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Abstract. Images captured by a camera through glass often have reflestit
perimposed on the transmitted background. Among existiathaus for reflec-
tion separation, multi-view methods are the most converierapply because
they require the user to just take multiple images of a scénarging viewing
angles. Some of these methods are restricted to the simggewdzere the back-
ground scene and reflection scene are planar. The methadatidie non-planar
scenes employ image feature flow to capture correspondentedge alignmen-
t, but they can overfit resulting in degraded performancés paper proposes a
multiple-view method for separating background and refsecbased on robust
principal component analysis. It models the backgroundrefidction as rank-1
matrices, which are decomposed according to differensteamations for align-
ing the background and reflection images. It can handle temap scenes and
global reflection. Comprehensive test results show thatm@thod is more accu-
rate and robust than recent related methods.
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1 Introduction

When an image is captured by a camera through a piece of gédketion is often
superimposed on the transmitted background scene. Refleistiannoying because
it corrupts the image content, and it is difficult to removerthmanually. Therefore,
separation of background and reflection from the superiegbonage has attracted re-
search interests over the years. Existing methods for tiefteseparation can be broad-
ly grouped into three categories: single-image, sing&vwuinultiple-image, and multi-
view multiple-image. Single-image methods [12, 13] in gaheequire user inputs or
training images, which are inconvenient to apply. Singeswmethods [1, 6, 10, 21, 22]
take multiple images of a scene with a fixed camera underngiiyiaging conditions
such as polarization, flash/no-flash, and focusing, andhesessulting differences be-
tween background and reflection to separate them. Theseodsetkquire additional
accessories, professional setting skill, and fixed camesdipn, and so are not suitable
for images taken by non-professional users.

Multi-view methods take multiple images of a scene at vayyirewing angles.
Thus, the images are not aligned. The reflection of object®as by a camera, which
we callvirtual scene, is located on the same side of the reflecting glass as the back
ground scene. When the background scene and the virtua scemot coplanar, the



background image and reflection image can be separated iywiesé methods. When

the objects in the background are on a plane, and similarl{hioreflection, the back-
ground and reflection scenes are planar and can be alignedgie somography. Sev-

eral methods [7, 8, 23] assume this simplifying conditioom® recent methods [14, 24,
25] try to solve the more complex case of non-planar scenesy €mploy nonlinear

flows of image features to capture correspondence for imbgenaent, but they can

overfit resulting in degraded performance [16].

This paper proposes a multiple-view method for separatafigation and back-
ground by coupled low-rank decomposition (CLORD). It is dh®n the method of
robust principal component analysis (robust PCA) [4], Hias been successfully ap-
plied to various computer vision problems [20,11, 18, 18mbdels the background
and reflection as rank-1 matrices, which are decomposeddingdo different trans-
formations for aligning the background and reflection ingdecan handle non-planar
scenes and global reflection. Comprehensive test resuwts gtat CLORD is more
accurate and robust than recent related methods.

2 Coupled Low-Rank Decomposition

2.1 Overview

Given a set of superimposed images of stationary objectsvwdre captured over a
small range of viewing angles, CLORD is proposed to recokerktackground and
foreground simultaneously. CLORD is inspired by but défé&om that of Guo et al. [8].
In comparison, Guo et al. [8], Szeliski et al. [23], and Gaillef7] assume planar scenes,
and Guo et al. [8] also assume sparse reflection. So, thelaugtsolve a simpler
version of the reflection separation problem. Like CLORDabd Brown [14], Xue
et al. [24] and Yang et al. [25] also handle non-planar scemesglobal reflection.
However, CLORD is based on robust PCA [4], which has beenesstally applied to
various challenging computer vision tasks, whereas [24]] &nd [25] apply iteratively
reweighted least squares.

2.2 Problem Formulation

For a set of superimposed imadésvith m pixels,i = 1, ..., n, captured at different
viewing angles, each imagd# is a linear combination of the transmitted background
b/ and the reflection’, i.e.,f/ = b + r,. By arranging each image as a column in an
m X n matrix, the above relationship can be writtenkis= B’ + R’, whereF’, B’,
andR’ denote the matrices of the unaligned superimposed imag@sniitted back-
ground, and reflection, respectively. The correspondingices B andR of aligned
background and reflection are low-rank, specifically, rdnk-hey are related to the
unaligned matrices by transformation functiadhand7":

B=T,B'), R=T,(R/), B =T,(B), R =T/(R).

So,F' = T}(B) + T (R). The transformation¥ andZ” differ for differentb/ andr;,.
They are nonlinear in general, affidlis a good approximation af —*.

Distinctive features such as edges correspond to largeemtadn the images. Im-
age gradients are computed by convolving gradient filtemddex with the background



and the reflection giving * b; andg = r;. Since the gradient filter is linear, these con-

volutions can be written in matrix form @3B andDR,, whereD is gradient operator.
To enforce mutual exclusion of edges, two coupled weighticegW, andW,. are

applied to the gradients giving/, o DB andW,. o DR, whereo denotes element-wise

multiplication. If an edge belongs to the background, itsesponding entry ifW, is

small whereas its entry iIW,. is large. The converse is true if edge belongs to reflection.
Now, the reflection separation problem can be formulatedlémsas:

) A2
min ||B||*+||R||*+>\1||E'||1+7HN/H%+

B,R,E/ N/, T/, T/ 1
\3|[Wy 0 DBJ|; + As||W, o DR, (1)
subjecttoF’ = T)(B) + T/ (R) + E' + N'.

The first two terms are the nuclear norms of background arettefh, which are small
for low-rank matrices. The third term usgsnorm to model sparse noi& with possi-
bly large amplitudes whereas the fourth term uses Frob@woitm to model non-sparse,
small-amplitude nois®’. The last two terms model mutually exclusive sparse gradi-
ents. This formulation handles the aligned backgroBnand aligned reflectiolR in

a uniform manner. This uniformity results in a simpler ohijgz function compared to
that of Guo et al. [8], which models low-rank background veftfarse reflection instead.
Moreover, they model mutual exclusion of features WilDB o DR ||;. The minimiza-
tion of [DBoDR||; can be achieved by smaliB and smalDR, which is ambiguous
where the edge belongs. In comparison, CLORD is more spacifitess prone to such
ambiguity (Section 2.5).

In general, the background scene and the virtual scene amoptanar. So, they
have different transformatiorig, and7;., which permitB andR . to be separated. In
the degenerate case that the background and virtual scenespanar, separation of
background and reflection is impossible regardless of thbadeused.

To solve Problem 1, an alternating optimization algoritlenapplied to minimize
various parts of the objective function alternatively. Te¢ails of our algorithm CLORD
is derived in a similar manner as [8,9, 11, 15,19, 20].

2.3 Optimization of Background

First, let us consider the optimization B, E’, andN" while keepingR, 7}, and7
fixed. As the superimposed images are captured at a smak @ngarying viewing
angles, the structures of the images are essentially the. smminimizingt’ andN’

is equivalent to minimizingg = T,(E’) andN = T,(N’). DenotingF = T,(F’) —
T,(T)(R)) and applyindl; to both sides of the constraint equation of Problem 1 yields
equivalent constrairf = B+ E + N. With R, 7}, and7 fixed, Problem 1 reduces to

; 22 2 .
i (Bl + M Bl + 5 INJE + As[[ Wy 0 DBy -
subjecttoF =B + E + N.
To match Problem 2 to robust PCA's formulation, we introdtwee auxiliary vari-
ablesA andC such thaB = A andDB = C. Then, Problem 2 becomes

. /\2 2
i AL+ MEl 4+ F NI + 2] W, 0 Ol

subjecttoF=B+E+ N, B=A, DB=C.

3)



Now, Problem 3 matches robust PCA, which can be solved usigmanted Lagrange
multiplier (ALM) method [15]. With ALM, Problem 3 is reformated as

. )\2 2
i (Al A MBI+ F N + 2] Wh o Cfl+

H 2, M 2
2” 17 + 2|| 7+ (4)

ZIDB ~C|} +(Y1,F ~B—E—N)+
<Y27B - A> + <Y37DB - C>)

whereY;,Y2, Y3 are the Lagrange multiplierg, is a penalty parameter, an{d -)
denote the sum of product of corresponding matrix elements.

An important operator used in various solutions of RPCA &dibft thresholding
operator [4, 15], which is applied to each matrix elemeniviadally:

x—e,ifx>e¢,
Se(x) =< xz+e,ifz < —¢, (5)
0, otherwise.

With this operator, [3] show that, for matrixI with SVD USV T, the minimizations
of nuclear norm and;-norm are given by

1
US.(S)V' = argmin £ X]. + M - X|7, (6)
. 1
Se(M) = argmin e[| X[}; + 3 |M - X|7. ()
Applying Eg. 6 and 7 to the optimization &, E, andC in Problem 4 give
A =US,(S)V', 8)
E:S)\l//L(F_B_N"’_Yl/M)a (9)
C = Sx;w,/u (DB +Y3/p), (10)

whereUSV T is the SVD ofB + Y5 /. In our problem, the ranks of the static back-
ground and reflection are known to be 1. Therefore, Eq. 8 ig/algnt to

A =US, V', (11)

whereS; is a diagonal matrix that contains only the first singulaveadfS.
The optimization ofN, with other variables fixed, involves only Frobenius norm,
and can be derived directly as

o 1
= F-B-E+-Y;). 12
" ( . 1) (12)
Now, with A, E, C, andN fixed, Problem 4 reduces to
. 1
min %HB ~(F-E-N+ ;Yl)H%-i-

H 1 2 H 1 2
—|B-(A--Y =|DB - (C - =Y
5 IB — (A= 2Y3)[ + 5 (C= Yl



which can be rearranged as

B ST T T
II]l?l’n2 (B (D' D+2)B-T B), (13)

where ) . )
T=F-E-N+-Y,+A—--Y,+D' (C——Yg).
Iz 2 2

Problem 13 is a quadratic optimization problem whose smfu given by [5]
(D'D+2I)B=T. (14)

Eqg. 14 can be efficiently solved using fast Fourier transf@T) [5] as follows: Let
b, andt; denote the 2D forms of columiof B andT respectively. Then,

b — F-1 F(t:)
! FD)oF(D)+2)’

whereF, F~1, andF are the 2D FFT, 2D inverse FFT and the complex conjugate of
2D FFT, respectively, an2lis a matrix whose elements are all 2. The division in Eq. 15
is performed element-wise.
Finally, the Lagrange multipliers and parameteare updated according to ALM
method [15] as follows:
Y =Y; +u(F-B—-E—-N),
Yo=Y +M(B - A)a
Ys;=Y3+pu(DB-C),
w= pu, forp>1.

(15)

(16)

The variables discussed in this section are updated itehataccording to ALM until
convergence (Algorithm 2).

2.4 Updating of Reflection Transformations

In our alternating optimization scheme, updating of transfations7;. and 7 of re-
flection is performed before updating of the aligned reftatiR. After the aligned
backgroundB is obtained (Section 2.3), the unaligned reflection is camghasR’ =
F'—T{(B). Among the reflection image$ in R’, the one that corresponds to the neu-
tral viewing angle, denoted a§, is selected as reference. All other reflection images
are aligned ta:j. That is, the transformation @f, is identity function, givinge{, = ro.

The transformation betweaf andr{, = r( is computed as follows. First, matching
pairs of feature points are extracted frathandr, based on scale-invariant feature
transform (SIFT) [17] and speeded up robust features (SURFJhe matching pairs
may contain undesirable features that belong to the baakgrimstead of the reflection.
Consider a matching palp;, po). If their positionsT,(p;) andT;(po) after aligning to
the background are close to each other, then they belong to the backgrosiekic
of the reflection. So, they are removed from matching pairsdmputingZ’. and7’.

As the reflection scene is non-planar, a single homographymoabe sufficient
to model the transformation. So, RANSAC is applied to find ldrgest set of con-
sistent matching pairs that fits a homography. Then, theisi@ms$ set is removed and



RANSAC is applied to find the next largest set of consistentchiag pairs. This pro-
cedure is repeated until there are too few remaining magcpairs. If the number of
consistent set is one, then a pair of homographies can beutethfsom the consistent
setasl, and7}. Otherwise, thin-plate spline is used to deffjeand?’’ from the union
of the consistent sets.

This procedure is repeated for eaghThe transformations for differenf are dif-
ferent. Initially, the transformations computed are betwe and the referenca,. As
the algorithm iterates, the rank-1 matixconverges such that = r for all i. Then,
desired transformations betwegnandr; are obtained.

2.5 Updating of Background Weights

There are three kinds of edges in the images: (1) edges tloatgo® the background,
(2) edges that belong to the reflection, and (3) phantom etigeésesult from separating
non-edge pixels into background and reflection. To diserate between these edges,
three gradient fields are computed from the aligned imagesgely Gy = DT, (F’),
G, = DT,(7T)/(R)), andG;, = Gy — G,.. Note thatl},(F’) andT;,(7)(R)) make up

F that is used for optimization of background (Section 2.3)ie3it edges are extracted
by thresholding the gradient fields into corresponding tyimaatricesH ¢, H,, andH,.

at thresholdr. Then, elementj, k] of background weighW,,, denoted adW,[j, k], is
updated as follows:

0, if majority of H[j, 1], forl = 1, ..., n, satisfies
Hy[j,1] = 1and|Gs[j, 1]| > | G.[5,1]],

W[4, k] = { 5, i Hy[j, k] = 1 and|G.,[j, k]| > a|Ge[j, k]|, (17)
5,if Hy[y, k] = 0 and(|Gy[j, k]| > 7 or |G.[4, k]| > 7),
1, otherwise.

The first three conditions correspond, respectively, tikgeand edges, reflection edges,
and phantom edges. In other words, background edges a@aissgowith zero weight
whereas non-background edges are associated with largétaer he first condition
fills the whole row; of W, with O if the majority of the elements in royvof H sat-
isfies the condition. This condition overrides the 2nd arti@mditions. This method
facilitates the convergenceBfinto a rank-1 matrix. The last condition provides default
weight of 1 for the other pixels. In the current implemergati-r = 0.05 anda = 1.2.

2.6 Initialization

The initialization of our algorithm CLORD is similar to theimmax alternation method
of [23] for reflection separation. Among the superimposedgest; in F’, the one at
the neutral viewing angle, denoted £fsis selected as the reference. Since the image
intensity is dominated by background intensity, we canwafip transformation update
algorithm described in Section 2.4 6hto estimate the transformatiofi$ and 7} of
the background. Next, an initial estimate of the backgroumageb is obtained by
finding the row-minima off}, (F’), which is inserted into each column Bf. Next, R’

is computed a¥’ — T}(B). Then, the transformation update algorithm is appliea/on
to estimate the transformatiofis and7’. of the reflection. Finally, an initial estimate
of the reflection image is obtained by finding the row-maxima @f.(R'), which is
inserted into each column @&.



2.7 Summary

Our CLORD method handles backgrouBdand reflectiorR. in a uniform manner. So,
the optimization oR, updating of background transformatichsandZ;, and updating

of reflection weightdW,. are achieved by applying the same algorithms describecin th
preceding sections, witB andR swapped. The complete algorithm is summarized in
Algorithm 1, and the optimization of rank-1 matrB (as well asR, with B andR
swapped) is summarized in Algorithm 2. In the current imgatation \;, A2, A3 are

set to50, 2000, and10) respectively, whera = 1//max(m, n) [4].

Algorithm 1: Coupled Low-Rank Decomposition (CLORD)
Input: F’
Initialize B, R, Ty, T3, T, Ty (Section 2.6).
repeat
Update the weight matri¥V, (Section 2.5).
Optimize background® (Algorithm 2, Section 2.3).
Estimate the transformations of reflectibpand7}. (Section 2.4).
Update the weight matridV, (Section 2.5).
Optimize reflectiorR (Algorithm 2, Section 2.3).
Estimate the transformations of backgroufidandT;, (Section 2.4).
until convergence;
Output: B, R.

© 00 N o g b~ W N B

Algorithm 2: Updating of Rank-1 Matrix
Input: F

1 Initialize Y1,Y2,Ys, u>0,p> 1.

2 Initialize B, A, E,C,N to 0.

3 repeat

4 U,S,V=SVDB + Y2/u).

5 A=US, V',

6 E:S/\I/H(F—B—N-Q-Yl//i).
7 C = SAng/p.(DBJFYd/,U)

8 N = Ag’l,L(F—B—E-FYl/M)-

9 UpdateB according to Eq. 15.
10 Y =Y+ u(F-B-E—-N).
11 Yo=Y, +M(B—A).

13 W= pp.

until convergence;

Output: B

[
N

3 Experiments and Discussions

This section compares the performance of CLORD and thosefit existing methods
denoted as LI [14], GUO [8], and XUE [24]. As the program for Kl not publicly
available, we compare it only with the results published24][(Section 3.1, 3.2). To
handle color images, the methods are applied to each of tieddd B channels and
their outputs are combined into the final results. Test @ogrwere implemented in
Matlab, and ran on a PC with Intel Core 3.5GHZ CPU and 32GB RAM.
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Fig. 1. Test results of night scene images with planar backgrouddeftection. (Row 1) Recov-
ered background, (row 2) separated reflection, (row 3) zoomews of bottom-right corner of
the images. White boxes show that XUE'’s background has retarmd reflection. (a) CLORD,
(b) XUE, (c) LI, (d) GUO. (B) Background, (R) reflection.

3.1 Planar Background and Reflection Scenes

This test evaluates the methods’ base-case performangeges of planar background
and reflection scenes. This scenario is valid when all object far away from the
camera. 5 images of a night scene captured through a windalg amages of indoor
scene with glass reflection were used for the test. Theseeisnagre obtained from
[24] and ground truth was not available.

For the night scene, Figure 1 shows that the results of CLORDXJE are visu-
ally accurate whereas GUO and LI cannot separate the baokdm@nd the reflection
well. This could be because GUO and LI explicitly optimize tfackground but not the
reflection, which implies that better reflection recovery caprove background recov-
ery. There is a subtle difference between the results of D@Rd XUE (Fig. 1, row
3). The background recovered by XUE has some remnants ottiefie On the other
hand, the background recovered by CLORD does not have iiefieend its recovered
reflection is much more complete than that of XUE. This défere could be due to
XUE’s non-locally linear flow filed.

The indoor results of CLORD and XUE are shown in figure 2(b) 2fa). Consis-
tent with the previous test, XUE’s background has more reartsnaf reflection com-
pared to that of CLORD. Figure 2(d) and 2(e) show that inputges transformed by
the computed’, align very well to the reference background. Figure 2(fugigzes the
weight, of the reference image in figure 2(a). It shows that the eddmokground
and reflection objects are well separated. In this test, CD@Res 8 minutes to process
5 images of sizd 152 x 648 whereas XUE takes about 20 minutes.



(@) (b) (© (d) (e) ®

Fig. 2. Test results of indoor scene images with planar backgronddeflection. (a) Reference
image, (b) CLORD, (c) XUE, (d, e) input images transformedthey computedr;, align very
well to the reference background in (a), i), associated with (a). As shown in (b) and (c),
XUE’s background has more remnants of relection comparéiaiatioof CLORD, their recovered
reflections are similar and are omitted. In (f), backgrouages (dark) and reflection edges (light)
are well separated.

Table 1.Normalized cross correlation of various methods testednages with non-planar back-
ground and reflection scenes.

method || CLORD|XUE| LI [GUO]

background| 0.94 | 0.90|0.79| 0.77
reflection 0.83 | 0.75|0.61| 0.69

3.2 Non-Planar Background and Reflection Scenes

This test evaluates the methods’ performance on imagesweplamar background and
reflection scenes. This scenario is valid when the objeettoaated at different depths
near the camera. 5 images from [24] captured at differentiag angles were used,
and ground truths of the background and reflection wereatail The degree of match
between the recovered images and the ground truths wereiredas normalized cross
correlation (NCC).

Figure 3 shows that the results of CLORD and XUE are visualbugate. On the
other hand, GUO and LI cannot separate the background amelfteetion well because
they do not explicitly optimize the reflection. In additighlJO is not designed to handle
non-planar scenes. In comparison, CLORD’s recovered lvaokg is more accurate,
and XUE’s background has some distortions around the he#tedby frog. Table 1
confirms that CLORD is more accurate than the other methadsofio-planar scenes.

3.3 Scene Distance

This experiment investigates the effect of the distancdsaokground objects and re-
flection objects from the reflecting glass on the methoddgperance. A background
object was placed behind a piece of glass, and a reflecti@mtbljs placed in front.
The ratiod,. of the distances of the reflection object and the backgroijecofrom
the glass was varied frony8 to 8/8 = 1 in steps ofl /8. For each distance ratid.,
ground truths and 5 superimposed images were capturedfetedif viewing angles.
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Fig. 3. Test results on images of non-planar background and reftestienes. (GB) Ground truth
background, (GR) ground truth reflection. (Row 2) Recovdradkground, (row 3) separated
reflection. (a) CLORD, (b) XUE, (c) LI, (d) GUO.

The methods were tested, and NCC between ground truths eodered images were
measured.

Figure 4 shows that CLORD is more accurate than LI and GUO. RD® back-
ground NCC exceeds 0.9 fdr. < 6/8. On the other hand, LI's background NCC is less
than 0.9, and GUO’s background NCC hovers around 0.6. Theracies of CLORD
and LI decrease gradually with increasifgas expected because the background scene
and virtual scene become more coplanar. The accuracy of @ofains low for alld,..
The methods’ reflection NCC shows a similar trend as theik@pazind NCC.

3.4 Degree of Non-Planarity

This experiment investigates the effect of the degree ofplanarity on the method-
s’ performance. Two background objects, were placed behipece of glass, and a
reflection object was placed in front. The ratio of the dis&anof the reflection object
and the nearer background object from the glass was $¢2athe further background
object was placed behind the nearer object, and its distatioel, from the nearer ob-
ject varied from O tot/8 in steps ofl /8. For each distance ratig,, ground truths and
5 superimposed images were captured at different viewigéeanThe methods were
tested, and NCC between ground truths and recovered imagyesmeasured.

Figure 5 shows that CLORD’s background NCC exceeds 0.9 fad,alwhereas
LI's background NCC is less than 0.9. GUO’s background NCsgllightly above 0.7 at
d, = 0 when the background scene is planar, and it decreases weitraisingd;,, which
makes the background scene more and more non-planar. ClSORiEction NCC is
around 0.9 for alll,,. LI's reflection NCC is slightly below 0.7 at, = 0, and itincreases
with increasingd, suggesting that LI can identify reflection more accuratetynon-
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Fig. 4. Normalized cross correlation (NCC) of various methods aying distance ratial, of
reflection with respect to background. Smaliermeans greater depth disparity between back-
ground and reflection objects.
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Fig. 5. Normalized cross correlation (NCC) of various methods ayiag distance ratial, of
the further background object from the nearer backgrournecbh_argerd, means greater non-
planarity.

planar scenes. GUQ's reflection NCC is slightly above 0.& st results show that
CLORD is more accurate than LI and GUO for the non-planaresen

4 Conclusion

This paper presented a multiple-view method for separaéfigction and background
in unaligned images by coupled low-rank decomposition (BDJ. It is based on the
method of robust PCA. It models the background and refle@®rank-1 matrices in
a uniform manner, which are decomposed according to diffaransformations that
align the background images and the reflection images separ@omprehensive test
results show that CLORD is more accurate and robust thamteetated methods,
especially for images with non-planar scenes and globa&atidin.

References

1. A. Agrawal, R. Raskar, R. K. Nayar, and Y. Z. Li. Removinggigraphy artifacts using
gradient projection and flash-exposure sampli#gM Trans. Graphics, 24(3), 2005.



12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool. Speeded-bpsbfeatures (SURFLomputer
Vision and Image Understanding, 110(3), 2008.

. J. F. Cai, E. J. Candés, and Z. Shen. A singular valuehblgiag algorithm for matrix

completion.9AM J. Optimization, 20(4), 2010.

. E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principamponent analysis3. ACM,

58(3), 2011.

. S. Chaudhuri, R. Velmurugan, and R. Ramesliimd |mage Deconvolution: Methods and

Convergence. Springer, 2014.

. H. Farid and E. H. Adelson. Separating reflections fromgesaby use of independent

component analysisl. Optical Society of America A, 16(9), 1999.

. K. Gai, Z. W. Shi, and C. S. Zhang. Blindly separating miggiof multiple layers with

spatial shifts. IrProc. CVPR, 2008.

. X. Guo, X. Cao, and Y. Ma. Robust separation of reflectiomfimultiple images. IiProc.

CVPR, 2014.

. X.Jiang and J. Lai. Sparse and dense hybrid representadiaictionary decomposition for

face recognitionl EEE Trans. PAMI, 37(5), May 2015.

N. Kong, Y. Tai, and J. S. Shin. A physically-based apginda reflection separation: From
physical modeling to constrained optimizatidEEE Trans. PAMI, 36(2), 2014.

W. K. Leow, Y. Cheng, L. Zhang, T. Sim, and L. Foo. Backgmuecovery by fixed-rank
robust principal component analysis. Rroc. CAIP, 2013.

A. Levin and Y. Weiss. User assisted separation of réflestfrom a single image using a
sparsity prior. EEE Trans. PAMI, 29(9), 2007.

A. Levin, A. Zomet, and Y. Weiss. Separating reflectiasif a single image using local
features. IrProc. CVPR, 2004.

Y. Li and M. S. Brown. Exploiting reflection change for antatic reflection removal. In
Proc. ICCV, 2013.

Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrangéiplier method for exact
recovery of corrupted low-rank matrices. Technical repdftyC, 2009.

Z. Lou and T. Gevers. Image alignment by piecewise pleegion matching.|EEE Trans.
Multimedia, 16(7), 2014.

D. G. Lowe. Distinctive image features from scale-ifaatr keypoints. Int. J. Computer
Vision, 60(2), 2004.

T.H.Oh, J. Y. Lee, Y. W. Tai, and I. S. Kweon. Robust highayic range imaging by rank
minimization. |EEE Trans. PAMI, 37(6), 2015.

T. H. Oh, Y. W. Tai, J. C. Bazin, H. Kim, and I. S. Kweon. Rarsum minimization of
singular values in robust pca: Algorithm and applicatidf&EE Trans. PAMI, 38(4), 2016.
Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma. Rasl: Rollignment by sparse and
low-rank decomposition for linearly correlated imagHsSEE Trans. PAMI, 34(11), 2012.

Y. Y. Schechner, N. Kiryati, and R. Basri. Separationrafisparent layers using focust.

J. Computer Vision, 39(1), 2000.

Y. Y. Schechner, J. Shamir, and N. Kiryati. Polarizati@sed decorrelation of transparent
layers: The inclination angle of an invisible surface Phoc. ICCV, 1999.

R. Szeliski, S. Avidan, and P. Anandan. Layer extraciiom multiple images containing
reflections and transparency. Pnoc. CVPR, 2000.

T. F. Xue, M. Rubinstein, C. Liu, and W. T. Freeman. A cotational approach for
obstruction-free photographACM Trans. Graphics, 34(4), 2015.

J.L.Yang, H. D. Li, Y. C. Dai, and R. T. Tan. Robust optiftalv estimation of double-layer
images under transparency or reflectionPhoc. CVPR, 2016.



