Main Paper

Motivation

- 3D face model useful for many applications:
 - animation
 - motion tracking
 - face recognition
 - face reconstruction
 - surgery planning & simulation
 - forensic reconstruction
 - …
Motivation

- Build 3D face model from training samples:
 - Need to align them: registration.
Motivation

- Can’t just align spatially:

 Everything is messed up!
 Need to align nose to nose, eyes to eyes, …
Motivation

Two general kinds of registration:

- **Rigid registration**
 - Objects differ by scale, rotation, translation.
 - No change in shape during registration.
 - Easy to solve.

- **Non-rigid registration**
 - Objects differ by scale, rotation, translation, shape.
 - Must change shape during registration.
 - Harder to solve.
Motivation

- One possibility: manually mark **landmark** points.

Very tedious and time-consuming!

Need automatic method!
Focus

- 3D model has shape and texture.
- Focus on shape, leave out texture
Related Work

- **ICP** [Besl92, Feldmar96]
 - Global alignment, not landmark correspondence.

- **Mesh parameterisation** [Brett97,98; Lorenz99,00; Praun01, Davies02]
 - Re-mesh, rearrange mesh points consistently
 - Their landmark = re-parameterised mesh points ≠ facial landmark.

- **Shape features** [Johnson99, Wang00, Yamany02,]
 - Surface curvature, geodesic distance, spin image; not landmark correspondence.
3D Face Registration

- Main ideas of Hutton et al.:
 - Manually place 10 landmarks on training samples.
 - Use landmark correspondence to compute mapping.
 - Interpolate other points: thin-plate spline.
Mean Landmarks

- Compute mean landmarks of training samples.
- Procrustes alignment:
 - Compute best alignment by similarity transformation, i.e., scaling, translation, rotation.
 - Align landmarks of all training samples.
 - Compute mean of landmarks.
Dense Correspondence

Main steps:

- Warp mesh by thin-plate spline so that landmarks coincide with mean landmarks.
Dense Correspondence

- Resample warped mesh using reference mesh.
- Unwarp resampled mesh.
- Now, training samples have consistent mesh vertices.
- Some mesh vertices are facial landmarks.
- Now, can apply PCA on all mesh vertices.
Statistical face model

Main steps:
- Align all resampled training samples.
- Perform PCA.
- Keep top principal components.
- Normally,

\[
x = \bar{x} + \Phi b
\]

shape parameters

- Hutton et al. used

\[
x = \bar{x} + \Phi W b
\]

unwhitening matrix

\[
W = \text{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_k})
\]
Model Fitting

- Fit mean shape x to input shape y.
 - Apply ICP to align x to y (align global pose).
 - Repeat until convergence:
 - Map **vertices** on x to closest **surface points** on y.
 - New x_1 has similar shape as y.
 - Align x_1 to \bar{x} giving x_2.
 - Find shape parameters b of x_3 wrt face model:
 \[
 b = W^{-1} \Phi^T (x_2 - \bar{x})
 \]
 - Restrict b to probable values b' according to model.
 - Generate new shape x_3 with b' from
 \[
 x_3 = \bar{x} + \Phi W b'
 \]

for generating y close to y
Questions

- Can it work for skulls?
- How many skull landmarks?
- Strengths?
- Weaknesses?