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Abstract. In surgery planning, forensic and archeology, there is a need to per-
form analysis and synthesis of complex 3D models. One common first step of 3D
model analysis and synthesis is to register a reference model to a target model
using similarity transformation. In practice, the models usually contain noise and
outliers, and are sometimes incomplete. These facts make the 3D similarity reg-
istration challenging. Existing similarity registration methods such as Iterative
Closest Point algorithm (ICP) [1] and Fractional Iterative Closest Point algorithm
(FICP) [2] are misled by the outliers and are not able to register these models
properly. This paper presents a plane-fitting registration algorithm that is more
robust than existing registration algorithms. It achieves its robustness by ensur-
ing that the symmetric plane of the reference model is registered to the planar
landmarks of the target model. Experiments on patients’ skull models show that
the proposed algorithm is robust, accurate and efficient in registering complex
models.
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1 Introduction

In surgery planning, forensic and archeology, there is a need to perform 3D model anal-
ysis and synthesis such as skull and face reconstruction, pose estimation by registration,
etc. [3–5]. 3D model analysis and synthesis are challenging tasks because the models’
shapes can be very complex and can vary from case to case. For example, human skull
contain 22 complex 3D bones that are fused together (Fig. 1). It is much more complex
than other 3D models such as face model which contains only a single surface.

One common first step of 3D model analysis and synthesis is to register a reference
model to a target model using similarity transformation. In practice, due to noise and
outliers caused by deformities and incompleteness of models, it is difficult to perform
3D similarity registration. For example, in craniomaxillofacial surgery planning, pa-
tients’ skull models are usually incomplete, because only the region to be operated on
are scanned so as to reduce radiology exposure. In addition, patients’ skull models are
either deformed congenitally or fractured due to injuries. The skull shown in Fig. 1(c) is
fractured into several pieces, which are separated from each other and displaced away
from their normal positions. Consequently, existing similarity registration methods such
as Iterative Closest Point (ICP) [1], and Fractional Iterative Closest Point (FICP) [2] are
misled and not able to register these models properly.
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Fig. 1. Skull Models. (a, b) normal skull model. (c, d) fractured skull model. Green landmarks
are planar landmarks that should lie on the symmetric plane (grey lines).

Fortunately, in complex 3D models like skulls, there is an approximate lateral sym-
metry with respect to a symmetric plane (Fig. 1). This symmetric plane is identified
by a set of landmarks on the models [6], and these planar landmarks (Fig. 1) should
approximately lie on the symmetric plane.

This paper presents a plane-fitting registration algorithm that is more robust than ex-
isting registration algorithms such as ICP and FICP. It achieves robustness by ensuring
that the symmetric plane of the reference model is registered to the planar landmarks of
the target model. Experiments on patients’ skull models show that the proposed algo-
rithm is robust, accurate and efficient in registering complex models.

2 Related Work

ICP algorithm [1] is popular in solving similarity registration problems. It formulates
the problem as minimizing the mean-square distance from the points of the reference
model to their closest points on the target model. ICP then solves the problem by it-
eratively finding optimal closest points and computing the optimal transformation. It
converges to a local minimum and provides a standard solution to similarity registra-
tion problem.

Variances of ICP algorithm have been proposed to improve robustness [2, 7–10] and
efficiency [11–13]. Robustness improvement is necessary for real applications, because
the original ICP algorithm is not robust against noise and outliers [9].

One kind of robust ICP methods uses statistical methods. Gruen and Akca [10]
proposed a method based on a generalized Gauss-Markov model to model noise statis-
tically and reduce its effect on the registration result. This kind of methods is able to
overcome noise, but it is still sensitive to outliers.

Another kind of robust ICP methods explicitly identifies outliers and excludes them
from transformation computation. Zhang’s method [7] rejects pairs of points that are
too far from each other. Pajdla and Gool’s method [8] rejects pairs of points by recip-
rocal correspondence distance. The idea is that inlier pairs computed from reference to
target or from target to reference should be relatively the same. Therefore, pairs that do
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not satisfy this property can be identified and excluded. Chetverikov et al.’s method [9]
trims the correspondence set to a fixed fraction of it. This method requires prior knowl-
edge about the fraction of inliers, which is not available in most applications. Phillips
et al. proposed an algorithm called Fractional Iterative Closest Point (FICP) [2]. FICP
extends the objective function in ICP algorithm to fractional mean-square distance. By
minimizing the extended objective function, FICP algorithm tends to find a large set of
inlier pairs separated by small distances to compute transformation.

This paper presents a robust registration algorithm that ensures the matching of
reference symmetric plane to target model’s planar landmarks that are not affected by
outliers. Ensuring planar constraints on symmetric plane and planar landmarks helps the
algorithm to explicitly differentiate outliers and inliers and thus improves robustness.

3 Fractional Iterative Closet Point Method

Fractional Iterative Closest Point (FICP) algorithm is a variant of ICP that is more
robust than ICP. Like ICP, FICP iteratively computes the best similarity transformation
that registers the reference model to the target model. The difference is that in each
iteration, FICP computes the transformation using only a subset of mesh points on the
reference model whose distances to the target model are the smallest. This set of mesh
points is called the inlier set.

Given two point sets , the reference model F and the target model D with unknown
correspondence, FICP minimizes the fractional mean-square distance

E1 =

(
|F |
|G|

)λ
1

|G|
∑
p∈G
‖T (p)− c(p)‖2 (1)

where G is a subset of F containing only the inliers, c() is the correspondence mapping
function of p that finds p’s closest point on the target model, λ is a constant positive
parameter, and T is the similarity transformation to be optimized. By minimizing E1,
FICP finds a large inlier set G with small errors and outputs the transformation com-
puted only on G.

4 Plane-Fitting Registration

Reference model F and target modelD can differ in size and shape details due to defor-
mation caused by injury, normal variation among individuals, and possible incomplete
scanning of the target skull. The registration algorithm should be robust to these vari-
ations, and find the common parts between the two models to align them. In addition,
the plane PF of the reference model should match the planar landmarks v ∈ L of the
target model.

The proposed plane-fitting registration algorithm enforces the matching of the ref-
erence plane to the planar landmarks of target model. In addition to the fractional mean-
square distance (Eq. 1), a plane-fitting error E2 is added to the objective function:

E2 =
1

|L|
∑
v∈L

d2π(v) (2)
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where L is the set of planar landmarks on the target model, and dπ(v) is the distance
from target landmark v to the plane of the transformed reference model F . The overall
objective function to be minimized becomes

Er = E1 + E2. (3)

The transformation T that minimizes Er is the optimal transformation that registers F
to D. Optimizing Er is a difficult problem to solve. The proposed algorithm extends
FICP algorithm to iteratively minimize Er (Eq. 3) instead of E1.

FICP finds the similarity transformation T that minimizes E1 in Eq. 1 by iteratively
performing four steps until convergence:

1. Finds correspondence between F and D.
2. Finds inlier subset G of F .
3. Computes similarity transformation T using correspondence of points in G.
4. Applies T on all points of F .

Phillips et al. [2] proved that the objective function E1 decreases in each step of the
iteration and the algorithm converges to a local minimum.

Out proposed algorithm has the same structure as FICP, but differs in algorithm
details. In the first step, FICP finds the closest point as corresponding points only for
the set F of mesh points. In the proposed algorithm, for a mesh vertex p ∈ F , its
corresponding point q ∈ D is the closest point of p. On the other hand, for a landmark
q ∈ L, its corresponding point p of the reference model is the orthogonal projection of
q on the plane PF of the reference model. Let us denote the set of points p as P , and
the set of corresponding points q as Q.

In the third step, FICP applies Horn et al.’s algorithm [14] to solve for the optimal
similarity transformation T between P and Q that minimizes:

E =
∑
p∈P
‖sRp+ t− q‖2 (4)

where s, R and t are the scale factor, rotation matrix and translation vector of the simi-
larity transformation T .

To minimize E1 and E2 in Eq. 3 at the same time, we introduce weights to Eq. 4
and reformulate Eq. 3 as:

E =
∑
p∈P

w2
p‖sRp+ t− q‖2 (5)

where

w2
p =



(
|F |
|G|

)λ
1

|G|
, for p ∈ G,

1

|L|
, for other p.



5

This minimization can be achieved by adding the weights wp into Horn et al.’s
algorithm [14] where the rotationR and translation t are computed [15, 16]. After com-
puting s, R and t, the points p are transformed by the similarity transformation:

q = sRp+ t. (6)

The proposed algorithm converges to a local minimum because registration errorEr
decreases in each step of the iteration. In the first step, finding closest points for mesh
vertices would reduceE1 because the new closest points for vertices in F are closer than
the closest points in the previous iteration. Finding new corresponding points for planar
landmarks also reduces registration error because the orthogonal projection p on the
symmetric plane of reference model is closer to q than the previous corresponding point
on the same plane. In the second step, Er decreases because E1 decreases as proved in
[2] and E2 is unchanged in this step. Finally, in the third and forth steps, the optimal
transformation that minimizes Er (in the form of Eq. 5) is applied to the reference
model. Er is also reduced in these two steps. Therefore, same as ICP and FICP, the
proposed plane-fitting registration algorithm also converges to a local minimum.

5 Experiments and Discussion

Experiments on complex skull models were conducted to evaluate the proposed plane-
fitting registration algorithm by comparing it against existing algorithms. In this section,
we first evaluate the registration accuracy of the proposed algorithm. Then, we study the
robustness of the algorithm, and finally show its application in skull reconstruction.

5.1 Registration Quality

The first experiment evaluated the accuracy and efficiency of the proposed registration
method. In this experiment, 124 full normal skull models were used. One of them was
used as the reference (Fig. 1(a)). In practice, target skull models are usually patients
skulls with deformities. For this reason, 5 skulls were manually cut and displaced in
a manner similar to real fractures in patients to synthesize 5 fractured skull models.
One of the manually cut skulls is presented in Fig. 2(2). Moreover, 5 skull models of
real patients from a local hospital were also used for testing. Fig. 2(3-5) shows three
of them. In addition to deformities caused by fracture, real patients’ skulls were also
incomplete because on the parts of the skulls under treatment were scanned.

The resolution of the CT images used to generate mesh models ranged from 0.31 to
3 mm/pixel. The CT images were segmented and 3D mesh models were reconstructed
from them.

The proposed plane-fitting registration algorithm was applied to register the refer-
ence model to all the test target models. For comparison, two popular similarity regis-
tration algorithms, ICP [1] and FICP [2], were also tested.

To quantitatively assess the registration results produced by the algorithms, three
errors were measured. First, surface error ES measured the root-mean-square distance
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Table 1. Comparison of registration methods. ES denotes surface error (mm), and EP denotes
plane-fitting error (mm). The proposed plane-fitting registration algorithm attained the overall
best performance with the lowest plane-fitting error and satisfactory surface error ES .

Skull ICP FICP Proposed
Model ES EP ES EP ES EP

Normal 3.69 3.54 4.16 3.49 6.55 1.42
Synthetic fractured 3.83 3.82 4.10 3.27 3.92 1.10

Patient 6.25 9.05 15.38 2.07 14.21 0.86

from the reference surface to the target surface. Second, plane-fitting error EP mea-
sured the root-mean-square distance from target models’ planar landmarks to the refer-
ence model’s symmetric plane. Finally, to examine the convergence of the algorithms,
registration errors of one severely fractured skull (Fig. 2(3)) were measured for the in-
termediate results after each iteration according to the algorithms’ objective functions.
For ICP, FICP and the proposed plane-fitting registration algorithm, the registration er-
rors are mean-square error, fractional mean-square error, and the error Er shown in
Eq. 3, respectively. Execution time was measured on a PC with a 3.4GHz CPU.

Fig. 2 shows the skull registration results. ICP algorithm was able to find reason-
able results for normal skulls (Fig. 2(1)). However, ICP registration results were greatly
affected by outliers caused by incompleteness and fractures of fractured models. Syn-
thetic fractured skulls and real fractured skulls were not properly aligned by ICP algo-
rithm (Fig. 2(2-5)). For the case in Fig. 2(3), ICP shrunk the reference model to a small
region, and failed to find reasonable alignment between the reference and the patient’s
model. Due to inaccurate alignment, the symmetric plane of the reference model were
not accurately aligned with the planar landmarks of the patients’ models. In all the three
categories of skull models, ICP had the lowest surface error ES because it minimized
points distance without the symmetric plane, resulting in large plane-fitting error EP
(Table 1).

FICP was robust to outliers and aligned the reference model relatively well to syn-
thetic and patients’ models (Fig. 2). FICP had larger surface error ES (Table 1) than
ICP algorithm, because it identified a portion of outliers, which were discarded. There-
fore, errors of the outliers may be arbitrarily large and result in large ES , even though
the overall shape and the inliers are properly registered. This contradiction shows that
surface error ES is not a reliable assessment of registration quality. Fig. 2(c-d) shows
that the alignment between the reference model’s symmetric plane and the target mod-
els’ planar landmarks were not accurate. Some landmarks were obviously off from the
planes. Table 1 also shows that FICP had large plane-fitting error EP because FICP did
not consider plane-fitting in the registration process.

The proposed plane-fitting registration algorithm inherited its robustness from FICP.
In addition to robustly registering the reference models to the target model, it also
matched the symmetric plane of the reference model to the patients’ planar landmarks
accurately (Fig. 2). It was more robust to outliers than FICP due to the fitting of symmet-
ric plane. The outliers that violated the fitting of plane were also identified and excluded
from the computation of similarity transformation. Therefore, the symmetric plane of
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Fig. 2. Skull registration results. (1) normal skull. (2) synthetic fractured skull. (3-5) patients’
fractured skulls. (a, b) ICP. (c, d) FICP. (e, f) proposed algorithm. The proposed plane-fitting
registration algorithm attained the best overall performance compared to ICP and FICP. It aligned
the reference skull models’ symmetric planes (grey lines) accurately to the target skull models’
planar landmarks (green balls). Surfaces of the reference models are colored red and the target
models are colored grey.
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Fig. 3. Convergence curves. Same as ICP and FICP, the proposed algorithm converges to a stable
value quickly.

the reference model was aligned accurately to the patients’ planar landmarks, and the
inlier surface points were robustly registered, resulting in the lowest plane-fitting error
and similar surface error compared to FICP (Table 1).

Fig. 3 shows the convergence curves of the three algorithms on a patient’s skull
(Fig. 2(3)). The convergence curves validate that ICP (green) and FICP (red) converge
quickly to local minimum. The convergence curve of the proposed algorithm (blue)
shows that the proposed algorithm also converged quickly to a local minimum after a
few iterations. As discussed in the previous paragraphs, ICP had the smallestES but the
registration result may not be reliable, and the proposed algorithm was the most reliable
one among the three methods.

In all the experiments, the convergence condition is to terminate when the reduction
of registration error in an iteration was smaller than 1h. For the model in Fig. 2(3), ICP
converged in 52 iterations and 0.48 second, FICP converged in 27 iterations and 0.60
second, and the proposed plane-fitting registration algorithm converged in 45 iterations
and 1.01 second. The proposed algorithm is about 0.5 second slower than the other
two algorithms, which is worthy considering the significant improvement in robustness
and registration quality. In intensive applications where there are a large number of
models to be registered, computational efficiency would become the main limitation of
the proposed algorithm. Future research should be performed to improve the efficiency
of the algorithm.

5.2 Robustness

To study the robustness of the proposed method, 124 normals skulls were manually cut
off by different proportions f to synthesize 620 incomplete skull models with different
levels of incompleteness. Together with the 124 original normal skulls, the experiment
dataset contains skull models with 0% to 50% missing data. Due to the missing data in
the target models, the reference model would have similar proportions of points that do
not have corresponding parts in the target model.

We registered the reference model to the target models using three registration algo-
rithms, ICP, FICP and plane-fitting registration. Plane-fitting errorEP was measured on
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Fig. 4. Robustness. The proposed plane-fitting registration algorithm is more robust to incom-
pleteness that ICP and FICP.

the registration results. However, surface error ES was not computed because of the in-
complete target models. Instead, target surface errorET measured the root-mean-square
distance from the target surface to the reference surface. It reflected the registration
quality because it only used the surfaces of the target models that had correspondence
in the reference model. They should have small errors in ideal registration.

Fig. 4 shows the errors measured for different proportions f of incompleteness. ICP
is not robust to incompleteness because ET and EP increased as the proportion f of
missing parts increased. FICP is more robust than ICP. Its ET was quite stable when
f increased, while there is a noticeable increase of EP when f increased from 20%
to 30%. The proposed method was the most robust. Its errors ET and EP were the
smallest among all methods in all levels of incompleteness, and they did not increase
when proportion f of incompleteness increased.

5.3 Application to Skull Reconstruction

This experiment compared the proposed method against FICP method in skull recon-
struction that reconstructs normal complete skull models from fractured skull models.
The experiment used the 5 synthetic fractured skull models described in Section 5.1. It
also used the original models without fractures as ground truth to access the reconstruc-
tion accuracy.

We followed the statistical skull reconstruction framework described in [17] to re-
construct the fractured models. First, we registered the reference skull model to the
fractured skull model. After registration, we built dense correspondences between the
reference model and the target model using the Thin-Plate Spline (TPS) method devel-
oped in [18]. Then, we applied statistical shape model fitting method [17] to estimate
complete normal model by fitting a statistical model to healthy parts of the fractured
model.

Reconstruction error ER measured the root-mean-square surface distance between
ground truth and the reconstructed mesh. It was computed to quantitatively evaluate the
reconstructed skull models generated.
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Table 2. Comparison of registration methods in application of skull reconstruction. ES denotes
surface error (mm), EP denotes plane-fitting error (mm), and ER denotes restoration error (mm).

Registration method ES EP ER

FICP 33.57 2.36 7.47
Proposed 36.38 1.64 6.26

Table 2 shows the results. Although the proposed plane-fitting registration method
had larger surface error, it produced smaller plane-fitting error EP and smaller recon-
struction error ER than did FICP. The robust plane-fitting registration algorithm helped
to improve the skull reconstruction accuracy.

6 Conclusion

Similarity registration is a common first step in complex 3D model analysis and synthe-
sis. In many applications, 3D models to be registered contain large amount of noise and
outliers, and are sometimes incomplete. Existing similarity registration methods are not
able to register these models properly. This paper presents a plane-fitting registration
algorithm that is more robust than existing registration algorithms. It achieves its ro-
bustness by ensuring that the symmetric plane of the reference model is registered to
the planar landmarks of the target model. Quantitative and qualitative experimental re-
sults on real patients’ skull models showed that the proposed algorithm is efficient and
can robustly align the overall structures of the models while matching the symmetric
plane of the reference model to the planar landmarks of target model accurately. Exper-
imental results also showed that the proposed robust registration algorithm can benefit
applications such as skull reconstruction.
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