ptrclock->tm_min << ":";

 if (ptrclock->tm_sec < 10)

 cout << "0";

 cout << ptrclock->tm_sec << " hrs";

 }

}

weather.cpp

#include <fstream.h>

#include <iostream.h>

#include <assert.h>

#include <stdlib.h>

using std::cout;

using std::cin;

using std::endl;

void main(int argc, char *argv[])

{

 int region;

 //ensures that the number of arguments input is correct (1 parameter

 //passed into main)

 assert(argc==2);

 //region captures the argument as integer form

 region = atoi(argv[1]);

 cout << "Content-type: text/html\n\n";

 //Parameter passed in is 1, meaning information for local weather

 if (region == 1)

 {

const char local_3hr[] = "http://app10.internet.gov.sg/scripts/nea/cms/htdocs/mss3.asp";

const char local_gen[] = "http://app10.internet.gov.sg/scripts/nea/cms/htdocs/mss2.asp";

const char local_3days[] = "http://app10.internet.gov.sg/data/nea/mss/docs/3dayotlk.htm";

//Displays the Title

cout << "Local Weather\n\n";

//Displays the hyperlinks

 cout << "<a href=\"" << local_3hr << "\" TARGET=\"_blank\">Forecast for the next 3 hours" << endl;

cout << "<a href=\"" << local_gen << "\" TARGET=\"_blank\">General weather outlook" << endl;

 cout << "<a href=\"" << local_3days << "\" TARGET=\"_blank\">Weather outlook for next 3 days" <<endl;

 }

 else

 {

cout << "Input Error" << endl;

 }

}

PAGE
22

