CS6101 AY2014-15 IT'S ALL ABOUT SHAPE!

A/Prof Leow Wee Kheng A/Prof Ng Teck Khim A/Prof Terence Sim

Visual Computing is supposed to be fun!

So, let's play a game...

US: airplane UK: aeroplane

What kind of plane is it?

What kind of planes are these?

Shape is not about...

Shape is about...

But wait...

Need shading to see 3D!

Are these spheres convex or concave?

How about this face?

Shading doesn't have to be gray!

Especially when it's about FACE!

Even edges can be tricky!

Is it facing down or up?

Even edges can be tricky!

Chess pieces or human figures?

Shape analysis is very challenging!

Ē

How to represent shapes?

Geometric Primitives

Ē

Generalised Cylinder

Parametric Models

- Use parametric equations: polynomial, Bézier, B-Spline, NURBS
- General form:

$$\mathbf{p}(u,v) = \sum_{i,j} K_{ij}(u,v) \mathbf{p}_{ij}$$

Mesh Model

 Connect points into triangles or polygons points / vertices lines / edges

Mesh Model

lines with shading

shading

smooth shading

What to do with shapes?

Shape Processing

Cutting, merging, hole-filling

Remeshing, up-/down-sampling, smoothing

Shape Registration

Rigid registration: size, position, orientation

Non-rigid registration: change shape

- Non-physically-based
 - Free-form deformation
 - Laplacian deformation

Physically-based
Mass-spring model

Thin-Plate Spline

Physically-based

Cosserat rod: very thin solid rod

Physically-based

Cosserat rod + thin shell: hollow tube

Cosserat Rod + Thin Shell

Used for cardiovascular surgery simulation

input models

cut points

joint result

Statistical Model: Active Shape Model

Model Completion / Reconstruction

Reconstruct from incomplete model

Model Completion / Reconstruction

Reconstruct from related model

Visual Substitution

Translate visual info to tactile / audio info

Have fun with shapes!

