
PERCEPTUAL CONSISTENCY FOR IMAGE RETRIEVALWEE KHENG LEOWDepartment of Computer S
ien
e, National University of Singapore,3 S
ien
e Drive 2, Singapore 117543, Singapore.leowwk�
omp.nus.edu.sgAn ideal image retrieval system should retrieve images that satisfy the user's need,and should, therefore, measure image similarity in a manner 
onsistent with hu-man's per
eption. Unfortunately, per
eptual 
onsisten
y is very diÆ
ult to a
hieve,even for simple features su
h as 
olor and texture. This paper summarizes 
urrentresults of per
eptual 
onsisten
y and suggests possible future work in this dire
-tion. Striving for per
eptual 
onsisten
y should be a goal of the next-generationmultimedia retrieval systems.1 Introdu
tionAn ideal image retrieval system should retrieve images that satisfy the user's need.It should, therefore, measure image similarity in a manner 
onsistent with human'sper
eption. Unfortunately, this goal turns out to be very diÆ
ult to a
hieve. Thisproblem leads to retrieval results that do not always meet the users' expe
tations.38Existing systems often make use of relevan
e feedba
k te
hniques to improve thequality of the retrieved results.26;32;40 However, very few users are willing to gothrough endless iterations of feedba
k in hope of retrieving the best results. More-over, previous feedba
k results are typi
ally not retained in the system and ea
h newquery always begins in an unre�ned state. A user has to go through the feedba
kpro
ess even if the same feedba
k information has been given in the past.Striving for per
eptual 
onsisten
y should be the goal of a good image retrievalsystem. At present, progress has been made only for simple features su
h as 
olorand texture. This arti
le summarizes 
urrent results of per
eptual 
onsisten
y andsuggests possible future work in this dire
tion.2 Overview of Per
eptual Consisten
yThere are many ways of de�ning per
eptual 
onsisten
y. This se
tion dis
ussessome 
ommon de�nitions. Let pij denote the per
eptual distan
e between samplesi and j, and dij denote the 
orresponding measured or 
omputational distan
e. Asimple notion of per
eptual 
onsisten
y is that dij is proportional to pij . That is,there exists a linear fun
tion f su
h thatpij = f(dij); 8i; j : (1)Then, per
eptual 
onsisten
y 
an be measured in terms of the mean squared error(MSE) e of linear regression:e = 1N Xi;j (pij � f(dij))2 (2)where N is the number of sample pairs. The smaller the MSE, the better is the
onsisten
y. A perfe
t 
onsisten
y has an MSE of 0.book-leow: submitted to World S
ienti�
 on February 20, 2002 1



A less stringent notion of per
eptual 
onsisten
y is to require that f be a mono-toni
 fun
tion whi
h 
an be nonlinear. The problem with this de�nition is that itis diÆ
ult to determine the best nonlinear fun
tion to use in pra
ti
e.An alternative de�nition is to require that dij be statisti
ally 
orrelated to pij .In this 
ase, it is useful to transform the populations fdijg and fpijg to equivalentzero-mean unit-varian
e populations fd0ijg and fp0ijg:p0ij = pij � �p�p ; d0ij = dij � �d�d (3)where �p and �d are the means and �p and �d are the standard deviations of the pop-ulations. Then, per
eptual 
onsisten
y 
an be measured in terms of the 
orrelationr: r =Xi;j p0ij d0ij : (4)Substituting Eq. 3 into Eq. 4 yields the Pearson's 
orrelation 
oeÆ
ient:r = Xi;j (pij � �p )(dij � �d )24Xi;j (pij � �p )2Xi;j (dij � �d )2351=2 : (5)The 
oeÆ
ient r ranges from �1 to +1.With perfe
t 
onsisten
y (e = 0 or r = 1), we obtain the following 
ondition:dij � dkl ) pij � pkl for any samples i; j; k; l: (6)That is, if perfe
t 
onsisten
y is a
hieved, 
omputational similarity would implyper
eptual similarity.3 Color3.1 Color Spa
es and Color Di�eren
esVarious 
olor spa
es have been used in image retrieval. The more 
ommonly usedspa
es in
lude HSV, CIELUV, and CIELAB. The HSV spa
e 
onsists of hue, sat-uration, and value dimensions. It is used in VisualSeek 43 and Pi
Hunter,9 and byVailaya et al.50 CIELUV and CIELAB are 
olor spa
es developed by the Interna-tional Commission on Illumination (Commission International de l'�E
lairage, CIE).They 
onsist of a luminan
e dimension L� and two 
hromati
 dimensions namelyu�; v� and a�; b�. Among these three spa
es, CIELUV and CIELAB are more per-
eptually uniform than HSV.4 CIELUV is used in ImageRover 42 and by Mehtre etal.30 while CIELAB is used in Qui
klook.8In re
ent years, there is also a move to standardize the 
onversion formulabetween RGB and various CIE spa
es. This e�ort gives rise to the so-
alled sRGB,whi
h is a proposed standard or default RGB 
olor spa
e for the internet.1;46 Itbook-leow: submitted to World S
ienti�
 on February 20, 2002 2




aptures the averaged 
hara
teristi
s of most 
omputer monitors. With sRGB,there is now a unique formula for 
onverting to and from CIE 
olor values.The di�eren
e between two 
olors is typi
ally measured as the Eu
lidean dis-tan
e in the target 
olor spa
e. Several improvements over the CIELAB Eu-
lidean 
olor di�eren
e equation have been proposed, in
luding CIE94, CMC, andBFD.4 Re
ent psy
hologi
al tests show that these 
olor di�eren
e equations aremore per
eptually uniform than Eu
lidean distan
e in the CIELAB and CIELUVspa
es.4;14;18;31;45 In parti
ular, CIE94 has a simpler form, whi
h is a weightedEu
lidean distan
e:4�E�94 = "� �L�kLSL�2 +��C�abkCSC�2 +��H�abkHSH �2#1=2 (7)where �L�, �C�ab, and �H�ab are the di�eren
es in lightness, 
hroma, and hue,SL = 1, SC = 1 + 0:045 �C�ab, SH = 1 + 0:015 �C�ab, and kL = kC = kH = 1 forreferen
e 
onditions. The variable �C�ab is the geometri
 mean between the 
hromavalues of the two 
olors, i.e., �C�ab =qC�ab;1C�ab;2.In addition to these 
olors spa
es, the modi�ed Munsell HVC spa
e, whi
h
onsists of hue, value, and 
hromati
ity dimensions, and is used in QBIC 33 andby Gong et al.13 It is per
eptually quite uniform, but is less 
ommonly used thanCIELAB. Gong et al. uses the Godlove equation 12 to measure 
olor di�eren
e. Itwas derived by Godlove to improve the per
eptual uniformity of 
olor di�eren
emeasured in the Munsell spa
e. Re
ent psy
hologi
al studies show that CIE94 ismore a

urate in measuring human 
olor per
eption than the modi�ed Judd andAdams-Ni
kerson formulae,18 whi
h are similar to the Godlove equation.3.2 Color Histograms and DissimilarityAn image or image region typi
ally 
ontains more than one 
olor. Therefore, 
olorhistograms are used to represent the distributions of 
olors in images. There aretwo general approa
hes to generating 
olor histograms from images: �xed binningand adaptive binning. The �xed binning approa
h indu
es histogram bins by par-titioning the 
olor spa
e into �xed 
olor bins. On
e the bins are derived, they are�xed and the same binning is applied to all images. On the other hand, adaptivebinning adapts the bins to the a
tual distributions of the images. As a result,di�erent binnings are indu
ed for di�erent images.There are two types of �xed binning s
hemes: regular partitioning and 
luster-ing. The �rst method simply partitions the axes of a target 
olor spa
e into regularintervals, thus produ
ing re
tangular bins.9;42;43 The se
ond method partitions a
olor spa
e into a large number of re
tangular 
ells, whi
h are then 
lustered by a
lustering algorithm, su
h as k-means, into a smaller number of bins.8;15;50Adaptive binning is similar to 
olor spa
e 
lustering in that k-means 
lusteringor its variants are used to indu
e the bins.20;37 However, the 
lustering algorithmis applied to the 
olors in an image instead of the 
olors in an entire 
olor spa
e.Therefore, adaptive binning produ
es di�erent binning s
hemes for di�erent images.Experimental results show that adaptive-binning histograms 
an represent 
olordistributions more a

urately than 
an �xed-binning histograms and yet use fewerbook-leow: submitted to World S
ienti�
 on February 20, 2002 3
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Figure 1. Comparison of mean 
olor errors of regular, 
lustered, and adaptive histograms.
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Figure 2. Average per
entage of empty bins in regular and 
lustered histograms. Adaptive his-tograms have no empty bins.bins and no empty bins 20 (Fig. 1, 2). In parti
ular, adaptive histograms 
ana
hieve a mean 
olor error below the human 
olor a

eptability threshold of 4.5,45whi
h is a threshold below whi
h two 
olors are regarded as pra
ti
ally identi-
al. Note that the a

eptability threshold is slightly higher than the per
eptibilitythreshold of 2.2,45 whi
h is the threshold below whi
h two 
olors are per
eptuallyindistinguishable.Although 
olor di�eren
e measured using CIE94 in CIELAB 
olor spa
e is per-
eptually 
onsistent, the di�eren
e between 
olor histograms measured by variousdissimilarity measures have not been shown to be per
eptually 
onsistent. Em-piri
al tests performed by Puzi
ha et al.34 and Leow and Li 20 
on�rmed that theEu
lidean distan
e between 
olor histograms is not as reliable as other measuresare in 
omputing dissimilarity. In parti
ular, the results of Puzi
ha et al. showthat dissimilarities su
h as �2, Kullba
k-Leibler divergen
e, and Jessen di�eren
ebook-leow: submitted to World S
ienti�
 on February 20, 2002 4



divergen
ea (JD) performed better than other measures do for large sample size(i.e., number of pixels sampled in an image), while Earth Mover's Distan
e (EMD),Kolmogorov-Smirnov, and Cramer/von Mises performed better for small samplesize.The study of Leow and Li show that JD is most reliable for image retrieval. JDmeasures the di�eren
e between two histograms G and H , with bin 
ounts gi andhi, as follows: d(G;H) =Xi �gi log gimi + hi log himi� (8)where mi = (gi + hi)=2. Although JD is reliable, it 
an be applied only on �xed-binning histograms. On the other hand, the weighted 
orrelation dissimilarity 20(WC) 
an be applied to adaptive histograms.An adaptive histogram H = (n; C;H) is a 3-tuple 
onsisting of a set C of n bins
i, i = 1; : : : ; n, and a set H of 
orresponding bin 
ounts hi � 0. The similarityw(b; 
) between bins b and 
 is given by a monotoni
 fun
tion inversely related tothe distan
e d(b; 
) between them. For 
olor histograms, the weight w(b; 
) 
an bede�ned in terms of the volume of interse
tion Vs between the bins:w(b; 
) = w(�) = VsV =8><>: 1� 34�+ 116�3 if 0 � � � 20 otherwise (9)where �R is the distan
e between the bins and R is the radius of a bin.The weighted 
orrelation G � H between histograms G = (m; fbig; fgig) andH = (n; f
ig; fhig) is de�ned as follows:G �H = mXi=1 nXj=1w(bi; 
j) gihj : (10)For a histogramH , its norm kHk = pH �H , and its normalized form H = H=kHk.The similarity s(G;H) between histograms G and H is s(G;H) = G �H, and thedissimilarity d(G;H) = 1� s(G;H).The retrieval performan
e of WC dissimilarity is 
omparable to that of JD(Fig. 3). Unlike EMD, whi
h is also appli
able to adaptive histograms, WC doesnot require an optimization pro
ess. It is, thus, more eÆ
ient to 
ompute thanEMD.4 Texture4.1 Texture Features and DissimilarityCommonly used texture features 
an be divided into two main 
ategories: sta-tisti
al and spe
tral. Statisti
al features 
hara
terize textures in terms of lo
alstatisti
al measures (su
h as 
oarseness, dire
tionality, 
ontrast 47), simultaneousaThe formula that Puzi
ha et al.34 
alled \Je�reys divergen
e" is more 
ommonly known as\Jessen di�eren
e divergen
e" in Information Theory literature.6;7;48book-leow: submitted to World S
ienti�
 on February 20, 2002 5
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Figure 3. Pre
ision-re
all 
urves of various 
ombinations of binning methods (
: 
lustered, dashedline; a: adaptive, solid line) and dissimilarities (JD: Jessen di�eren
e divergen
e, WC: weighted
orrelation, L2: Eu
lidean, EMD: Earth Mover's Distan
e).autoregressive model 29 (MRSAR), or Markov random �eld 10 (MRF). In general,these features are good at modeling random patterns su
h as sand and pebbles, butnot suitable for modeling stru
tured patterns su
h as bri
ks and roof tile.21 Amongthem, the statisti
al features of Tamura et al.47 are used in QBIC,33 and MRSARis used in PhotoBook.21The spe
tral approa
h is based on the response of a set of band-pass �lters, typ-i
ally 2D Gabor and wavelet �lters.5 Ea
h �lter responds most strongly to the pat-terns at a spe
i�
 spatial-frequen
y and orientation band. These features have beenused in NeTra,27;28 VisualSeek,43 et
. In addition, features derived dire
tly fromDis
rete Fourier Transform (DFT) has also been used, for instan
e, in PhotoBook.21Various dissimilarity measures have been de�ned for 
omputational texturefeatures, in
luding Eu
lidean and s
aled Eu
lidean distan
e,41, Mahalanobisdistan
e,21 and weighted mean-varian
e,27;28 most of whi
h are variations of theweighted Eu
lidean distan
e. As expe
ted, these dissimilarity measures are notper
eptually 
onsistent (see next Se
tion for details).An interesting ex
eption is Santini and Jain's Fuzzy Features Contrast model(FFC).41 FFC is based on Tversky feature 
ontrast model 49 whi
h 
an a

ountfor various pe
uliarities of human's per
eptual similarity. Santini and Jain appliedFFC to measure similarity of Gabor texture features, and obtained en
ouragingresults.4.2 Per
eptual Texture ModelsThe earliest study of human's per
eption of texture similarity was 
ondu
ted byTamura et al.47 In their experiments, 48 human subje
ts were asked to judge thesimilarity of texture pairs a

ording to six visual properties, namely, 
oarseness,
ontrast, dire
tionality, line-likeness, regularity, and roughness. Similarity judg-book-leow: submitted to World S
ienti�
 on February 20, 2002 6



ments were measured and ea
h texture was assigned a per
eptual rating valuealong ea
h of the six visual s
ales. Due to the 
ombinatorial nature of the task,only 16 textures were used. Amadasun and King 2 and Benke et al.3 
ondu
tedsimilar ranking experiments to measure similarity judgments a

ording to variousvisual properties in
luding some of the features of Tamura et al. as well as busyness,
omplexity, bloblikeness, and texture strength.The major diÆ
ulty with these studies is that the subje
ts were asked to judgetexture similarity a

ording to subje
tive visual properties. Unfortunately, the sub-je
ts' interpretations of the meaning of these visual properties are expe
ted to varyfrom one person to the next. Therefore, it is un
ertain whether the individualranking results 
an be 
ombined into group ranking results that represent the per-
eption of a typi
al person. The se
ond diÆ
ulty is that the ranking results weremeasured a

ording to individual visual properties. But, the relative s
ale betweentwo visual properties is unknown. For example, one unit di�eren
e in 
oarsenessmay not be per
eptually equal to one unit di�eren
e in regularity. So, the di�erentvisual dimensions 
annot be easily 
ombined to form a per
eptual texture spa
e.To avoid these diÆ
ulties, Rao and Lohse 35 performed an experiment in whi
h20 subje
ts were asked to sort 30 textures into as many groups as the subje
tswished su
h that the textures in ea
h group were per
eptually similar. The textureswere sorted based on the subje
ts' per
eption of overall texture similarity withoutusing subje
tive visual properties. A 
o-o

urren
e matrix of the sorting results was
omputed and multidimensional s
aling 16 was performed to derive a 3D per
eptualspa
e. The experiment was repeated in another study using 56 textures.36 Raoand Lohse 
on
luded that the 3 dimensions of the spa
e strongly 
orrelate with thevisual properties of repetitiveness, orientation, and 
omplexity.Heaps and Handel 17 
ondu
ted further studies using the same methodology.However, they arrived at di�erent 
on
lusions than those of Rao and Lohse. They
on
luded that it is not possible to reliably asso
iate a visual property to ea
hdimension of the texture spa
e. In addition, per
eption of texture similarity dependson the 
ontext in whi
h the similarity is judged. That is, how similar two texturesappear to humans depends not only on the two textures being judged, but also onthe whole set of textures with whi
h pairwise judgments are made.Long and Leow 24 applied a similar approa
h to develop a per
eptual texturespa
e. However, they do no attempt to assign visual properties to the dimensionsof the spa
e. In addition, the in
uen
e of the 
ontext problem is redu
ed by nor-malizing the intensity, 
ontrast, s
ale, and orientation of the textures used in thepsy
hologi
al experiment. In measuring per
eptual distan
e, both the 
o-o

urren
ematrix and the information measurement of Donderi 11 were used.A 
omparison of the above per
eptual texture spa
es show that they are very
onsistent with ea
h other (Table 1). Heaps and Handel reported a good 
orrelation(r = 0:790) with Rao and Lohse's data.17 The per
eptual spa
e of Long and Leow
onstru
ted using 
o-o

urren
e has a better 
orrelation with Rao and Lohse'sspa
e 
ompared to that using Donderi's information measurement. This is expe
tedbe
ause Rao and Lohse's spa
e was developed using 
o-o

urren
e as well. Table 1shows that the spa
es are mutually 
onsistent, thus establishing the per
eptualtexture spa
e as a reliable measurement of human's per
eption of texture similarity.book-leow: submitted to World S
ienti�
 on February 20, 2002 7



Table 1. Comparison of various per
eptual texture spa
es with that of Rao & Lohse. Pearson's
orrelation 
oeÆ
ients show that the spa
es are 
onsistent with ea
h others.per
eptual spa
e 3D 4D 5DHeaps & Handel 0.790 { {Long & Leow (
o-o

urren
e) 0.722 0.732 0.713Long & Leow (info. measure) 0.726 0.694 0.695Table 2. Assessment of 
omputational texture dissimilarity measures. r = Pearson's 
orrelation
oeÆ
ient; e = mean squared error.feature distan
e r eTamura Eu
lidean 0.251 0.132Gabor Eu
lidean 0.273 0.131Gabor s
aled Eu
lidean 0.282 0.121Gabor FFC 0.430 0.098MRSAR Eu
lidean 0.144 0.139MRSAR Mahalanobis 0.061 0.1524.3 Mapping Computational FeaturesPer
eptual 
onsisten
y of 
omputational dissimilarity measures 
an be assessedby 
omparing them with the distan
es measured in the per
eptual spa
e. Thefollowing features are 
onsidered: Tamura's features, Gabor, and MRSAR. For allthe features, Eu
lidean distan
e is used to provide baseline results. In addition,Gabor is also paired with FFC (following Santini and Jain 41) and MRSAR is alsopaired with Mahalanobis distan
e (following Liu and Pi
ard 21).Table 2 summarizes the results of 
omparing the 
omputational distan
es tothe distan
es measured in the 4-D per
eptual texture spa
e of Long and Leow.24Gabor feature and Gabor with FFC are most 
onsistent with the per
eptual spa
e.In parti
ular, measuring Gabor similarity with FFC does improve Gabor feature'sper
eptual 
onsisten
y. Measuring MRSAR similarity with Eu
lidean distan
e isper
eptually more 
onsistent than measuring with Mahalanobis distan
e. The de-grees of 
onsisten
y of 
omputational features (r � 0:43) are, however, not very high
ompared to those between various per
eptual spa
es (Table 1, r � 0:7). Therefore,it 
an be 
on
luded that these 
omputational features and similarity measures arenot 
onsistent with human's per
eption.The de�
ien
y of 
omputational dissimilarity measures 
an be mitigated bymapping texture features into the per
eptual texture spa
e and then measuringtexture dissimilarity in the per
eptual spa
e. Long and Leow explored the appli-
ation of neural networks and support ve
tor ma
hines (SVMs) for the mappingtask,22;24;25 and �ve test 
ases were examined:1. I
: test with new instan
es not in the training set, 
anoni
al s
ale and orien-tationbook-leow: submitted to World S
ienti�
 on February 20, 2002 8



Table 3. Mean squared errors of texture mapping tests under various 
onditions. The �rst threerows are the results of mapping various features by SVM. The last three rows are the resultsof mapping Gabor features. The last two 
olumns show the per
eptual 
onsisten
y of mappingtexture features by SVM under the T
 
ondition: r = Pearson's 
orrelation 
oeÆ
ient; e = meansquared error. mapping tests 
onsisten
yI
 T
 Iv Tv R e rTamura 0.144 0.256 | | | 0.020 0.857MRSAR 0.096 0.244 | | | 0.019 0.859SVM 0.0052 0.216 0.244 0.245 0.240 0.019 0.859NN 0.0099 0.238 0.0074 0.148 0.016 | |NN+SVM 0.0065 0.226 0.0061 0.143 0.012 | |2. T
: test with new texture types not in the training set, 
anoni
al s
ale andorientation3. Iv : test with new instan
es not in the training set, variable s
ale and orientation4. Tv: test with new texture types not in the training set, variable s
ale andorientation5. R: test with randomly sele
ted samples not in the training setTable 3 summarizes the testing results. Tamura features and MRSAR weretested only for the 
ases of 
anoni
al s
ale and orientation be
ause it is unknownhow to perform s
ale- and orientation-invariant mapping of these features. Asexpe
ted, for all the features, testing errors for new instan
es are smaller than thosefor new texture types. Moreover, being most 
onsistent with the per
eptual spa
e(Table 2), Gabor features 
an be mapped to the per
eptual spa
e more a

uratelythan other features.For the 
ases of 
anoni
al s
ale and orientation (I
, T
), SVM 
an map Ga-bor features more a

urately than other texture features to the per
eptual texturespa
e. The hybrid system (NN+SVM) is 
omposed of a 
onvolutional neural net-work, for performing invariant mapping, and four SVMs, for performing per
eptualmapping to the four dimensions of the per
eptual spa
e.25 The hybrid system per-forms better than pure neural network but marginally poorer than SVM. This resultis expe
ted sin
e pure SVM regression takes the original Gabor features as the in-puts. On the other hand, the SVMs of the hybrid system take the outputs of the
onvolutional network as the inputs, and inevitably, some information is loss bynetwork pro
essing.For the 
ases of variable s
ale and orientation (Iv , Tv, R), the hybrid systemperforms mu
h better than pure SVM be
ause the hybrid system performs invariantmapping whereas pure SVM does not. It's performan
e is also better than thatof pure neural network. As a whole, the integration of the 
onvolutional neuralnetwork and SVM produ
es better overall mapping a

ura
y than individual neuralnetwork and individual SVM.book-leow: submitted to World S
ienti�
 on February 20, 2002 9



After mapping 
omputational features to per
eptual spa
e, one would expe
t themapped 
oordinates to be more per
eptually 
onsistent. An evaluation of the 
om-putational features mapped by SVM is performed for the test 
ase of new texturetypes under 
anoni
al s
ale and orientation T
. The distan
e 
orrelation results areshown in the last two 
olumns of Table 3. Comparing Table 3 with Table 2 showsthat mapping 
omputational features to per
eptual spa
e does improve the per
ep-tual 
onsisten
y of the features. In summary, it 
an be 
on
luded that a

uratemapping to the per
eptual spa
e 
an be a
hieved, at least for Gabor features.4.4 In
remental Per
eptual Spa
eTo improve retrieval performan
e, relevan
e feedba
k te
hnique is often used to tune
omputational similarity measures.9;26;32;39;40;44 Typi
ally, ea
h new query resetsthe similarity measure ba
k to its initial state, whi
h is not per
eptually 
onsistent.Subsequent feedba
k for the query is used to adjust the weighting fa
tors of thesimilarity measure to improve retrieval performan
e.The main diÆ
ulty with this method is that very few users are willing to gothrough endless iterations of feedba
k in hope of retrieving the best results. Asu

essful relevan
e feedba
k pro
ess must yield positive results within three or fouriterations.19 So, feedba
k methods that require many iterations to improve retrievalperforman
e are not pra
ti
ally useful. Another short
oming of this method is thatprevious feedba
k results are typi
ally not retained in the system. Ea
h new querystarts with a similarity measure that is not per
eptually 
onsistent. The users haveto go through the relevan
e feedba
k pro
ess even if the same feedba
k informationhas been given in the past. This problem is partially alleviated with user pro�ling.A dire
t method of improving per
eptual 
onsisten
y is to 
onstru
t a per
eptualspa
e of images using psy
hologi
al experiments (su
h as the methods dis
ussed inSe
tion 4.2). The Eu
lidean distan
es measured in this per
eptual spa
e would be
onsistent with human's judgments. Then, images 
an be mapped to the per
eptualspa
e and retrieval performed in the per
eptual spa
e would yield results that are
onsistent with human's judgments.This dire
t approa
h is appropriate if the 
onstru
tion of the per
eptual spa
einvolves a small data set, su
h as the 100 or so images in the Brodatz album. Forgeneral image retrieval appli
ations, it is not feasible to 
onstru
t a per
eptualspa
e using thousands of images be
ause it is pra
ti
ally impossible to 
ondu
tpsy
hologi
al experiments involving su
h a large number of images.Long and Leow presented a method of in
rementally measuring per
eptual dis-tan
es and 
onstru
ting per
eptual spa
e based on relevan
e feedba
k.23 Only asmall number of relevant judgments is required in ea
h feedba
k iteration. Feed-ba
k results from multiple queries are a

umulated and in
rementally update themeasurements of per
eptual distan
es between images. If the feedba
k results areprovided by the same user, then the per
eptual distan
es measured would be 
on-sistent with a single user's per
eption. Otherwise, the measurements would re
e
tthe average per
eption of typi
al users. In the 
ase of a single user, the measure-ments would eventually stabilize if the user's relevant judgment remains 
onsistentover time. Otherwise, the measurements would adapt to the 
hanges in the user'sbook-leow: submitted to World S
ienti�
 on February 20, 2002 10
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Figure 4. Pre
ision-re
all 
urves of the in
remental spa
e at stages 1 to 4. As information 
overagein
reases, the pre
ision-re
all 
urve of the spa
e shifts towards the upper bound a
hieved by dire
tmapping to PTS using SVM.relevant judgment.Figure 4 plots the results of testing the in
remental spa
e 
onstru
tion methodat various in
remental stages. The pre
ision-re
all 
urve of the SVM model 
orre-sponds to the 
ase that all the texture images in the database have been mapped tothe per
eptual spa
e. This is the 
ondition of 100% information 
overage and marksthe best performan
e a
hievable by the in
remental method. The results show thatthe in
remental method indeed improves retrieval performan
e over time.Figure 5 plots the per
eptual 
onsisten
y of the 
onstru
ted spa
e at variousper
entage of information 
overage. In addition, the operating points of four 
om-putational texture models are marked in the �gure a

ording to their per
eptual
onsisten
y. It 
an be seen that, below 5% information 
overage, the in
rementalspa
e is a Eu
lidean spa
e. At 20% 
overage, the spa
e shifts to an FFC spa
e.It be
omes a highly per
eptually 
onsistent spa
e at 80% 
overage. In betweenabout 30% and 70% 
overage, the spa
e behaves as a mixture of 
omputationaland per
eptual spa
es. Therefore, the in
remental spa
e (marked as squares inFig. 5) undergoes phase shifts from 
omputational towards per
eptual as more andmore 
omputational distan
es are repla
ed by true per
eptual distan
es. This phaseshifting property o�ers another advantage in addition to making the 
onstru
tedspa
e per
eptually 
onsistent. As a user's relevan
e judgment 
hanges over time,the spa
e 
an also 
hange a

ordingly, thus adapting to the user's 
hanging need.5 Beyond Single FeatureSeveral 
on
lusions 
an be drawn from the above dis
ussion:� Eu
lidean distan
e is an unreliable and ina

urate measure of feature and imagedissimilarity.� Computational dissimilarity measures are not per
eptually 
onsistent, thoughsome of them perform better than others in image retrieval.book-leow: submitted to World S
ienti�
 on February 20, 2002 11
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Figure 5. Phase shifts of in
remental spa
e. The line indi
ates the degree of per
eptual 
onsisten
yat various per
entage of information 
overage. The labels along the line mark the positions ofthe four texture models (E: Eu
lidean, SE: s
aled Eu
lidean, FFC, and SVM mapping) a

ordingto their per
eptual 
onsisten
y. At low 
overage, the in
rementally 
onstru
ted spa
e behaves asa 
omputational spa
e. It shifts towards a mixed spa
e at moderate 
overage, and a per
eptualspa
e at high 
overage.� The 
omponents of a feature 
annot be 
onsidered as forming the orthogonaldimensions of a multidimensional feature spa
e that is 
onsistent with human'sper
eption. For instan
e, the various bins of a 
olor histograms are not mutu-ally independent. Likewise, the various texture measurements do not form aper
eptually 
onsistent texture spa
e.Knowing the above, it is not surprising that 
ombining di�erent features to form alinear ve
tor spa
e 
annot support per
eptually 
onsistent retrieval. Unfortunately,most existing systems adopt this method of 
ombining di�erent features due to itsmathemati
al simpli
ity.The problem of per
eptually 
onsistent retrieval is further 
ompli
ated by thefa
t that many interesting images 
ontain more than one region or obje
t of interest.For example, a bea
h s
ene image 
ontains regions of sky, sea, sand, and oftenhuman and other obje
ts. Moreover, the same image 
an be interpreted di�erentlyby di�erent users in di�erent appli
ation 
ontext.To deal with these 
ompli
ations in an unbiased manner, the Bayesian approa
hseems to be a natural 
hoi
e.1. Training StageAn image I 
ontains a set of features f1; : : : ; fn. Given a set of training im-ages, whi
h are 
ategorized into various per
eptually meaningful 
lasses 
i (also
alled semanti
 
lasses), estimate the probability P (
ijf1; : : : ; fn) that a set offeatures fj reliably 
hara
terizes a 
lass 
i. Sin
e di�erent feature types arebook-leow: submitted to World S
ienti�
 on February 20, 2002 12



independent of ea
h other, we have:P (
ijf1; : : : ; fn) = P (
i; f1; : : : ; fn)Yj P (fj) = ������
i \\j fj������Yj jfj j (11)The set 
i \Tj fj 
an be 
omputed re
ursively from the sets 
i \ fj . That is,the various feature types 
an be de
oupled and the sets 
i\fj 
an be estimateda

ording to ea
h individual feature type. This method over
omes the problemof arbitrarily 
ombining feature types to form a ve
tor spa
e. After training,ea
h image Ij 
an be asso
iated with a semanti
 
lass 
i by the probabilityP (
ijIj).2. Retrieval by CategoryGiven a query Q whi
h is a single semanti
 
lass, the images Ij 
an be retrievedby ordering them in de
reasing order of P (QjIj).3. Retrieval by ExampleGiven a query Q whi
h 
ontains sample features fi, estimate for ea
h semanti

lass 
i the probability P (
ijQ) = P (
ijf1; : : : ; fn). Next, 
ompare the prob-abilities P (
ijQ) of the query Q with the probabilities P (
ijIj) of the imagesIj using an appropriate dissimilarity measure, for instan
e, JD (Equation 8).Finally, the images 
an be retrieved by ordering them in in
reasing order ofdissimilarity.The estimation of P (
ijf1; : : : ; fn) is 
ertainly a non-trivial task. At the everyleast, eÆ
ient algorithms will be needed be
ause brute for
e methods will be 
om-putationally too expensive. Nevertheless, the above approa
h is viable as it 
ansu

essfully 
ombine various features without resorting to an unreliable 
ombinedfeature spa
e and 
an relate low-level features to semanti
ally meaningful 
lasses.6 Con
lusionPer
eptual 
onsisten
y is important for supporting good image retrieval perfor-man
e but is very diÆ
ult to a
hieve. Currently, di�eren
e between individual
olor 
an be measured in a per
eptually uniform 
olor spa
e, but the dissimilaritymeasure between 
olor histograms have not been shown to be per
eptually 
onsis-tent. Nevertheless, empiri
al tests have shown that non-Eu
lidean measures aremore reliable than Eu
lidean ones.In the 
ase of texture, known per
eptual texture spa
es have yielded 
onsistentresults. As for 
olor histograms, 
omputational dissimilarity measures of texture arenot 
onsistent with the distan
es measured in the per
eptual spa
e. Fortunately,it is possible to map 
omputational features, parti
ularly Gabor features, to aper
eptual spa
e a

urately. In this way, texture di�eren
e 
an be measured in theper
eptual spa
e to yield per
eptually 
onsistent dissimilarity measurement.book-leow: submitted to World S
ienti�
 on February 20, 2002 13



It is observed that di�erent feature types, even di�erent 
omponents of a feature,
annot be regarded as forming the orthogonal dimensions of a multidimensional
ombined feature spa
e. Instead, a Bayesian approa
h is proposed to 
ombinethe features in an unbiased manner, whi
h 
an also relate low-level features tosemanti
ally meaningful 
lasses. In general, an image 
an 
ontain more than oneinteresting regions. It would be ne
essary to extend the method to mat
hing aquery with images 
ontaining multiple regions.A
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