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Abstract. Worldwide, 30% – 40% of women and 13% of men suffer from
osteoporotic fractures of the bone, particularly the older people. Doctors
in the hospitals need to manually inspect a large number of x-ray im-
ages to identify the fracture cases. Automated detection of fractures in
x-ray images can help to lower the workload of doctors by screening out
the easy cases, leaving a small number of difficult cases and the sec-
ond confirmation to the doctors to examine more closely. To our best
knowledge, such a system does not exist as yet. This paper describes a
method of measuring the neck-shaft angle of the femur, which is one of
the main diagnostic rules that doctors use to determine whether a frac-
ture is present at the femur. Experimental tests performed on test images
confirm that the method is accurate in measuring neck-shaft angle and
detecting certain types of femur fractures.

1 Introduction

Many people suffer from fractures of the bone, particularly the elderly folks.
According to the findings of the International Osteoporosis Foundation [1], the
lifetime risk for osteoporotic fractures in women is 30%–40% worldwide, and
13% in men. The number of hip fractures could rise from 1.7 million worldwide in
1990 to 6.3 million by 2050. Most dramatic increase is expected to occur in Asia
during the next decades. According to World Health Organization, osteoporosis
is second only to cardiovascular disease as a leading health care problem [1].

In practice, doctors and radiologists in the hospitals rely mainly on x-ray
images to determine whether a fracture has occured and the precise nature of
the fracture. Manual inspection of x-rays for fractures is a tedious and time con-
suming process. Typically, the number of images containing fractures constitute
a small percentage of the total number of images that the radiologists have to
scan through. For example, in our test images, only 11% of the femurs are frac-
tured. After looking through many images containing healthy femurs, a tired



Fig. 1. Neck-shaft angle is the angle made by the shaft axis (solid line) and the neck
axis (dashed line) of the femur.

radiologist has been found to miss a fractured femur among the many healthy
ones. As some fractures are easier to identify than others, an automated fracture
detection system can assist the doctors by performing the first examination to
screen out the easy cases, leaving a small number of difficult cases and the second
confirmation to the doctors. Automated screening of both healthy and fractured
cases can thus relieve some of the labor intensive work of the doctors and help
to improve the accuracy of their diagnosis. Therefore, this computer vision ap-
plication is extremely useful for clinicians and is now feasible because all clinical
radiology is going digital. Digital x-ray images are now routinely captured using
digital x-ray machines.

Among the various fracture incidents, common hip fractures of the femur
account for the largest proportion of fracture cases. One of the main diagnostic
rules that doctors use to detect femur fracture is by assessing the distortion of
the so-called neck-shaft angle, that is, the angle between the shaft and the neck
axes (Fig. 1). The neck-shaft angle of a healthy adult femur is about 120 to 130
degrees. A large discrepancy from the healthy neck-shaft angle would indicate a
possibility of fracture. Thus, this article focuses on the automated measurement
of neck-shaft angle of the femur in an x-ray image and uses the measured angle
to determine whether a fracture has occurred.

At first glance, it may seem that automated measurement of neck-shaft angle
is a trivial task for a computer. However, it turns out to be far from trivial,
especially for fractured femurs. The femoral neck usually appears as a very short
segment in an x-ray image. Correct localization of the neck is a very difficult
task. For certain types of fractured femurs, the necks are crashed and do not
even appear on the x-ray images (Fig. 2(c, d)). To overcome this problem, we
define the neck axis to be the axis of symmetry of the 2D contour of the femoral
head and neck, and applies an optimization algorithm to determine the best
fitting symmetry axis (Section 3).

2 Related Work

So far, we have not come across any published work on the computer automated
detection of fractures in x-ray images. The closest related methods used non-
visual methods to detect fractures. For example, Ryder et al. analyzed acoustic
pulses as they travel along the bone to determine whether a fracture has oc-



curred [2]. Kaufman et al. applied a neural network model to analyze mechanical
vibration [3] whereas Singh and Chauhan measured electrical conductivity [4].

Most of the research efforts related to orthopaedics have instead been fo-
cused on the detection of osteoporosis (e.g., [5–7]). These methods of detecting
osteoporosis usually assume that an area of interest is provided by the opera-
tor. So, there is no need to automatically detect the contour of the bones under
examination. The image analysis required for the detection of osteoporosis is,
therefore, simpler than that for fracture detection.

There are substantial amount of work on the analysis of tubular structures
such as blood vessels and lung bronchi. In the analysis of these small structures,
it is reasonable to assume certain relationship between image intensity and the
position on the structure. For example, the cores method [8] and the ridge de-
tection method [9] have been applied to 2D images to find intensity ridges which
correspond to the medial lines of vessels. However, the femur is a large structure
with complicated internal structure, which shows up as complex texture patterns
in an x-ray image. So, standard method of analyzing tubular structures cannot
work on the x-ray images of femurs.

3 Fracture Detection Method

Our method of detecting fractures in the femur consists of three stages: (1)
extraction of femur contour, (2) measurement of neck-shaft angle, and (3) clas-
sification of femur based on measured neck-shaft angle. The extraction of femur
contour in stage 1 is performed using a combination of algorithms, namely Canny
edge detection and Hough transform for detecting significant straight line and
curve features, and active contour mode (i.e., elastic snake) [10] with Gradident
Vector Flow (GVF) method [11] to snap on to the continuous femur contour
based on the line and curve features detected. Due to space limitation, this pa-
per will focus on stage 2 (Section 3.1) of the process. Stage 3 will be discussed
together with the experimental results (Section 4).

3.1 Measurement of Neck-Shaft Angle

To measure the neck-shaft angle, we have to recover the shaft axis and the neck
axis. However, standard algorithms, such as the medial axis transform, are too
sensitive to the noise along the contour, and they fail completely to extract the
neck axis especially for fractured femur where the neck is crushed and distorted.
Instead, a more robust algorithm that exploits the shape of the femur is used.

Computing the Shaft Axis. Note that the contour lines along the femoral
shaft are almost parallel. If lines normal to the shaft contours are drawn from
one side of the shaft to the opposite side, then the mid-points of the normal lines
would be aligned with the shaft axis. We call these normal lines level lines as each
line denotes a level along the shaft. (Note that our “level lines” are different from
the well-known “level set” algorithm.) It turns out that level lines can also be
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Fig. 2. (a) Level lines found in the femur contour. (b) Mid-points of the level lines at
the shaft are oriented along the shaft axis. (c, d) The neck contours are compressed or
absent in these fractured femurs.

found eminating from the femoral head, passing through the approximate center
of the head, and ending at the lower part of the greater trochanter. Whereas the
level lines at the shaft are perpendicular to the shaft axis, those at the neck are
parallel to the neck axis.

Instead of computing all possible level lines, we compute only those that
intersect the snake points. First, the unit normal vector ni of snake point pi is
computed by applying Principal Component Analysis (PCA) on a neighborhood
of snake points centered at point pi. The first eigenvector of PCA would be
tangential and the second eigenvector normal to the contour at point pi. Then,
a line l(pi,pj) joining points pi an pj is a level line if it is parallel to the normals
ni and nj , i.e.,

|ni · nj | ≈
|(pi − pj) · ni|

|pi − pj |
≈

|(pi − pj) · nj |

|pi − pj |
≈ 1 . (1)

In the current implementation, two orientations v1 and v2 are considered similar
i.e., |v1 · v2| ≈ 1 if |v1 · v2| ≥ 0.98.

Figure 2(a) shows an example of the level lines found in the femur contour.
The level lines at the shaft can be easily isolated from the other level lines
because they are short and are located at the lower half of the image. Given the
shaft level lines, the mid-points of the level lines are computed (Fig. 2b) and a
straight line is fitted through the mid-points to obtain the shaft axis.

Computing the Neck Axis. Figure 2(a) shows that there are several bundles
of level lines within the femoral head and neck region. An adaptive clustering
algorithm similar to that in [12] is applied to cluster the level lines into bundles
according to two criteria: (1) the lengths of the lines, and (2) the mid-points of
the lines. Level lines with similar lengths and whose mid-points are close to each
other are clustered into a bundle. The algorithm is adaptive and it can compute
the appropriate number of bundles required. After clustering, the bundle with
the largest number of long level lines is chosen and the mean direction of the
level lines is computed to approximate the orientation of the neck axis.



The above algorithm works well for healthy femur. However, for fractured fe-
mur whose neck is crushed, the contours of the neck may not even exist (Fig. 2(c,
d)), complicating the problem of determining the neck axis. To obtain a more
accurate estimation of the neck axis, an optimization algorithm is applied to
compute the axis of symmetry of the femoral head and neck given the initial
estimate obtained using the algorithm described above. Before computing the
axis of symmetry, the femur contour is first smoothed with a 1-D Gaussian filter
to remove noise along the contour. The σ value of the Gaussian should be large
enough to produce smooth contour at the head and neck regions but not too
large that the shape of the contour is severely distorted. In the current imple-
mentation, a σ value of 5 is used.

The general idea of computing axis of symmetry is to find a line through the
femoral head and neck such that the contour of the head and neck coincides with
its reflection about the line. Given a snake point pk along the head contour, the
mid-point mi along the line joining snake points pk−i and pk+i is computed.
That is, we obtain a midpoint for each pair of snake points on the opposite sides
of pk. Then, a line lk is fitted through the midpoints mi to obtain a candidate
axis of symmetry. If the contour is perfectly symmetrical, and the correct axis
of symmetry is obtained, then each contour point pk−i is exactly the mirror
reflection of pk+i. So the fitting error Ek for lk is

Ek =
1

n

n/2
∑

i=−n/2

∣

∣pk+i − p′

k−i

∣

∣ (2)

where p′

k−i is the reflection of pk−i about lk. Ek indicates how well is lk an
axis of symmetry. The best axis of symmetry is a line lt that minimizes Ek.
This procedure can be completed in O(n2) time where n is the number of snake
points along the head and neck contour.

In the current implementation, the extent of the neck-head contour is empiri-
cally determined to be 40 snake points each to the left and right of a given snake
point on the femoral head. The start position of the optimization algorithm is
the snake point that is closest to the approximate neck axis computed in the
previous stage using the level-line method. 20 snake-point positions to the left
and right of the start position are considered in finding the best-fitting position
and orientation of the neck axis.

4 Experimental Results

63 images each with a left and a right femur were used as the training im-
ages. The neck-shaft angles of these 126 femurs were computed and the decision
threshold that minimized the number of detection error was determined (Fig. 3).
This threshold was determined to be 116◦, i.e., femurs with neck-shaft angles
smaller than 116◦ were classified as fractured. This threshold value was used for
classifying the other 160 test images containing a total of 320 femurs.
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Fig. 3. Measured neck-shaft angles of training images. (a) Left femurs. (b) Right fe-
murs. Dots: healthy femurs, squares: fractured femurs, dashed line: decision threshold.

Table 1. Summary of training and testing results.

training testing

classified left femur right femur both left femur right femur both

correctly as fractured 12 3 15 8 7 15
correctly as healthy 48 56 104 134 147 281

sub-total 60 59 119 142 154 296
(95.2%) (93.7%) (94.4%) (88.8%) (96.3%) (92.5%)

incorrectly as fractured 2 1 3 5 1 6
incorrectly as healthy 1 3 4 13 5 18

sub-total 3 4 7 18 6 24
(4.8%) (6.3%) (5.6%) (11.3%) (3.8%) (7.5%)

Total 63 63 126 160 160 320

Table 1 summarizes the classification performance on the training and testing
data. 94.4% of the training images and 92.5% of the testing images are correctly
classified. Figures 4 and 5 illustrate sample femurs that are correctly classified.

Visual inspection of the wrongly classified femurs indicate two main sources
of error in the training and testing data. First, some fractured femurs are missed
by the algorithm because there is no significant change of neck-shaft angle. These
fractured femurs can be divided into two main categories:

1. Some fractures at the femoral necks cause the femoral heads to be displaced
along the neck axes. As a result, there are no significant changes of neck-shaft
angles though the shapes of the femoral head and neck regions are changed.

2. Some fractures are very slight cracks of the bones, and others are com-
plete breakage of the femoral necks without significant displacements of the
femoral heads. In these cases, there are no significant changes of both the
neck-shaft angles and the shapes of the femoral head and neck regions.

These fractures can only be detected using other criteria and methods.
The second source of error is due to the misclassification of healthy femurs

as fractured. These cases can be categorized into two types:



Fig. 4. Femurs correctly classified as healthy.

Fig. 5. Femurs correctly classified as fractured.

1. The femoral shafts are either very short or completely missing in the x-ray
images. As a result, it is impossible to compute the shaft axes correctly.

2. The x-ray images are taken at unusual pose causing the shapes of the femurs
to be distorted.

The first problem can be solved using methods that do not need the shaft to
make correct classifications, and the second can be solved only with 3D models.

The above two sources of complications account for the majority of the mis-
classifications (Table 2). Only one femur among the training images and two
among the testing images are wrongly classified due to the failure of the algo-
rithm in computing the correct neck-shaft angle. That is, the algorithm fails to
compute the correct neck-shaft angle for only 0.7% of the samples.

5 Conclusion

A method of computing neck-shaft angle for detecting femur fracture is presented
in this paper. Given the contour of a femur, level lines that are perpendicular
to the contour are computed. The mid-points of the level lines at the shaft are
aligned with the shaft axis. The largest bundle of long level lines at the head gives
an approximation of the neck axis. Given this approximation, an optimzation
algorithm is applied to find the best-fitting axis of mirror reflection of the head-
neck contour. This axis of mirror reflection is the best-fitting neck axis. The
neck-shaft angle can now be computed from the neck and shaft axes. Test results
show that the algorithm correctly computed the neck-shaft angles for 99.3% of



Table 2. Summary of misclassifications.

wrongly classified as healthy wrongly classified as fractured
type training testing type training testing
change in shape 2 6 no shaft 0 3
no change in shape 2 12 unusual pose 2 1

program failure 1 2

the training and testing images. Application of the computed neck-shaft angle
for fracture detection achieved an accuracy of 94.4% for training images and
92.5% for testing images. We are investigating other fracture detection methods
to complement the current method and to improve the detection accuracy.
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