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An ideal image retrieval system should retrieve images that satisfy the user’s need,
and should, therefore, measure image similarity in a manner consistent with hu-
man’s perception. Unfortunately, perceptual consistency is very difficult to achieve,
even for simple features such as color and texture. This paper summarizes current
results of perceptual consistency and suggests possible future work in this direc-
tion. Striving for perceptual consistency should be a goal of the next-generation
multimedia retrieval systems.

1 Introduction

An ideal image retrieval system should retrieve images that satisfy the user’s need.
It should, therefore, measure image similarity in a manner consistent with human’s
perception. Unfortunately, this goal turns out to be very difficult to achieve. This
problem leads to retrieval results that do not always meet the users’ expectations.?®
Existing systems often make use of relevance feedback techniques to improve the
quality of the retrieved results.26:32:40 However, very few users are willing to go
through endless iterations of feedback in hope of retrieving the best results. More-
over, previous feedback results are typically not retained in the system and each new
query always begins in an unrefined state. A user has to go through the feedback
process even if the same feedback information has been given in the past.

Striving for perceptual consistency should be the goal of a good image retrieval
system. At present, progress has been made only for simple features such as color
and texture. This article summarizes current results of perceptual consistency and
suggests possible future work in this direction.

2 Overview of Perceptual Consistency

There are many ways of defining perceptual consistency. This section discusses
some common definitions. Let p;; denote the perceptual distance between samples
i and j, and d;; denote the corresponding measured or computational distance. A
simple notion of perceptual consistency is that d;; is proportional to p;;. That is,
there exists a linear function f such that

pij = f(dij), Vi, j . (1)
Then, perceptual consistency can be measured in terms of the mean squared error
(MSE) e of linear regression:

1
€= > (pij — f(dij))? (2)
i,j
where N is the number of sample pairs. The smaller the MSE, the better is the
consistency. A perfect consistency has an MSE of 0.
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A less stringent notion of perceptual consistency is to require that f be a mono-
tonic function which can be nonlinear. The problem with this definition is that it
is difficult to determine the best nonlinear function to use in practice.

An alternative definition is to require that d;; be statistically correlated to p;;.
In this case, it is useful to transform the populations {d;;} and {p;;} to equivalent
zero-mean unit-variance populations {d;;} and {pj;}:

1 _Pij—D d/“:dij_‘Z
o, 3 ij o4

(3)

where j and d are the means and o, and o, are the standard deviations of the pop-
ulations. Then, perceptual consistency can be measured in terms of the correlation
T

r=y pd . (4)
i,J

Substituting Eq. 3 into Eq. 4 yields the Pearson’s correlation coefficient:

Z(pz’j —p)(dij —d)

i
75 (5)

Z(pij -p)° Z(dij —d)?

1,3 4,3

The coefficient r ranges from —1 to +1.
With perfect consistency (e = 0 or r = 1), we obtain the following condition:

dij < dp = pij < pr for any samples i, j, k, [. (6)

That is, if perfect consistency is achieved, computational similarity would imply
perceptual similarity.

3 Color

3.1 Color Spaces and Color Differences

Various color spaces have been used in image retrieval. The more commonly used
spaces include HSV, CIELUV, and CIELAB. The HSV space consists of hue, sat-
uration, and value dimensions. It is used in VisualSeek *> and PicHunter,’ and by
Vailaya et al.>® CIELUV and CIELAB are color spaces developed by the Interna-
tional Commission on Illumination (Commission International de l’Eclairage, CIE).
They consist of a luminance dimension L* and two chromatic dimensions namely
w*,v* and a*,b*. Among these three spaces, CIELUV and CIELAB are more per-
ceptually uniform than HSV.* CIELUYV is used in ImageRover *? and by Mehtre et
al.3% while CIELAB is used in Quicklook.?

In recent years, there is also a move to standardize the conversion formula
between RGB and various CIE spaces. This effort gives rise to the so-called sRGB,
which is a proposed standard or default RGB color space for the internet.!46 It
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captures the averaged characteristics of most computer monitors. With sRGB,
there is now a unique formula for converting to and from CIE color values.

The difference between two colors is typically measured as the Euclidean dis-
tance in the target color space. Several improvements over the CIELAB Eu-
clidean color difference equation have been proposed, including CIE94, CMC, and
BFD.* Recent psychological tests show that these color difference equations are
more perceptually uniform than Euclidean distance in the CIELAB and CIELUV

spaces.t 14183145 Tn particular, CIE94 has a simpler form, which is a weighted
Euclidean distance:*
1/2
AL*\®  (ACH N (AH:N
AB;, = + o) g (7)
kLSt kcSc knSy

where AL*, AC},, and AH, are the differences in lightness, chroma, and hue,
S, =1,8 =1+ 0.0450;,), SH = 1+ 0.0150;,), and kr, = k¢ = kg = 1 for
reference conditions. The variable C7, is the geometric mean between the chroma
values of the two colors, i.e., %, = Cr 1 Ch s

In addition to these colors spaces, the modified Munsell HVC space, which
consists of hue, value, and chromaticity dimensions, and is used in QBIC3? and
by Gong et al.'® It is perceptually quite uniform, but is less commonly used than
CIELAB. Gong et al. uses the Godlove equation'? to measure color difference. It
was derived by Godlove to improve the perceptual uniformity of color difference
measured in the Munsell space. Recent psychological studies show that CIE94 is
more accurate in measuring human color perception than the modified Judd and
Adams-Nickerson formulae,'® which are similar to the Godlove equation.

3.2 Color Histograms and Dissimilarity

An image or image region typically contains more than one color. Therefore, color
histograms are used to represent the distributions of colors in images. There are
two general approaches to generating color histograms from images: fized binning
and adaptive binning. The fixed binning approach induces histogram bins by par-
titioning the color space into fixed color bins. Once the bins are derived, they are
fixed and the same binning is applied to all images. On the other hand, adaptive
binning adapts the bins to the actual distributions of the images. As a result,
different binnings are induced for different images.

There are two types of fixed binning schemes: regular partitioning and cluster-
ing. The first method simply partitions the axes of a target color space into regular
intervals, thus producing rectangular bins.?#243 The second method partitions a
color space into a large number of rectangular cells, which are then clustered by a
clustering algorithm, such as k-means, into a smaller number of bins.:15-50

Adaptive binning is similar to color space clustering in that k-means clustering
or its variants are used to induce the bins.?%3” However, the clustering algorithm
is applied to the colors in an image instead of the colors in an entire color space.
Therefore, adaptive binning produces different binning schemes for different images.

Experimental results show that adaptive-binning histograms can represent color
distributions more accurately than can fixed-binning histograms and yet use fewer
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Figure 1. Comparison of mean color errors of regular, clustered, and adaptive histograms.
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Figure 2. Average percentage of empty bins in regular and clustered histograms. Adaptive his-
tograms have no empty bins.

bins and no empty bins?® (Fig. 1, 2). In particular, adaptive histograms can
achieve a mean color error below the human color acceptability threshold of 4.5,4°
which is a threshold below which two colors are regarded as practically identi-
cal. Note that the acceptability threshold is slightly higher than the perceptibility
threshold of 2.2,*> which is the threshold below which two colors are perceptually
indistinguishable.

Although color difference measured using CIE94 in CIELAB color space is per-
ceptually consistent, the difference between color histograms measured by various
dissimilarity measures have not been shown to be perceptually consistent. Em-
pirical tests performed by Puzicha et al.3* and Leow and Li2° confirmed that the
Euclidean distance between color histograms is not as reliable as other measures
are in computing dissimilarity. In particular, the results of Puzicha et al. show
that dissimilarities such as x2, Kullback-Leibler divergence, and Jessen difference
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divergence® (JD) performed better than other measures do for large sample size
(i.e., number of pixels sampled in an image), while Earth Mover’s Distance (EMD),
Kolmogorov-Smirnov, and Cramer/von Mises performed better for small sample
size.

The study of Leow and Li show that JD is most reliable for image retrieval. JD
measures the difference between two histograms G and H, with bin counts g; and
h;, as follows:

gi h;
4G 1) =3 (oton 2+ mton 1) )
where m; = (g; + h;)/2. Although JD is reliable, it can be applied only on fixed-
binning histograms. On the other hand, the weighted correlation dissimilarity 2°
(WC) can be applied to adaptive histograms.

An adaptive histogram H = (n,C,H) is a 3-tuple consisting of a set C of n bins
ci, i =1,...,n, and a set H of corresponding bin counts h; > 0. The similarity
w(b, ¢) between bins b and ¢ is given by a monotonic function inversely related to
the distance d(b, ¢) between them. For color histograms, the weight w(b, ¢) can be
defined in terms of the volume of intersection Vs between the bins:

v 1—§a+ia3if0§a§2
w(b,e) = w(a) = & = 416 (9)

0 otherwise

where aR is the distance between the bins and R is the radius of a bin.
The weighted correlation G - H between histograms G = (m, {b;}, {g:}) and
H = (n,{c;},{h;}) is defined as follows:

m n
G-H:ZZw(bi,cj)gihj . (10)
i=1 j=1
For a histogram H, its norm || H|| = v'H - H, and its normalized form H = H/| H]||.
The similarity s(G, H) between histograms G and H is s(G, H) = G - H, and the
dissimilarity d(G, H) =1 — s(G, H).

The retrieval performance of WC dissimilarity is comparable to that of JD
(Fig. 3). Unlike EMD, which is also applicable to adaptive histograms, WC does
not require an optimization process. It is, thus, more efficient to compute than
EMD.

4 Texture

4.1 Texture Features and Dissimilarity

Commonly used texture features can be divided into two main categories: sta-
tistical and spectral. Statistical features characterize textures in terms of local
statistical measures (such as coarseness, directionality, contrast”), simultaneous

@The formula that Puzicha et al.3* called “Jeffreys divergence” is more commonly known as
“Jessen difference divergence” in Information Theory literature.:7:48
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Figure 3. Precision-recall curves of various combinations of binning methods (c: clustered, dashed
line; a: adaptive, solid line) and dissimilarities (JD: Jessen difference divergence, WC: weighted
correlation, L2: Euclidean, EMD: Earth Mover’s Distance).

autoregressive model 2 (MRSAR), or Markov random field 1° (MRF). In general,
these features are good at modeling random patterns such as sand and pebbles, but
not suitable for modeling structured patterns such as bricks and roof tile.2! Among
them, the statistical features of Tamura et al.*” are used in QBIC,?? and MRSAR
is used in PhotoBook.?!

The spectral approach is based on the response of a set of band-pass filters, typ-
ically 2D Gabor and wavelet filters.? Each filter responds most strongly to the pat-
terns at a specific spatial-frequency and orientation band. These features have been
used in NeTra,?":2® VisualSeek,*? etc. In addition, features derived directly from
Discrete Fourier Transform (DFT) has also been used, for instance, in PhotoBook.2!

Various dissimilarity measures have been defined for computational texture
features, including Euclidean and scaled Euclidean distance,*!, Mahalanobis
distance,?! and weighted mean-variance,?”?® most of which are variations of the
weighted Euclidean distance. As expected, these dissimilarity measures are not
perceptually consistent (see next Section for details).

An interesting exception is Santini and Jain’s Fuzzy Features Contrast model
(FFC).*! FFC is based on Tversky feature contrast model *° which can account
for various peculiarities of human’s perceptual similarity. Santini and Jain applied
FFC to measure similarity of Gabor texture features, and obtained encouraging
results.

4.2 Perceptual Texture Models

The earliest study of human’s perception of texture similarity was conducted by
Tamura et al.*” In their experiments, 48 human subjects were asked to judge the
similarity of texture pairs according to six visual properties, namely, coarseness,
contrast, directionality, line-likeness, regularity, and roughness. Similarity judg-
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ments were measured and each texture was assigned a perceptual rating value
along each of the six visual scales. Due to the combinatorial nature of the task,
only 16 textures were used. Amadasun and King? and Benke et al.? conducted
similar ranking experiments to measure similarity judgments according to various
visual properties including some of the features of Tamura et al. as well as busyness,
complexity, bloblikeness, and texture strength.

The major difficulty with these studies is that the subjects were asked to judge
texture similarity according to subjective visual properties. Unfortunately, the sub-
jects’ interpretations of the meaning of these visual properties are expected to vary
from one person to the next. Therefore, it is uncertain whether the individual
ranking results can be combined into group ranking results that represent the per-
ception of a typical person. The second difficulty is that the ranking results were
measured according to individual visual properties. But, the relative scale between
two visual properties is unknown. For example, one unit difference in coarseness
may not be perceptually equal to one unit difference in regularity. So, the different
visual dimensions cannot be easily combined to form a perceptual texture space.

To avoid these difficulties, Rao and Lohse®® performed an experiment in which
20 subjects were asked to sort 30 textures into as many groups as the subjects
wished such that the textures in each group were perceptually similar. The textures
were sorted based on the subjects’ perception of overall texture similarity without
using subjective visual properties. A co-occurrence matrix of the sorting results was
computed and multidimensional scaling '® was performed to derive a 3D perceptual
space. The experiment was repeated in another study using 56 textures.?¢ Rao
and Lohse concluded that the 3 dimensions of the space strongly correlate with the
visual properties of repetitiveness, orientation, and complexity.

Heaps and Handel'” conducted further studies using the same methodology.
However, they arrived at different conclusions than those of Rao and Lohse. They
concluded that it is not possible to reliably associate a visual property to each
dimension of the texture space. In addition, perception of texture similarity depends
on the context in which the similarity is judged. That is, how similar two textures
appear to humans depends not only on the two textures being judged, but also on
the whole set of textures with which pairwise judgments are made.

Long and Leow2* applied a similar approach to develop a perceptual texture
space. However, they do no attempt to assign visual properties to the dimensions
of the space. In addition, the influence of the context problem is reduced by nor-
malizing the intensity, contrast, scale, and orientation of the textures used in the
psychological experiment. In measuring perceptual distance, both the co-occurrence
matrix and the information measurement of Donderi!! were used.

A comparison of the above perceptual texture spaces show that they are very
consistent with each other (Table 1). Heaps and Handel reported a good correlation
(r = 0.790) with Rao and Lohse’s data.!” The perceptual space of Long and Leow
constructed using co-occurrence has a better correlation with Rao and Lohse’s
space compared to that using Donderi’s information measurement. This is expected
because Rao and Lohse’s space was developed using co-occurrence as well. Table 1
shows that the spaces are mutually consistent, thus establishing the perceptual
texture space as a reliable measurement of human’s perception of texture similarity.
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Table 1. Comparison of various perceptual texture spaces with that of Rao & Lohse. Pearson’s
correlation coefficients show that the spaces are consistent with each others.

perceptual space 3D 4D 5D
Heaps & Handel 0.790 - -
Long & Leow (co-occurrence) | 0.722 | 0.732 | 0.713
Long & Leow (info. measure) | 0.726 | 0.694 | 0.695

Table 2. Assessment of computational texture dissimilarity measures. r = Pearson’s correlation
coefficient; e = mean squared error.

feature distance r e

Tamura Euclidean 0.251 | 0.132
Gabor Euclidean 0.273 | 0.131
Gabor scaled Euclidean | 0.282 | 0.121
Gabor FFC 0.430 | 0.098
MRSAR Euclidean 0.144 | 0.139
MRSAR Mahalanobis 0.061 | 0.152

4.8 Mapping Computational Features

Perceptual consistency of computational dissimilarity measures can be assessed
by comparing them with the distances measured in the perceptual space. The
following features are considered: Tamura’s features, Gabor, and MRSAR. For all
the features, Euclidean distance is used to provide baseline results. In addition,
Gabor is also paired with FFC (following Santini and Jain ') and MRSAR is also
paired with Mahalanobis distance (following Liu and Picard?!).

Table 2 summarizes the results of comparing the computational distances to
the distances measured in the 4-D perceptual texture space of Long and Leow.2*
Gabor feature and Gabor with FFC are most consistent with the perceptual space.
In particular, measuring Gabor similarity with FFC does improve Gabor feature’s
perceptual consistency. Measuring MRSAR similarity with Euclidean distance is
perceptually more consistent than measuring with Mahalanobis distance. The de-
grees of consistency of computational features (r < 0.43) are, however, not very high
compared to those between various perceptual spaces (Table 1, 7 ~ 0.7). Therefore,
it can be concluded that these computational features and similarity measures are
not consistent with human’s perception.

The deficiency of computational dissimilarity measures can be mitigated by
mapping texture features into the perceptual texture space and then measuring
texture dissimilarity in the perceptual space. Long and Leow explored the appli-
cation of neural networks and support vector machines (SVMs) for the mapping
task,?2242% and five test cases were examined:

1. I.: test with new instances not in the training set, canonical scale and orien-
tation
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Table 3. Mean squared errors of texture mapping tests under various conditions. The first three
rows are the results of mapping various features by SVM. The last three rows are the results
of mapping Gabor features. The last two columns show the perceptual consistency of mapping
texture features by SVM under the T, condition: r = Pearson’s correlation coefficient; e = mean
squared error.

mapping tests consistency
1, T, I, Ty R e r
Tamura 0.144 | 0.256 || — — — 0.020 | 0.857
MRSAR 0.096 | 0.244 || — — — 0.019 | 0.859
SVM 0.0052 | 0.216 || 0.244 | 0.245 | 0.240 || 0.019 | 0.859
NN 0.0099 | 0.238 || 0.0074 | 0.148 | 0.016 || — —
NN+SVM | 0.0065 | 0.226 || 0.0061 | 0.143 | 0.012 || — —

2. T,: test with new texture types not in the training set, canonical scale and
orientation

3. I,: test with new instances not in the training set, variable scale and orientation

4. T,: test with new texture types not in the training set, variable scale and
orientation

5. R: test with randomly selected samples not in the training set

Table 3 summarizes the testing results. Tamura features and MRSAR were
tested only for the cases of canonical scale and orientation because it is unknown
how to perform scale- and orientation-invariant mapping of these features. As
expected, for all the features, testing errors for new instances are smaller than those
for new texture types. Moreover, being most consistent with the perceptual space
(Table 2), Gabor features can be mapped to the perceptual space more accurately
than other features.

For the cases of canonical scale and orientation (I., T,), SVM can map Ga-
bor features more accurately than other texture features to the perceptual texture
space. The hybrid system (NN+SVM) is composed of a convolutional neural net-
work, for performing invariant mapping, and four SVMs, for performing perceptual
mapping to the four dimensions of the perceptual space.?® The hybrid system per-
forms better than pure neural network but marginally poorer than SVM. This result
is expected since pure SVM regression takes the original Gabor features as the in-
puts. On the other hand, the SVMs of the hybrid system take the outputs of the
convolutional network as the inputs, and inevitably, some information is loss by
network processing.

For the cases of variable scale and orientation (I, T}, R), the hybrid system
performs much better than pure SVM because the hybrid system performs invariant
mapping whereas pure SVM does not. It’s performance is also better than that
of pure neural network. As a whole, the integration of the convolutional neural
network and SVM produces better overall mapping accuracy than individual neural
network and individual SVM.
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After mapping computational features to perceptual space, one would expect the
mapped coordinates to be more perceptually consistent. An evaluation of the com-
putational features mapped by SVM is performed for the test case of new texture
types under canonical scale and orientation T,.. The distance correlation results are
shown in the last two columns of Table 3. Comparing Table 3 with Table 2 shows
that mapping computational features to perceptual space does improve the percep-
tual consistency of the features. In summary, it can be concluded that accurate
mapping to the perceptual space can be achieved, at least for Gabor features.

4.4 Incremental Perceptual Space

To improve retrieval performance, relevance feedback technique is often used to tune
computational similarity measures.?26:32:39:40:44 Typically, each new query resets
the similarity measure back to its initial state, which is not perceptually consistent.
Subsequent feedback for the query is used to adjust the weighting factors of the
similarity measure to improve retrieval performance.

The main difficulty with this method is that very few users are willing to go
through endless iterations of feedback in hope of retrieving the best results. A
successful relevance feedback process must yield positive results within three or four
iterations.'® So, feedback methods that require many iterations to improve retrieval
performance are not practically useful. Another shortcoming of this method is that
previous feedback results are typically not retained in the system. Each new query
starts with a similarity measure that is not perceptually consistent. The users have
to go through the relevance feedback process even if the same feedback information
has been given in the past. This problem is partially alleviated with user profiling.

A direct method of improving perceptual consistency is to construct a perceptual
space of images using psychological experiments (such as the methods discussed in
Section 4.2). The Euclidean distances measured in this perceptual space would be
consistent with human’s judgments. Then, images can be mapped to the perceptual
space and retrieval performed in the perceptual space would yield results that are
consistent with human’s judgments.

This direct approach is appropriate if the construction of the perceptual space
involves a small data set, such as the 100 or so images in the Brodatz album. For
general image retrieval applications, it is not feasible to construct a perceptual
space using thousands of images because it is practically impossible to conduct
psychological experiments involving such a large number of images.

Long and Leow presented a method of incrementally measuring perceptual dis-
tances and constructing perceptual space based on relevance feedback.2? Only a
small number of relevant judgments is required in each feedback iteration. Feed-
back results from multiple queries are accumulated and incrementally update the
measurements of perceptual distances between images. If the feedback results are
provided by the same user, then the perceptual distances measured would be con-
sistent with a single user’s perception. Otherwise, the measurements would reflect
the average perception of typical users. In the case of a single user, the measure-
ments would eventually stabilize if the user’s relevant judgment remains consistent
over time. Otherwise, the measurements would adapt to the changes in the user’s
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Figure 4. Precision-recall curves of the incremental space at stages 1 to 4. As information coverage
increases, the precision-recall curve of the space shifts towards the upper bound achieved by direct
mapping to PTS using SVM.

relevant judgment.

Figure 4 plots the results of testing the incremental space construction method
at various incremental stages. The precision-recall curve of the SVM model corre-
sponds to the case that all the texture images in the database have been mapped to
the perceptual space. This is the condition of 100% information coverage and marks
the best performance achievable by the incremental method. The results show that
the incremental method indeed improves retrieval performance over time.

Figure 5 plots the perceptual consistency of the constructed space at various
percentage of information coverage. In addition, the operating points of four com-
putational texture models are marked in the figure according to their perceptual
consistency. It can be seen that, below 5% information coverage, the incremental
space is a Euclidean space. At 20% coverage, the space shifts to an FFC space.
It becomes a highly perceptually consistent space at 80% coverage. In between
about 30% and 70% coverage, the space behaves as a mixture of computational
and perceptual spaces. Therefore, the incremental space (marked as squares in
Fig. 5) undergoes phase shifts from computational towards perceptual as more and
more computational distances are replaced by true perceptual distances. This phase
shifting property offers another advantage in addition to making the constructed
space perceptually consistent. As a user’s relevance judgment changes over time,
the space can also change accordingly, thus adapting to the user’s changing need.

5 Beyond Single Feature

Several conclusions can be drawn from the above discussion:

¢ Fuclidean distance is an unreliable and inaccurate measure of feature and image
dissimilarity.

e Computational dissimilarity measures are not perceptually consistent, though
some of them perform better than others in image retrieval.
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Figure 5. Phase shifts of incremental space. The line indicates the degree of perceptual consistency
at various percentage of information coverage. The labels along the line mark the positions of
the four texture models (E: Euclidean, SE: scaled Euclidean, FFC, and SVM mapping) according
to their perceptual consistency. At low coverage, the incrementally constructed space behaves as
a computational space. It shifts towards a mixed space at moderate coverage, and a perceptual
space at high coverage.

e The components of a feature cannot be considered as forming the orthogonal
dimensions of a multidimensional feature space that is consistent with human’s
perception. For instance, the various bins of a color histograms are not mutu-
ally independent. Likewise, the various texture measurements do not form a
perceptually consistent texture space.

Knowing the above, it is not surprising that combining different features to form a
linear vector space cannot support perceptually consistent retrieval. Unfortunately,
most existing systems adopt this method of combining different features due to its
mathematical simplicity.

The problem of perceptually consistent retrieval is further complicated by the
fact that many interesting images contain more than one region or object of interest.
For example, a beach scene image contains regions of sky, sea, sand, and often
human and other objects. Moreover, the same image can be interpreted differently
by different users in different application context.

To deal with these complications in an unbiased manner, the Bayesian approach
seems to be a natural choice.

1. Training Stage
An image I contains a set of features fi,..., f. Given a set of training im-
ages, which are categorized into various perceptually meaningful classes ¢; (also
called semantic classes), estimate the probability P(c;|f1,..., fn) that a set of

)

features f; reliably characterizes a class ¢;. Since different feature types are
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independent of each other, we have:

Ciﬂﬂfj
P(Ciafla---afn)_ J

HP(fj) - H\fj\

The set ¢; N ﬂj fj can be computed recursively from the sets c; N f;. That is,
the various feature types can be decoupled and the sets ¢; N f; can be estimated
according to each individual feature type. This method overcomes the problem
of arbitrarily combining feature types to form a vector space. After training,
each image I; can be associated with a semantic class ¢; by the probability
P(Cl |I] )

P(cilfi,- s fn) = (11)

2. Retrieval by Category
Given a query @) which is a single semantic class, the images I; can be retrieved
by ordering them in decreasing order of P(Q|I;).

3. Retrieval by Example
Given a query @) which contains sample features f;, estimate for each semantic
class ¢; the probability P(c¢;|Q) = P(cilf1,. .., fn). Next, compare the prob-
abilities P(c;|Q) of the query @ with the probabilities P(c;|I;) of the images
I; using an appropriate dissimilarity measure, for instance, JD (Equation 8).
Finally, the images can be retrieved by ordering them in increasing order of
dissimilarity.

The estimation of P(c;|f1,..., fn) is certainly a non-trivial task. At the every
least, efficient algorithms will be needed because brute force methods will be com-
putationally too expensive. Nevertheless, the above approach is viable as it can
successfully combine various features without resorting to an unreliable combined
feature space and can relate low-level features to semantically meaningful classes.

6 Conclusion

Perceptual consistency is important for supporting good image retrieval perfor-
mance but is very difficult to achieve. Currently, difference between individual
color can be measured in a perceptually uniform color space, but the dissimilarity
measure between color histograms have not been shown to be perceptually consis-
tent. Nevertheless, empirical tests have shown that non-Euclidean measures are
more reliable than Euclidean ones.

In the case of texture, known perceptual texture spaces have yielded consistent
results. As for color histograms, computational dissimilarity measures of texture are
not consistent with the distances measured in the perceptual space. Fortunately,
it is possible to map computational features, particularly Gabor features, to a
perceptual space accurately. In this way, texture difference can be measured in the
perceptual space to yield perceptually consistent dissimilarity measurement.
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It is observed that different feature types, even different components of a feature,

cannot be regarded as forming the orthogonal dimensions of a multidimensional
combined feature space. Instead, a Bayesian approach is proposed to combine
the features in an unbiased manner, which can also relate low-level features to
semantically meaningful classes. In general, an image can contain more than one
interesting regions. It would be necessary to extend the method to matching a
query with images containing multiple regions.
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