Registration of 3D Faces

Leow Wee Kheng CS6101 AY2012-13 Semester 1

Main Paper

 T. J. Hutton, B. F. Buxton and P. Hammond. Automated Registration of 3D Faces using Dense Surface Models.
 In *Proc. British Machine Vision Conference*, 2003.

• 3D face model useful for many applications:

- animation
- motion tracking
- face recognition
- face reconstruction
- surgery planning & simulation
- forensic reconstruction
- ...

• Build 3D face model from training samples:

Need to align them: registration.

• Can't just align spatially:

Everything is messed up! Need to align nose to nose, eyes to eyes, ...

Two general kinds of registration:

- Rigid registration
 - Objects differ by scale, rotation, translation.
 - No change in shape during registration.
 - Easy to solve.
- Non-rigid registration
 - Objects differ by scale, rotation, translation, shape.
 - Must change shape during registration.
 - Harder to solve.

• One possibility: manually mark landmark points.

Very tedious and time-consuming! Need automatic method!

Focus

- 3D model has shape and texture.
- Focus on shape, leave out texture

Related Work

- ICP [Besl92, Feldmar96]
 - Global alignment, not landmark correspondence.
- Mesh parameterisation [Brett97,98; Lorenz99,00; Praun01, Davies02]
 - Re-mesh, rearrange mesh points consistently
 - Their landmark = re-parameterised mesh points *≠* facial landmark.
- Shape features [Johnson99, Wang00, Yamany02,]
 - Surface curvature, geodesic distance, spin image; not landmark correspondence.

3D Face Registration

• Main ideas of Hutton et al.:

- Manually place 10 landmarks on training samples.
- Use landmark correspondence to compute mapping.
- Interpolate other points: thin-plate spline.

Mean Landmarks

- Compute mean landmarks of training samples.
- Procrustes alignment:
 - Compute best alignment by similarity transformation, i.e., scaling, translation, rotation.
 - Align landmarks of all training samples.
 - Compute mean of landmarks.

Dense Correspondence

• Main steps:

• Warp mesh by thin-plate spline so that landmarks coincide with mean landmarks.

Dense Correspondence

- Resample warped mesh using reference mesh.
- Unwarp resampled mesh.
- Now, training samples have consistent mesh vertices.
- Some mesh vertices are facial landmarks.
- Now, can apply PCA on all mesh vertices.

Statistical face model

- Main steps:
 - Align all resampled training samples.
 - Perform PCA.
 - Keep top principal components.

 $\mathbf{x} = \overline{\mathbf{x}} + \mathbf{\Phi}\mathbf{b}$

• Normally,

shape parameters

• Hutton et al. used

, unwhitening matrix

$$\mathbf{x} = \overline{\mathbf{x}} + \mathbf{\Phi} \mathbf{W} \mathbf{b}$$

$$\mathbf{W} = \operatorname{diag}\left(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_k}\right)$$

Model Fitting

no facial landmark

- Fit mean shape x to input shape y.
 - Apply ICP to align x to y (align global pose).
 - Repeat until convergence:
 - Map vertices on x to closest surface points on y.
 - \circ New x₁ has similar shape as y.
 - \circ Align x_1 to \overline{x} giving x_2 .
 - \circ Find shape parameters b of x_3 wrt face model:

$$\mathbf{b} = \mathbf{W}^{-1} \mathbf{\Phi}^{\mathrm{T}} (\mathbf{x}_2 - \overline{\mathbf{x}})$$

- Restrict b to probable values b' according to model.
- \circ Generate new shape x_3 with b' from

 $\mathbf{x}_{3} = \overline{\mathbf{x}} + \mathbf{\Phi} \mathbf{W} \mathbf{b}$

close to y

for generating y

Questions

- O Can it work for skulls?
- How many skull landmarks?
- Strengths?
- Weaknesses?

