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A Cellular Neural Network as a Principal Component Analyzer

Chao-Hui HAUNG, Wee-Kheng LEOW, and Daniel RACOCEANU

Abstract—In this paper, A configuration of Cellular Neural
Network (CNN) is introduced to implement Principal Compo-
nent Analysis (PCA). CNN is a parallel computing paradigm.
Many researchers considered it as the next generation universal
machine and developed so-called CNN universal chips. Based
on the capability of CNN, an alternative PCA implementa-
tion named Principal Component Analyzing Cellular Neural
Network (PCACNN) is proposed. PCA is used to reduce
the dimensions of a given dataset in order to extract the
principal information of the given dataset. In decades, many
researchers presented their investigations based on PCA in
order to improve the performance and/or to attack some open
issues in specific fields. In this paper, PCA is implemented based
on the architecture and capabilities of CNN. Consequently, the
computing performance of PCA can be improved as long as
the CNN architecture can be realized.

I. INTRODUCTION

CELLULAR NEURAL NETWORK, also known as
CNN, has been considered as an alternative parallel

computing architecture. Since Chua and Yang first introduced
CNN, it has been widely applied on many areas[1], [2].
CNN has been considered as a simple but powerful paral-
lel computing paradigm. It is an locally connected neural
network and has evolved into a paradigm for a type of array.
The updating rule of a cell in CNN is only involving it’s
neighboring cells. Thus, the computing performance can be
excellent and meanwhile, the neural structure remains simple.
Some investigations introduced their CNN realization. For

example, the ACE4K chip [3], [4], [5]. Other researchers
even considered CNN as a next generation universal machine
[6], [7], [8]. In those CNN machines, the information on
the cell array can be update more than 4000 times per
second. In the last version of the chips, it can even update
the array more than 16000 times per second. Based on
their works, some interesting researches were initiated for
the sake of implementing specific applications. Usually, the
performance of those applications can be improved because
of the capabilities of CNN and the machines. However, since
the architecture of CNN is very different from the traditional
algorithmic architecture, how to implement them on CNN is
a challenge.
In this research, an alternative implementation of Principal

Component Analysis (PCA) is investigated. Based on the
architecture and capabilities of CNN, the performance of
PCA can be improved. PCA is an algorithm that can compute
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the eigenvectors of the covariance matrix of the given dataset
corresponding to its largest eigenvalues, and project the sam-
ples of the multivariate process on the eigenvectors in order
to obtain a principal component set. It was introduced by Karl
Pearson in the beginning of the 20th century. Nowadays, it
remains a famous tool for data analysis, simplification, and
reduction in many fields.
PCA is defined as an orthogonal linear transformation

which can transform a given input to a new coordinate system
in order to maximize the variance by the projection of the
input. Thus, the greatest variance by any projecting of the
data comes to lie on the first component, the second greatest
variance on the second component, and so on. PCA has been
considered as the optimum transform for a given dataset in
least square terms.
PCA is frequently used to reduce the dimensions of a

dataset by retaining the variance of a dataset. The dataset
contributes to most of its variance, by keeping lower-order
principal components and ignoring higher-order ones, or vice
versa. This is depends on the rule of PCA in the design of
a system.
However, the performance of mathematical implementa-

tion of PCA decreases as the scale of a given input increases.
To overcome this problem, several neural network structures
and their learning rules have been proposed, there are the
so-called PCA Neural Networks (PCANNs). The pioneering
work of Prof. Oja and his research team introduced on-
line estimation of principal components by linear neural
networks. Consequently, many interesting implications on
unsupervised learning theories and applications to neural
signal processing are inspired [9], [10], [11], [12], [13].
Followed Oja, Sanger et al. extended PCANN by the well-

known Sanger’s rule, also known as Generalized Hebbian
Algorithm (GHA). GHA has become an important tool in
many fields since it is simple and effective.
Adaptive Principal Component Extractor (APEX) was pre-

sented by Kung et al. for the sake of conquering the problems
in the recursive computation of the principal components of
a vector stochastic process and performance improvement
[14], [15].
Followed their works, many other researchers improved

the performance of PCANN. However, some of their investi-
gations have a non-ignorable trade-off: the quality of PCANN
becomes worse as the computational complexity is reduced.
Fiori indicated the computing complexity of different types
of PCANN, including GHA, APEX, y2-APEX, and 0-APEX
[16]. This fact implies that the computing consumption is
highly related to the numbers of the given input.
Thus, in this paper, an alternative solution is considered,

named Principal Component Analyzing Cellular Neural Net-
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Fig. 1: An example of Cellular Neural Grids. Each cell is
only connected to its neighboring cells.

work (PCACNN). One special feature of Cellular Neural
Network is that the scale of the array in Cellular Neural
Network is not related to the computing time consumption
since the Cellular Neural Network is processing in a parallel
paradigm. Based on this feature, the performance of PCA can
be improved. This investigation is also indicating a pathway
to implement PCA on analogical circuits (see Fig.(3)) [1].
In this paper, first, the fundamental concepts of PCA and

CNN are introduced. Next, the architecture of PCACNN is
presented. Some interesting characteristic of PCACNN are
also investigated. Third, some comparisons with the existing
technologies are drawn. Finally, the conclusion follows.

II. METHODOLOGY

A. Cellular Neural Network (CNN)

CNN is in a grid-like structure (see Fig.(1)). A cell in CNN
only communicates with its neighboring cells. The output
value of the cell is affected by the neighboring cells. The
output values of its neighboring cells are also affected by
the cell (see Fig.(2) and Fig.(3)). This interactive updating
rule results the the power of CNN [1].
The equations of a CNN cell are defined as the follows

[1]:
• State equation:

C
d

dt
vxij

= −
1

Rx

vxij
(t) +

∑
C(k,l)∈Nr(i,j)

A(i, j; k, l)vykl
(t) +

∑
C(k,l)∈Nr(i,j)

B(i, j; k, l)vukl
(t) + I,

1 ≤ i ≤M , and 1 ≤ j ≤ N. (1)

• Output equation:

vyij
(t) =

1

2
(|vxij

(t) + 1| − |vxij
(t)− 1|),

1 ≤ i ≤M , and 1 ≤ j ≤ N. (2)

vuij ∗B Σ
∫

f vyij

I

∗A

d
dt

vxij
vxij

−1

(a)

−1

1

−1

1

vxij

vyij

(b)

Fig. 2: The architecture of CNN is shown in (a) and along
with the dynamic route of state in (b).

• Input equation:

vuij
= Eij , 1 ≤ i ≤ M, and 1 ≤ j ≤ N. (3)

• Constraint equations:

|vxij
(0)| ≤ 1, |vuij

| ≤ 1,

1 ≤ i ≤ M, and 1 ≤ j ≤ N. (4)

• Parameter assumptions:

A(i, j; k, l) = A(k, l; i, j),

1 ≤ i ≤ M, and 1 ≤ j ≤ N. (5)
C > 0 and Rx > 0. (6)

The state equation (1) and the output equation (2) are also
illustrated in Fig.(2).

B. PCA Neural Network (PCANN)
For the sake of implementing the PCA based on CNN, first

the existing approaches of PCA Neural Networks (PCANN)
are investigated, including Oja’s Rule and Sanger’s Rule.
1) Oja’s Rule: Oja’s rule is a linear feedforward neural

network model for unsupervised learning with applications
primarily in PCA. It defines the update rule in presynaptic
weights wi which given the output y of a neuron to its inputs
xi. That is

∆wi = ηy(xi − ywi). (7)

The output y is then updated as

y =

N∑
i=1

wixi, (8)

where N is the length of the given input.
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Fig. 3: An example of a cell circuit. C is a linear capacitor, Rx and Ry are linear resistors; I is an independent voltage
source; Ixu(i, j; k, l) and Ixy(i, j; k, l) are linear voltage-controlled current sources with the characteristics Ixy(i, j; k, l) =
A(i, j; k, l)vyk,l

and Ixu(i, j; k, l) = B(i, j; k, l)vuk,l
for all C(i, j) ∈ Nr(i, j); Iyx = (1/Ry)f(vxi,j

) is a precewise-linear
voltage-controlled current source with its characteristic f(·) as shown in Fig.(2b); Eij is an independent voltage source [1].

2) Sanger’s Rule: Sanger’s Rule, also known as General-
ized Hebbian Algorithm (GHA), is similar to Oja’s rule in
its formulation, except it can be applied to networks with
multiple outputs.

∆wij = η(yjxi − yj

j∑
k=1

wikyk), (9)

The output yj is then updated as

yj =

N∑
i=1

wijxi, for each j,

1 ≤ j ≤M, (10)

whereN is the length of the given input andM is the number
of principal components.

C. Derivation of Principal Component Analyzing Cellular
Neural Network (PCACNN)
Assume CNN is operated in linear region, (1) can be

reformatted as

C
d

dt
vxij

= −
1

Rx

vxij
(t) +

∑
C(k,l)∈Nr(i,j)

A(i, j; k, l)vxkl
(t) +

∑
C(k,l)∈Nr(i,j)

B(i, j; k, l)vukl
(t) + I,

1 ≤ i ≤ M , and 1 ≤ j ≤ N. (11)

The templates can be declared as

A(i, j; k, l) ≡ a(k − i, l− j) and
B(i, j; k, l) ≡ b(k − i, l − j). (12)

They are defined as

a(k − i, l− j) =

⎧⎨
⎩
−y2(j) + 1

η
, k = i and l = j

−y(j)y(l), k = i and l < j
0, otherwise

(13)

and

b(k − i, l − j) =

{
y(j), k = i and l = j
0, otherwise (14)

where
1 ≤ i ≤ M , and 1 ≤ j ≤ N. (15)

Next, let vxij
(t) ≡ wt(i, j), dvxij

/dt ≡ ∆wt(i, j), uij ≡
xt(i) for each j, C = 1/η, Rx = η, and I = 0, the state
equation (1) can be reorganized as

1

η
∆wt(i, j) = −

1

η
wt(i, j) +

N∑
l=1

a(k − i, j − l)wt(i, l) +

N∑
l=1

b(k − i, j − l)x(i)

= −
1

η
wt(i, j) +

j∑
l=1

(−y(j)y(l)wt(i, l)) +

1

η
wt(i, j) + y(j)x(i),

1 ≤ i ≤ M , and 1 ≤ j ≤ N. (16)

Finally, the state equation becomes

∆wt(i, j) = −

j∑
l=1

ηy(j)y(l)wt(i, l) + ηy(j)x(i)

= η(y(j)x(i) − y(j)

j∑
l=1

y(l)wt(i, l)),

1 ≤ i ≤ M , and 1 ≤ j ≤ N. (17)

Note that (17) is exactly the update rule of the General
Hibbean Algorithm (see (9)). In (17), x(i) is the i-th input,
y(j) is the j-th output, the M is the number of the inputs
and the N is the number of outputs. wt(i, j) is the weight
for i-th input and j-th output at time t. wt(·, ·) approaches
to principal components as computing time goes to infinity.
The y(·) is updated as

y(j) =

N∑
i=1

wt(i, j)x(i), for each j,

1 ≤ j ≤ M, (18)

such that the templates are also updated.
For example, assume a design has five inputs and it

requires the first two principal components, the definition
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Fig. 4: The cell array of the proposed architecture. The
x(·)’s are the given input, the y(·)’s are the eigenvalues,
the area that is surrounded by a dot-line is the cell array
w(·, ·). Each column approaches the principal component as
the computing time goes to infinity.

of the cell array would be

wt(i, j), 1 ≤ i ≤M , and 1 ≤ j ≤ N. (19)

where M = 5 and N = 2. The templates would be

A =
[
−y(j)y(j − 1), −y2(j) + 1

η
, 0

]
, (20)

and
B = y(j), (21)

where 1 ≤ j ≤ N . The size of the templates will be increased
if more principal components are required.
The proposed architecture is represented in Fig.(4). In

the picture, the x(·)’s are the given input, the y(·)’s are
the eigenvalues, the area that is surrounded by a dot-line is
the cell array w(·, ·). Each column approaches the principal
component as the computing time goes to infinity.

D. Locally Connected PCACNN
In the proposed architecture, the length of the template

A can be calculated by 2N − 1, where N is the desired
number of the principal components. In order to reduce
the complexity of the neural structure, a shorter length of
template A can also be a option. Since for each cell in
the array, all of the connected cells are its neighboring
cells. Thus, it is named Locally Connected PCACNN (LC-
PCACNN). The reduction of the connections implies the fact
that the system might be divergence. The examples shown
in the experiments.

III. EXPERIMENTS

Fig.(5) presents the comparisons of the simulation re-
sults between APEX and PCANN with different numbers
of principal components. In the figures, both of the ap-
proaches present that the errors are convergent to minima.
However, as the number of the principal components are
increased, PCACNN results faster convergence. Meanwhile,
In the paradigm of CNN, the array size is not related to
the computing complexity since it is parallel computing. In
another words, whatever the array size is, ideally, the time
consumption of the computing would be the same.
Fig.(6) shows the results of Locally-Connected PCACNN.

Note that in this experiment, the desired number of principal
components of the APEX model are 7. In this experiment, the
number of the connected cells are from 1 to 11, respectively.
The proposed architecture was implemented in a micro-

scopic image cell detection system. The system is built for
the breast cancer diagnosis. In clinical breast cancer grading,
the pathologists need to evaluate the number of mitotic cells
in order to make medical decisions. This system can help the
pathologists to count the mitotic cells under the microscope.
One result is presented in Fig.(7), where the light boxes on
the screen indicate the locations of the mitotic cells. As the
results, the number of the mitotic cells can be evaluated.

IV. CONCLUSION

In this paper, an alternative implementation for PCA
based on parallel computing paradigm is proposed. The
PCACNN can parallelly compute and update the cell array
and consequently, the PCA model can be implemented by
analogical circuits. Meanwhile, the quality of the compu-
tation remains. In this investigation, the proposed model is
compared with APEX, which currently is widely used since
it has better performance. The experiments indicates the fact
that the performance of PCACNN is better than the existing
technology if the number of the principal components are
bigger. Manwhile, based on the parallel compuging paradigm
of CNN, PCACNN can also present excellient performance
with a realized CNN architecture.
On the other hand, in the presented model, the templates

of the CNN is so-called non-linear templates. The implemen-
tation of those kinds of templates are rather difficult. Thus,
how to simplify the templates can be one of the future works.
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Fig. 5: The figures illustrate comparisons between APEX and PCACNN with different number of principal components.
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Fig. 6: The results of the proposed method for locally connected templates.
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(a)

Fig. 7: An application of the proposed method is presented. The PCACNN is trained to detect the mitotic cells. The light
boxes indicate the locations of the mitotic cells.
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