Heuristic Search with Reachability Tests
for Automated Generation of Test Programs

Wee Kheng Leow, Siau Cheng Khoo, Tiong Hoe Loh, and Vivy Sdh&n
Dept. of Computer Science, National University of Sing&por
leowwk, khoosc, lohtiong, vivysuhe@comp.nus.edu.sg

Abstract sult evaluation. The first stage generates test cases from a
software system'’s specification. Before the system can be
Most research on automated specification-based soft-tested, it must be properly set up, i.e., prepare the input va
ware testing has focused on the automated generation ofables and data used in the tests according to the require-
test cases. Before a software system can be tested, it mushents stated in the test cases. This setup process is usually
be set up according to the input requirements of the testperformed manually, especially when testing complex data
cases. This setup process is usually performed manually, esstructures. After the system is properly set up, a test execu
pecially when testing complex data structures. After tlse sy tion tool runs the system according to the test cases to ob-
tem is properly set up, a test execution tool runs the systemntain the outputs, which are checked by a test evaluation tool
according to the test cases to obtain the outputs, which are Test execution and test result evaluation are easy to au-
evaluated by a test evaluation tool. tomate, and tools for these stages are already available.
Our research complements the current research on au-There is also a lot of research on automated specification-
tomated specification-based testing by proposing a schemeased software testing focusing on the automated selection
that combines the setup process, test execution, and test vagr generation of test cases [14]. Our research complements
idation into a single test program for testing the behavibro the current trend by proposing a scheme that combines the
object-oriented classes. The test program can be generatedetup process, test execution, and test validation isio-a
automatically given the the desired test cases and closedgle test program for testing the behavior of object-oriented
algebraic specifications of the classes. The core of the tesic|asses. The test program can be generated automatically
program generator is a partial-order planner which plans given the desired test cases ardsed algebraic specifica-
the sequence of instructions required in the test program. tionsof the object classes (Section 3). After compiling and
A first-cut implementation of the planner has been pre- |inking with the object classes under test, it can be exetute
sented in [9] based on simple depth-first search. This papertg perform test case setup, test execution by invoking the
presents a more efficient and effective heuristic seararalg class methods, and test results verification, all in a single
rithm that performs reachability tests using the Omega Cal- program. This scheme provides great convenience in auto-
culator. Test results show that heuristic search with reach mated specification-based testing by removing the need to
ability tests significantly reduce the search time requi®d perform manual system setup and invoking separate tools

generate a valid sequence of instructions. for test execution and test evaluation.
The core of the test program generator is a partial-order
1. Introduction planner which plans the sequence of instructions required

in the test program. A first-cut implementation of the plan-
Testing is a very important but expensive and time- ner has been presented in [9] based on simple depth-first
consuming process in software development. It can con-search, which can spend a lot of effort searching along the
sume at least 50% of the total costs involved in developing wrong paths. In this paper, we presents a more efficient and
software [1]. It remains as the primary method for discov- effective heuristic search algorithm for finding a validmla
ering faults in software systems even though there is steadyit performsreachability teston objects using Omega Cal-
advancement in formal methods for program verification. culator library [13, 15] to determine whether the applica-
Automation of the testing process could reduce develop-tion of a method or methods can bring the objects to the de-
ment costs and improve software quality. sired states. Test results (Section 5) show that the hieurist
Specification-based testing involves three stages [1)1]: (1 search with reachability tests significantly reduce thectea
test case generation, (2) text case execution, and (3)test r time required to generate a valid sequence of instructions.

2. Background and Related Work test programs cannot be generated from the specifica-
tion alone, and test program generation cannot be fully
Most research on automated specification-based test- automated.

ing has focused on the automated generation of test cases o Supporting functions for testing complex modules may
[6, 14, 18]. For example, Donat developed a technique for pe quite complex themselves and should be subjected
generating test cases from specifications that contain-quan to testing also. Although testing of supporting func-

tifications [4]. Offutt and Liu presented a method for gener- tions can be accomplished by specifying them in ADL,
ating test cases from specifications written in SOFL, which such a requirement is not enforced by ADL. Moreover,
is a kind of formal specification language [12]. Memon et testing of these supporting functions may, in turn, re-

al. developed a method based on Al planner to generate test qyjire other supporting functions.
cases for testing GUI [10]. Scheetz et al. also applied Al
planner to generate test cases from test objectives derive
from UML models [18]. Graves et al. conducted empiri-
cal study to compare the cost and benefit of several tec
nigues for selecting subsets of test cases for regressibn te
ing [5]. Other recent work has focused on automated test-
ing of specific software properties such as safety violation
in telephone switching systems [8] instead of general soft-
ware testing. Chan et al. [2] classified the various intégmnat
testing techniques for object-oriented programs intoestat
based, event-based, fault-based, testing against fopael s
ification (aka. algebraic specification and contract spesifi
tion [3]), and deterministic and reachability techniques.

In comparison, there is not much research on automate
generation of test programs that combine system setup, te
execution, and test validation into a single framework, ex-
cept for the well-known ADL (Assertion Definition Lan-
guage) system [17] and its successor, ADL2 [11].

ADL provides a framework for specifying the semantics
of a software component such as a function or a module

Given an ADL specification, the ADL Translator can auto- pleteness of semantic information within the specification

matically generate a test program that executes the functio The target programming language is Java because it is prac-
or module under test and checks the test results. To SUpporﬁcaIIy useful and is simpler to handle than is C++

the automated generation of test programs, ADL requires Fulfilling the above requirement of the closed specifica-
t_he userto supp_lauxmary functlonsthatdeflpe the seman- oo system may, at first glance, appear to be a daunting
t!cs pf the function to be testeq: W? call this type c_)f SPEC task for a software that involves many classes. More care-
fication system aopened specification system addition, ful thought, however, reveals that the effort required is re
the user also needs to provide implementations optioe ' X

ide functiond fructing th ired test dat dth ally not much more than providing theuxiliary, provide
Vige functionsor constructing the required test data and the andrelinquishfunctions for ADL. Once a specification has
relinquish functiondor destroying the test data.

Co) _been defined for a class, it can be readily reused in the spec-
The strength of an opened specification system is that itifications of many other classes. On the other hand, the sup-
can be used to specify a single function or to partially spec-

, porting functions developed for testing a particular fumrct
ify @ module, and test program can be generated to test the, gy le are less readily reusable for testing other func-

function or partially specified module. However, an opened (i, or modules. Therefore, in the long run, it is more ben-
specification system also has the following shortcomings: eficial to use a closed system than an opened system.

e An opened specification is incomplete—it does not With closed specifications, every class method is defined
contain enough information for generating test data in terms of other methods which are, in turn, defined in their
by itself. In testing complex software components, the class specifications. The core of our test program generator
user cannot avoid the need to provide supporting func- is an Al planner that plans the sequence of instructions re-
tions such as ADL'swuxiliary, provide andrelinquish quired in the test program (Section 4.2). The Al planner is
functions Additional programming effort is required an appropriate tool since it is able to sequence the instruc-
to implement these supporting functions, which may tions, taking into account the constraints between therh [16
not have any use other than for testing. Consequently,Moreover, thepartial-order plannercan plan a sequence of

d Our research complements the current research on au-
tomated specification-based software testing in two ways:
h.(1) It proposes alosed specification syste@ection 3) that

can overcome the above shortcomings of opened specifica-
tion systems. (2) It proposes a scheme that combines auto-
mated test data generation (i.e., system setup), test execu
tion, and test validation into singletest program. The test
program is generated automatically given the class specifi-
cations and the test cases. When it is executed, it will per-
form system setup and test data generation, test execution,
and test validation automatically.

To fulfill these goals, the specification must be defined
c{for an entire object class instead of a single function. The
S%emantics of the class methods are specified in terms of

other methods which are, in turn, specified in their own

class specifications. In other words, all the methods used
in a class specification are defined in the same specifica-
tion or in other class specifications, and the methods can be
defined mutually recursively. So, a closed specification is
"a form of algebraic specification that emphasizes the com-

instructions that are only partially ordered but not totall-

dered [16]. As discussed above, Al planner has also been
used to generate test cases from specifications [10, 18]. So,

it is a very useful tool for automated software testing.

Our planner is implemented as a heuristic search al-
gorithm (Section 4.3). It makes function calls to the
Omega Calculator library [13, 15], which solves the con-

straints given by the test cases and obtains valid variable
instances. Furthermore, it uses the Omega Calculator{o per

form reachability tests on object states (Section 4.4)s Thi
method greatly improves the search efficiency and effec-
tiveness of the algorithm.

3. Closed Specifications of Classes

In our system, the behavior of the classes are specified

using an ADL-like specification language. Other specifica-
tion languages can also be used, but we find the ADL syn-

tax more similar to Java, our target programming language
for software development. So, we expect Java developers to

adopt the ADL syntax more readily than other syntax. The
following example shows the specifications of three classes
Teacher and St udent , which are atomic classes, and
Cour se, which is an aggregate class.

cl ass Course {
Cour se()
{ true
--> #max

1 && #size 0

}

Cour se(i nt max)
{ mx >0

--> #max = max && #size = 0

}

voi d set Max(int nmax)
{ max >= #size

--> #max = max && #max >= #size
}
voi d i ncMax()
{ true
--> #max = @tmax + 1
}

voi d decMax()
{ #max > #size
--> #max @tmax -

}

1

voi d set Teacher (Teacher t)
{ t !'= null
--> #teacher

}

voi d addSt udent (St udent s)

t

&& #size < #max
@tsi ze + 1 &&

{ s I'= null
--> #size

exist(#s in Course){#s = s}
voi d del et eSt udent (St udent s)
{ #size > 0 &&
exist(#s in Course){#s = s}
--> fisize = @size - 1 &&
lexist(#s in Course){#s = s}
}
int max()
{ true
--> max() = #nmax
}
int size()
{ true
--> size() = #size
}

/1 Ot her access nethods ontted.

cl ass Teacher {

Teacher (String nanme, int id)
{ name !'=null && id >0
--> #nane = nane && #id = id
}
// Access nethods omtted.
}
cl ass Student {
Student (String nane, int id)
{ nane !'= null && id >0
--> #nane = nane && #id = id
}

/1 Access nethods om tted.

In this specification, preconditions are specified before
the arrow symbol- - >’ while postconditions are specified
after - - >'. Symbols prefixed with#' such as#nane and
#si ze refer tostate labels They specify the information
that is contained in a class without saying how the infor-
mation is organized and stored in the class. Symbols pre-
fixed with ‘@ refer to thepre-stateof the objects. For in-
stance,@#si ze refers to the value oftsi ze at the en-
try of theadd method. Therefore@tsi ze has the same
value as thetsi ze in the precondition, and th#si ze
in the postcondition is equal t@¥si ze+1. A method ar-
gument must either be bound to a state label (a.gne
in constructoiSt udent) or appear in the pre- or postcon-
dition. Otherwise, it does not carry any useful information
and can be discarded. For the access methods, the postcon-
ditions are very simple: the invocation of an access method
equals some state labels of the respective class. Notéthat t

semantics of all the methods in the classes are completely This example shows that it is straightforward to gener-

specified within them. That is, the specification is closed. ate program codes for steps 2 and 3, especially when the
test case specification is written in computer readable for-

4. Automated Generation of Test Programs mat. However, automated generation of program codes for
step 1 is non-trivial:

4.1. Overview .
e The method arguments of the object constructor of the

Atest program that exercises a class method accordingto ~ target object may be objects as well, and they are re-
atest case consists of three steps: (1) constructs targetob quired to satisfy the conditions given in the test case.
and method arguments that satisfy the conditions in the test ~ Therefore, the object construction algorithm must be
case, (2) applies the method on the object with the method ~ applied recursively to construct the method arguments.
arguments, (3) checks whether the actual results tally with e The object constructor may not be able to create an ob-

the expected results given in the test case. ject that meets the test case conditions (as illustrated

Let us discuss the main ideas using an example. Con- in the above example). Additional modifier methods
sider the following test case (specified in a format consis- (e.g.,addSt udent) may need to be invoked to bring
tent with IEEE Standard 829 [7]): the object to the required state.

Input specification: Therefore, in the remainder of this paper, we will focus on
Course coursel & coursel. #max = 10 & the automated generation of object construction codes.
coursel. #size = 1 & Object construction codes consist of three partsafl)
Student student1 gument creationcreate arguments,, . . ., u,, of the target

Method Invocation: constructorC; (2) object creation create the target object

x; and (3)object modificationmodify the state of: by ap-

1. add(student1 - o
course _a. (_S udent 1) plying modifier method4/4, .. ., M,,. For example,
Output specification:

Course coursel & coursel.#max = 10 & Cruy =newCi(...); [/ partl
coursel. #size = 2
. Cr up, =newCy(...);
Then, a test program for this test case could be:

/1l Step 1: Qbject construction Cx=newC(uy,...,uy);/l part2

Cour se coursel = new Course(10);

St udent student2 = x.M(...); [/ part 3
new Student ("M ke", 12345);

cour sel. addSt udent (st udent 2) ; . Mpy(..);

St udent studentl = Because an argument can also be an object, the codes for
new Student ("Mary", 23456); creating an argument may also involve three parts, just like

object construction codes. Thereforegursive plannindgs

/1 Step 2: Method invocation needed to correctly generate the program codes.

cour sel. addSt udent (student 1) ;

/1 Step 3: Test result verification 4.2. REBID Planner
if (coursel.max() == 10 &&
coursel. si ze() == 2) A recursive bidirectionaplanner called REBID for gen-

then System out. print("Passed");

. . . erating object construction codes has been developed and
el se Systemout.print("Failed");

presented in [9]. REBID starts the planning process by gen-
The first three instructions constructGaur se object erating object creation code (part 2). This is a good strat-
that satisfies the input requirement of the test case. Theegy because a class typically has far fewer constructons tha
fourth instruction constructs® udent objectrequiredfor modifier methods. Many classes may even have only one
the test. The fifth instruction invokes the method undet test constructor. REBID work&ackwardto generate the codes
and the remaining instructions perform test result verifica for constructing the arguments, . .., u, recursivelybe-
tion. Testing of exception handling can be done in a simi- cause the construction of the arguments may also involve
lar manner by modifying step 2 to catch a possible excep- 3-part codes. At the same time, REBID also wdidsvard,
tion, and then checking whether the postcondition for ex- if necessary, to generate the codes to bring the the target ob
ception handling is satisfied. ject to the required state.

Details of REBID is described in [9] in the form ofeon-

deterministigplanner algorithm. Here, we give a brief sum-
mary of REBID and its deterministic implementation using
heuristic search with reachability tests. This searchegjsa
significantly improves the search efficiency and effective-
ness of REBID compared to the simple method of depth-
first search without heuristics described in [9].

In REBID, the input conditions specified in a test case,

ExpandArguments([)

For each argument of instruction! that is not a string lit-
eral and not a constant of primitive data type:

1. Choosean unbound state label from the constraints in
R that can be bound to.

2. Create instruction/ for argumentu and the con-
straints onu. The method for constructing argument

as well as the preconditions and postconditions of methods, ~ u is not yet determined.

are regarded as constraints on the object’s state labels and 3. Insertinstructiory into the planbeforeinstruction..
method arguments. REBID invokes the Omega Calculator
to perform constraint solving to determine whether the con-
ditions can be satisfied.

Nondeterministic REBID

MakePlan

1. Create initial plan with initial instruction for the taeg

object and the object’s constrains The method for
constructing the object is not yet determined.

2. Repeat

(a) Ifallthe methods of all the instructions have been
determined, and all constraints i have been
satisfied, then instantiate the unbound state labels
and method arguments, and return the plan.

(b) Else, CreateObject or ModifyObiject.

CreateObject

1.

Choosean instruction/ in the plan whose method is
not yet determined.

. Choosean appropriate constructor method that can

satisfy at least some of the constraintdin

. Set the method and arguments of instruction
. Record the method'’s preconditions and postconditions

as the constraints involved in executihg

. Record variable bindings.
. ExpandArguments of instructian

ModifyObject

1.

Choosethe last instructior! that modifies an object
such that execution of still cannot fully satisfy the
object’s constraints.

. Choosean appropriate modifier method that can sat-

isfy at least some of the constraints.

. Create a new instructiohwith the chosen method and

arguments.

. Include instructiory into the planafterinstruction!.
. Record the method'’s preconditions and postconditions

as the constraints involved in executifig

. Record bindings of state labels and method arguments.
. ExpandArguments of instructioh

4. Record bindings of state labels and method arguments.

The nondeterministi€hooseselects five types of can-
didates: instructions, class methods, method arguments, u
bound state labels, and constraints. There are finite and enu
merable numbers of instructions, class methods, state la-
bels, and constraints. So, they can be found with a search
algorithm. Selection of method arguments is more compli-
cated because there is potentially an infinite number of pos-
sible values and they may need to satisfy some methods’
preconditions. If the value of an argument is given in the
test case (which is assumed to satisfy the preconditions),
then it can be assigned the value. Otherwise, the precondi-
tions have to be recorded as constraints and the values can
only be determined at the end of the planning process (Step
2(a) ofMakePlan) by proper instantiation of the arguments.

4.3. Heuristic Search

Below is a summary of the deterministic implementation
of REBID.

Deterministic REBID

1. Make initial plan and insert it into a search queue.
2. Repeat

(&) Remove the plan at the front of the queue.

(b) Invoke Omega Calculator to perform instantia-
tion and binding of each state label and method
argument to an appropriate value that satisfies
their constraints. These constraints may come
from the test case or the preconditions or post-
conditions of the methods in the plan.

(c) If binding fails, continue with next iteration.

(d) If binding succeeds and the plan satisfies all the
constraints ink, then terminate with the plan.

(e) Construct new plans by choosing either construc-
tor or modifier methods. Each new plan is con-
structed with one new method selected.

() Invoke Omega Calculator to perform reachability
tests on the chosen methods and the correspond-
ing objects.

(9) Insert new plans into search queue based on
heuristics.

The heuristics used in the insertion of new plans are: the preconditions of a method are satisfied, and whether the
e Reachable plans are inserted at the front of the queuepostcond_ltlons of a method Invocation ”T'p.'y the consteaint
; . . on an object. If the constraints are satisfied, then the goal
and sorted in decreasing number of state labels in the : . .
state of the object (represented as constraints) is rekchab
test case that the plans affect. Affectedstate label . S
. . : fter applying the method on the object in the test program.
is a state label in the test case whose state is change o~ .)
o Reachability tests are performed on one object at a time.
by the application of a method. In other words, a plan _. Y S
7 . Single application of a method on an object involvesa-
is inserted nearer to the front of the queue if its most - : S
stepreachability test. Multiple, repeated application of a

recently included instruction affects more state labels. method on an object involvesraulti-stepreachability test.

e Unreachable plans are inserted at the front of the queueSequentiaI applications of different methods on the same

behind the reachable plans, and ordered in the Sameobject is not considered in reachability tests because-dete
manner as reachable plans.

mining the correct sequence of method invocation is the task
Note that reachability test is performed for a single of the REBID planner.

method applying on a single target object. A plan is reach-

able if the application of the method on the target object

satisfies the constraints on the object, which can be just First, let us describe one-step reachability test. Single a

a subset of all the constraints in the test case. Unreachplication of a method changes the state of an object from

able plans are not discarded immediately because, in som¢he pre-state to the post-state. In order that the method

cases, a desired goal state is not reachable by applying onlgan be invoked successfully, the pre-state has to satiefy th

one method. They are retained in the queue but given amethod’s preconditio. The successful invocation of the

lower priority for further expansion. Therefore, the heuri method changes the object’s state in a manner specified in

tic search is guaranteed to find a valid plan and terminate atthe method’s postconditio. So, the post-state is given by

Step 2(d): the postconditior). So, the one-step reachability test can
The ordering of the plans by the number of affected be formulated as eonstraint satisfactioproblem:

state labels tells the planner to first try to expand a plan

whose most recently included method affects more state la- {lar, - sam, 81,80 - PAQACY (1)

bels in the test case, i.e., trying to satisfy more condisaifh

th thod is found t i traints. then th wherea; are the method’s arguments;, are the object’s
e method is found to satisfy many constraints, then € Cstate labels, an@' represents the constraints.

is a very good chance that it is the correct method to in- £, example, suppose the pre-state afaur se ob-
voke. Furthermore, after satisfying many constraintstéhe ject is#max = 1 && #size = 0. If we want to know
maining planning problem would be easier to solve becaUSQNhetherS et NB.X(a) can Change the state obur se ob-
there are fewer remaining constraints to satisfy. On theroth ject to#max = 5 && #si ze = 0, then we can formu-
hand, a method that affects very few state labels in the testate the following constraint satisfaction problem:
case might be a wrong method because it is relatively easy {[a, mx, size, newmax]
for many methods to satisfy few (e.g., one) state labels. If a >= size &&
a wrong method is chosen, then expanding the plan would newrax = a & newnax >= size &&
not lead to a valid final plan, and a lot of search effort would mx = 1 & size = 0 & newmax = 5}
be wasted in expanding the plan. _)

Different search strategies can be obtained by changingn this éxample#max is an affected state label. So, two
the method of inserting new plans into the queue. For exam-versions of the state label is automatically created by RE-
ple, if new plans are always inserted at the front of the queueBID to represent the state label at the pre-state and the post

without heuristics, then the algorithm reduces to dep#t-fir state. The first line lists th_e set of method arguments a_nd
search. On the other hand, if new plans are always insertegtate labels. The second line comes from the precondition

at the back of the queue without heuristics, then the algo-°f S€t Max(@) , and the third from the postcondition. The
rithm reduces to breadth-first search. last line comes from the pre-state and the desired po#t:stat

In REBID, a binding table is maintained to record the
N values of bound state labels and method arguments. So, RE-
4.4. Reachability Tests BID can simplify the above constraint satisfaction problem
by (1) including only unbound state labels and method ar-
Reachability tests play a crucial role in the determinis- guments in the label set, and (2) replacing the bound state
tic implementation of REBID. They determine whether the labels and method arguments by their bound values. This
method yields the following simplified constraint satisfac

1 Itis assumed that a valid plan exists for a test case. \tedfwhether tion prObIem'
atest case is viable and testable is beyond the scope ofapés.p {[a] : a>=0&% 5 =a & 5 >= 0}

One-Step Reachability Tests

which requires less work on Omega Calculator. The above multi-step reachability test can also be sim-
In Omega Calculator syntax, the above constraint satis-plified by REBID using the binding table into:
faction problem is written as

R := reachable of t in (t) {
R:={[a] : a>0 &% 5 = a & 5 >= 0}; t : {[0]},
. . S . t ->t: {[size] -> [newsize]
Evaluation of this expression in Omega Calculator yields exists([s] : s = null && size < 10
{[5]} && newsize = size + 1)}
b

which is a set that contains the possible value. This means

the constraints can be satisfied, and in additeortan be The value 0 is retained in the start statet obecause the
bound to the value 5. If the constraints cannot be satisfied,state labe¥si ze is affected by the method. On the other
then Omega Calculator will retuifal se. So, Omega Cal- hand #max can be removed because it is not affected. The
culator performs not only constraint satisfaction but also existential quantification in the method’s post-conditisn
instantiation and binding of values to the state labels andalso removed because it only specifies a binding of the
method arguments. The bound labels and their values arebject’s state label with the method argument, which is
recorded in REBID’s binding table. Essentially the same recorded in the binding table.

procedureis performed in Step 2(b) of the deterministic RE- Evaluation of the expression in Omega Calculator yields

BID for instantiation and binding. R:= {[size] : 1 <= size <= 10}

Multi-Step Reachability Tests .) _))
which gives a set of possible solutions to To verify

Multi-step reachability test is performed using Omega whether the solutions satisfy the test case requirement, an
Calculator'sr eachabl e function. Its syntax is intersection is performed between the returned set and the
. . test case requirement (i.étsi ze = 5) because, in gen-

R := reachable ofoal-state-labein (list of state labels eral, two sets with non-empty intersection (i.e., can Batis

{ state-labet start-state| N both sets) may not contain each other as a subset:
state-label > state-label transition};

R intersection {[5]};
The | symbol means “or”. For example, suppose the

pre-state of acourse object is #max = 10 && which yields the answer
#si ze = 0, and we want to know whether multiple in- (151}

vocations ofaddSt udent (s) can change the state of
cour se object to#max = 10 && #si ze = 5. In this This means that the reachability test is successful. Ifébe t
case, according to the specification afldSt udent , fails, Omega Calculator will return

only #si ze is affected by t_he metho_d. So, fo_rm a state {[size] : FALSE}

by the namet that contains onlysi ze, which de-
notes the pre-state éfsi ze. Because the state is changed which means that the intersection is an empty set.

by the method, the post-state of contains a new la- Note that the multi-step reachability test formulated in
belnewsi ze. this section can also be used to perform single-step reacha-
In Omega Calculator, the above multi-step reachability pility test. But, Omega Calculator takes more time to per-
test can be written as form single-step reachability test using theachabl e
R := reachable of t in (t) { function than simple constraint satisfaction. Therefame,
t : {[size, max] : size = 0 & max = 10}, REBID, single-step reachability test is solved using con-
t ->t: {[size, max] -> [newsize, max] : straint satisfaction and multi-step reachability tesiwed
exists([s] : s !=null & size < max & using ther eachabl e function.
newsi ze = size + 1 &&
exists([sl] : sl =15s)) . . .
1) 5. Experiments and Discussions
The second line defines the start state offhe third line Five variations of the REBID planner were tested:

indicates the transition that changes the state.e®iest s .) o

clause specifies the constraints on the state transiticiohwh BFS: Breadth-first search without heuristics.

has the same syntax as Eq. 1. The fourth line comes from e DFS: Depth-first search without heuristics.

the method’s precondition and the last two lines from its ORT: Heuristic search without reachability test (RT).
postcondition. The symbalul | is substituted with a hash The plans are ordered by the number of affected state
value that represents a known constant; otherwise, Omega labels without checking whether they are reachable.
Calculator will regard it as an unknown label. e 1RT: Heuristic search with one-step RT only.

e MRT: Heuristic search with one-step and multi-step fore decMax, then DFS could also find a valid plan. The
RT. One-step RT is performed first. Multi-step RT is test results for this case are:

performed only if one-step RT fails. BES | DES | ORT | 1RT | MRT
The performance of the algorithms were measured in terms | funtime (s)| 0.50| 0.73] 0.01| 0.17| 0.19
of (1) execution time (in a Pentium 1.6GHz PC with 256MB depth 4 12 | 3 3 3
RAM), (2) depth of search tree, and (3) total number of no.ofplans| 33 | 61 | 5 5 5

plans generated, which reflects the space requirement. Heyristic search still executed more efficiently. The plans
Three test cases were performed based on the examplgenerated by BFS and heuristics search were:

specifications given in Section 3. These specifications were
chosen because they are simple and straightforward, and
yet rich enough to illustrate various important aspects of
the REBID algorithm. If more complex specifications were
chosen, then it would be very difficult to really study and The plan generated by DFS was:
understand the behavior of REBID, let alone USing it in Course coursel = new Course();

Course coursel = new Course(10);
Teacher teacherl = new Teacher(Ms_Lee, 1);
coursel. set Teacher (t eacher1);

practical applications. cour sel. set Teacher (t eacher1);
coursel.incMax();
51. TestCase 1 ... Il repeat 8 tines

coursel.incMax();

Test Case 1 assessed the performance of the algorithms | cacher teacherl = new Teacher ("M Lee", 1);

in constructing a simple object that contained another ob- This test case shows that, without the use of heuristics and

jectas its attribute: reachability tests, DFS is very sensitive to the sequence of
Course coursel method specifications. On the other hand, the heuristics al-
coursel. #max = 10 gorithms significantly shorten the execution time by direct
coursel. teacher = teacherl ing the search along paths that are more likely to succeed.
teacherl.nane = "Ms Lee"

The test performance is as follows: 5.2. TestCase?2

BES| DES | ORT | 1RT | MRT Test Case 2 measured the algorithms’ performance in
runtime (s)| 0.51 | > 120 0.01| 0.17| 0.19 constructing an aggregate object that contained 2 elements
depth 3 >106| 3 3 3 Cour se coursel
no.ofplans| 30 | >373| 5 5 5 Cour sel. #max = 10

. . L . coursel. #size = 2
The search algorithms with heuristics were most efficient

and they found valid plans by searching only a tree of depth For test Case 2, DFS again could not find a valid plan after
3 containing 5 plans. MRT took a little longer than ORT executing for 2 minutes and was aborted:

and 1RT because it invoked thheeachabl e function of BFS | DFS ORT | 1RT | MRT
Omega Calculator, which took a little more time to solve run time ()| 4.87 | > 120 | > 120 | 0.54| 0.62
compared to simple constraint satisfaction. BFS could also depth 6 >106] >106] 5 5
find a valid plan after searching through 30 plans up to a |5 ¢ plans| 199 | >373| >373| 9 9

depth of 3. Therefore, it took longer to find a valid plan.
DFS could not find a valid plan after executing for 2 This time, it was trying alternate invocations of

minutes and was aborted. It had already searched througi@ddSt udent —and del et eStudent. ORT, with-

373 plans with a search depth of 106. This happened be-Out reachability test, also suffered the same problem. On

cause of the following reason. DFS happened to choose thdh€ other hand, 1RT and MRT could obtain valid plans, and

constructor that constructsGour se object with#max = they executed more efficiently than BFS did.
1 first. Then, it picked ncMax to try to increasefnax. Same as for Test Case 1, by swapping the sequence of

came satisfiable, andecMax was always tried first be- DFS and ORT can also generate a valid plan. In this case,
forei ncMax. So, DFS was trying alternate invocations of the test results are as follows:

i ncMax and decMax, which could not produce a valid BFS | DFS | ORT | 1RT | MRT
plan no matter how long the sequence of instructions was. runtime(s)| 4.86 | 4.08 | 0.26 | 0.50| 0.61
If we swapped the sequence ioficMax anddecMax depth 6 14 5 5 5

in the specification so that DFS always triedcMax be- no. of plans| 202 | 65 9 9 9

:*"I'):Autnmat Software Testing System - [D:Schoolwork' | HYP' data' ADL_spec’,20. 1Ol x|
File Edit Advanced Help

g & BrE=l?

|| Open Files ;I ADLS‘tudant.]avaIADLTeacher.]ava ADLCourse java

<class» Course ﬂ

<states #max int </states
<staier #size int <fsiater

<staier #teacher Teacher </sizates

<method> Course
<prex
<termt- true </ isrm

- </ prex -
Kl _'lJ | | _>l_I

testcase.Course = coursel
coursel. #zize = Z
coursel. fmax = 10

Course coursel = new Course(l0);:

Gtudent studentl = new Student("namel"™, 1);
coursel. additudent (studentl) ;

Student student2 = new Student("namez, 1);:
coursel.additudent (studentz) ;

Eunyl@comp.nus.edu =0

Figure 1. A screen-shot of the execution of the REBID planner for Test Case 2.

Figure 1illustrates a screen-shot of the execution of RE- each after running for 2 minutes. DFS, ORT, and 1RT were
BID for Test Case 2. The top-right pane shows an internal stuck for the same reason discussed in Sections 5.1 and 5.2.
representation of the class specification. The middle paneon the other hand, BFS tried to search through all plans to
requiredCour se object. The bottom pane shows the se- 5 nintes whem > 3. More details about BFS's behav-
guence of instructions generated for creating the requwedior is discussed below

Cour se object. The heuristic search algorithms and BFS .
generated the same plan as given in Fig. 1. The plan gener- S for Test Cases 1 and 2, after changing the method se-

ated by DFS was: guences in t.he specifigation, I_Z)FS, ORT, and 1RT could all
_ _ generate valid plans. Figure 2 illustrates the algorithmes*
Courselc_ouri/gl = new Course(); formance. The heuristic search algorithms were more ef-
coursel. i ncMax(); ficient than DFS. MRT and 1RT were a little slower than

/1 repeat 8 tinmes

. X ORT due to the invocation of reachability tests. MRT in-
coursel.incMax(); . . .
Student studentl = new Student ("namel”, 1); voked multi-step reachablllty Fests usmg_Omega Cglcula—
cour sel. addSt udent (st udent 1) tor's r eachabl e function, which took a little more time
Student student2 = new Student ("nane2", 1); than the one-step reachability tests invoked by 1RT. BFS
coursel. addSt udent (st udent 2) tried to search all possible plans for a valid plan. Its exe-
cution time and space requirement (number of plans gener-
5.3. Test Case 3 ated) increased exponentially with even though its search

depth increased linearly with. Forn = 3, it required 73

Test Case 3 was similar to Test Case 2 except that thesec. Fom > 3, it could not find a valid plan within 2 min-
algorithms were to construct aggregate objects with maxi- utes and was aborted.
mum number of elements, and the maximum numieair-
ied from 1 to 10:

Cour se coursel

coursel. #max = n

coursel. #size = n

6. Conclusion

This paper presented a method of improving the search
efficiency and effectiveness of REBID for automated gen-
For Test Case 3, when the original method sequence wagration of test programs. Using heuristic search with multi
used, DFS and ORT could not generate a valid plan for step reachability tests, it can find a correct plan (i.etrircs
n > 1, 1RT failed forn > 2, and BFS failed fom > 3, tion sequence) more efficiently than BFS and DFS. More-

search depth number of plans

execution time (s)

1 10003 > 1005
30 B 3 3
7 a°] /
25 -] /]
E —o— BFS
] 1003 _ - - 104
20 2/ PREEELE R 3 - o- - DFS
154:] ’E_—B‘ .] ;+MRT
E ¥ o 1 [|- = 1RT
103 oz e —a— ORT
54] ¥
3]
0 Frprerrrrrerprerree a0 L e e e peeprereeereee | 00 0.1 - n
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 10

(@) (b)

Figure 2. Performance of search algorithms with increasing n. (a) Search depth, (b) number of plans
generated, and (c) search time (sec). In (a), BFS's search depths for n > 3 are projected values based

on its search depths for n < 3.

over, it can always find a valid plan regardless of the se- [5] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
guence of methods in the class specifications because it can
direct the search along paths that are more likely to yield a
valid plan. On other the hand, heuristic search with onp-ste

reachability tests and no reachability tests may not be able 6

to find a valid plan for moderately complex test cases.

Further enhancements can be made in the following

ways. The current reachability tests return only true adal

values. They can be enhanced to retlikalihood of suc-

cessbased on a measure of thestancebetween the state

(7]
(8]

of the current plan and the goal state. For example, it can
compute the likelihood value from the difference between

the desired size and the current size.

G. Rothermel. An empirical study of regression test selec-
tion techniques.ACM Trans. on Software Engineering and
Methodology 10(2):184-208, 2001.

] H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test

generation from statecharts using model checking. Teahnic
Report MS-CIS-01-07, Dept. of Computer and Information
Science, U. of Pennsylvania, 2001.

IEEE. IEEE Standard 829-1991: Standard for Software Test
Documentation |IEEE Press, New York, 1991.

L. J. Jagadeesan, A. A. Porter, C. Puchol, J. C. Ramming,
and L. G. Votta. Specification-based testing of reactivée sof
ware: Tools and experiments. Int. Conf. on Software En-
gineering pages 525-535, 1997.

Another way to enhance reachability tests is to perform [9] W. K. Leow, S. C. Khoo, and Y. Sun. Automated genera-
partial reachability tests. That is, if a subset of constraints

can be satisfied by the invocation of a method, then partial
reachability is obtained. This is especially useful when ap

[10]

plication of several different modifier methods is required

to bring an object to the desired state. The cardinalityef th 4,

reachable subset can also be used a measure of the likeli-

hood of success for heuristic search.

References

[1] B. Beizer.Software Testing TechniquéBhomson Computer
Press, 2nd edition, 1990.

[2] W. K. Chan, T. Y. Chen, and T. H. Tse. An overview of in-

tegration testing techniques for object-oriented prograim

Proc. of 2nd ACIS Annual Int. Conf. on Computer and Infor-

mation Science (ICISpages 696—701, 2002.
(3]

ogy for object-oriented software testing at the class ans-cl

H.Y.Chen, T.H. Tse, and T. Y. Chen. TACCLE: a methodol-

[12]

[13]
[14]

[15]

[16]

[17]

(4]

ter levels ACM Trans. on Software Engineering and Method-
ology, 10(1):56-109, 2001.

M. Donat. Automating formal specification based testing
In Proc. Conf. on Theory and Practice of Software Develop-
ment volume 1214, pages 833-847, 1997.

[18]

tion of test programs from closed specifications of classes
and test cases. Rroc. ICSE 2004.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-
driven approach to generate test cases for guisntirConf.
Software Engineeringl999.

] M. Obayashi, H. Kubota, S. P. McCarron, and L. MalleteTh

assertion based testing tool for OOP: ADL2. Rroc. Int.
Conf. Software Engineering 998.

A.J. Offuttand S. Liu. Generating test data from SOFesp
ifications. J. of Systems and Softward9(1):49-62, 1999.

The Omega Project. www.cs.umd.edu/projects/omega.

R. M. Poston. Automating Specification-Based Software
Testing IEEE Computer Society Press, 1996.

W. Pugh. The Omega Test: A fast practical integer progra
ming algorithm for dependence analysi€omm. of ACM
8:102-114, 1992.

S. Russell and P. NorvigArtificial Intelligence: A Modern
Approach Prentice-Hall, 1995.

S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report TR-94-23, Sun
Microsystems Labs, 1994.

M. Scheetz, A. von Mayrhauser, R. France, E. Dahimad, an
A. E. Howe. Generating test cases from an OO model with
an ai planning system. IRroc. 10th Int. Symp. on Software
Reliability Engineering1999.

