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Abstract. Images captured by a camera through glass often have reflection su-
perimposed on the transmitted background. Among existing methods for reflec-
tion separation, multi-view methods are the most convenient to apply because
they require the user to just take multiple images of a scene at varying viewing
angles. Some of these methods are restricted to the simple case where the back-
ground scene and reflection scene are planar. The methods that handle non-planar
scenes employ image feature flow to capture correspondence for image alignmen-
t, but they can overfit resulting in degraded performance. This paper proposes a
multiple-view method for separating background and reflection based on robust
principal component analysis. It models the background andreflection as rank-1
matrices, which are decomposed according to different transformations for align-
ing the background and reflection images. It can handle non-planar scenes and
global reflection. Comprehensive test results show that ourmethod is more accu-
rate and robust than recent related methods.

Keywords: Reflection removal, non-planar scenes, robust PCA,

1 Introduction

When an image is captured by a camera through a piece of glass,reflection is often
superimposed on the transmitted background scene. Reflection is annoying because
it corrupts the image content, and it is difficult to remove them manually. Therefore,
separation of background and reflection from the superimposed image has attracted re-
search interests over the years. Existing methods for reflection separation can be broad-
ly grouped into three categories: single-image, single-view multiple-image, and multi-
view multiple-image. Single-image methods [12, 13] in general require user inputs or
training images, which are inconvenient to apply. Single-view methods [1, 6, 10, 21, 22]
take multiple images of a scene with a fixed camera under varying imaging conditions
such as polarization, flash/no-flash, and focusing, and use the resulting differences be-
tween background and reflection to separate them. These methods require additional
accessories, professional setting skill, and fixed camera position, and so are not suitable
for images taken by non-professional users.

Multi-view methods take multiple images of a scene at varying viewing angles.
Thus, the images are not aligned. The reflection of objects asseen by a camera, which
we call virtual scene, is located on the same side of the reflecting glass as the back-
ground scene. When the background scene and the virtual scene are not coplanar, the
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background image and reflection image can be separated by multi-view methods. When
the objects in the background are on a plane, and similarly for the reflection, the back-
ground and reflection scenes are planar and can be aligned by single homography. Sev-
eral methods [7, 8, 23] assume this simplifying condition. Some recent methods [14, 24,
25] try to solve the more complex case of non-planar scenes. They employ nonlinear
flows of image features to capture correspondence for image alignment, but they can
overfit resulting in degraded performance [16].

This paper proposes a multiple-view method for separating reflection and back-
ground by coupled low-rank decomposition (CLORD). It is based on the method of
robust principal component analysis (robust PCA) [4], which has been successfully ap-
plied to various computer vision problems [20, 11, 18, 19]. It models the background
and reflection as rank-1 matrices, which are decomposed according to different trans-
formations for aligning the background and reflection images. It can handle non-planar
scenes and global reflection. Comprehensive test results show that CLORD is more
accurate and robust than recent related methods.

2 Coupled Low-Rank Decomposition

2.1 Overview

Given a set of superimposed images of stationary objects, which are captured over a
small range of viewing angles, CLORD is proposed to recover the background and
foreground simultaneously. CLORD is inspired by but differs from that of Guo et al. [8].
In comparison, Guo et al. [8], Szeliski et al. [23], and Gai etal. [7] assume planar scenes,
and Guo et al. [8] also assume sparse reflection. So, their methods solve a simpler
version of the reflection separation problem. Like CLORD, Liand Brown [14], Xue
et al. [24] and Yang et al. [25] also handle non-planar scenesand global reflection.
However, CLORD is based on robust PCA [4], which has been successfully applied to
various challenging computer vision tasks, whereas [14], [24] and [25] apply iteratively
reweighted least squares.

2.2 Problem Formulation

For a set of superimposed imagesf ′i with m pixels,i = 1, . . . , n, captured at different
viewing angles, each imagef ′i is a linear combination of the transmitted background
b′

i and the reflectionr′i, i.e.,f ′i = b′

i + r′i. By arranging each image as a column in an
m × n matrix, the above relationship can be written asF′ = B′ +R′, whereF′, B′,
andR′ denote the matrices of the unaligned superimposed images, transmitted back-
ground, and reflection, respectively. The corresponding matricesB andR of aligned
background and reflection are low-rank, specifically, rank-1. They are related to the
unaligned matrices by transformation functionsT andT ′:

B = Tb(B
′), R = Tr(R

′), B′ = T ′

b(B), R′ = T ′

r(R).

So,F′ = T ′

b(B) + T ′
r(R). The transformationsT andT ′ differ for differentb′

i andr′i.
They are nonlinear in general, andT ′ is a good approximation ofT−1.

Distinctive features such as edges correspond to large gradients in the images. Im-
age gradients are computed by convolving gradient filter kernelg with the background
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and the reflection givingg ∗ bi andg ∗ ri. Since the gradient filter is linear, these con-
volutions can be written in matrix form asDB andDR, whereD is gradient operator.

To enforce mutual exclusion of edges, two coupled weight matricesWb andWr are
applied to the gradients givingWb ◦DB andWr ◦DR, where◦ denotes element-wise
multiplication. If an edge belongs to the background, its corresponding entry inWb is
small whereas its entry inWr is large. The converse is true if edge belongs to reflection.

Now, the reflection separation problem can be formulated as follows:

min
B,R,E′,N′,T ′

b
,T ′

r

‖B‖∗ + ‖R‖∗ + λ1‖E
′‖1 +

λ2

2
‖N′‖2F +

λ3‖Wb ◦DB‖1 + λ3‖Wr ◦DR‖1

subject toF′ = T ′

b(B) + T ′

r(R) +E′ +N′.

(1)

The first two terms are the nuclear norms of background and reflection, which are small
for low-rank matrices. The third term usesl1-norm to model sparse noiseE′ with possi-
bly large amplitudes whereas the fourth term uses Frobeniusnorm to model non-sparse,
small-amplitude noiseN′. The last two terms model mutually exclusive sparse gradi-
ents. This formulation handles the aligned backgroundB and aligned reflectionR in
a uniform manner. This uniformity results in a simpler objective function compared to
that of Guo et al. [8], which models low-rank background withsparse reflection instead.
Moreover, they model mutual exclusion of features with‖DB ◦DR‖1. The minimiza-
tion of‖DB◦DR‖1 can be achieved by smallDB and smallDR, which is ambiguous
where the edge belongs. In comparison, CLORD is more specificand less prone to such
ambiguity (Section 2.5).

In general, the background scene and the virtual scene are not coplanar. So, they
have different transformationsTb andTr, which permitB andR to be separated. In
the degenerate case that the background and virtual scenes are coplanar, separation of
background and reflection is impossible regardless of the method used.

To solve Problem 1, an alternating optimization algorithm is applied to minimize
various parts of the objective function alternatively. Thedetails of our algorithm CLORD
is derived in a similar manner as [8, 9, 11, 15, 19, 20].

2.3 Optimization of Background

First, let us consider the optimization ofB, E′, andN′ while keepingR, T ′

b, andT ′

r

fixed. As the superimposed images are captured at a small range of varying viewing
angles, the structures of the images are essentially the same. So, minimizingE′ andN′

is equivalent to minimizingE = Tb(E
′) andN = Tb(N

′). DenotingF = Tb(F
′) −

Tb(T
′
r(R)) and applyingTb to both sides of the constraint equation of Problem 1 yields

equivalent constraintF = B+E+N. With R, T ′

b, andT ′

r fixed, Problem 1 reduces to

min
B,E,N

‖B‖∗ + λ1‖E‖1 +
λ2

2
‖N‖2F + λ3‖Wb ◦DB‖1

subject to F = B+E+N.

(2)

To match Problem 2 to robust PCA’s formulation, we introducetwo auxiliary vari-
ablesA andC such thatB = A andDB = C. Then, Problem 2 becomes

min
B,E,N,A,C

‖A‖∗ + λ1‖E‖1 +
λ2

2
‖N‖2F + λ3‖Wb ◦C‖1

subject to F = B+E+N, B = A, DB = C.

(3)
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Now, Problem 3 matches robust PCA, which can be solved using augmented Lagrange
multiplier (ALM) method [15]. With ALM, Problem 3 is reformulated as

min
B,E,N,A,C

‖A‖∗ + λ1‖E‖1 +
λ2

2
‖N‖2F + λ3‖Wb ◦C‖1+

µ

2
‖F−B−E−N‖2F +

µ

2
‖B−A‖2F+

µ

2
‖DB−C‖2F + 〈Y1,F−B−E−N〉+

〈Y2,B−A〉+ 〈Y3,DB−C〉,

(4)

whereY1,Y2,Y3 are the Lagrange multipliers,µ is a penalty parameter, and〈·, ·〉
denote the sum of product of corresponding matrix elements.

An important operator used in various solutions of RPCA is the soft thresholding
operator [4, 15], which is applied to each matrix element individually:

Sε(x) =







x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise.

(5)

With this operator, [3] show that, for matrixM with SVD USV⊤, the minimizations
of nuclear norm andl1-norm are given by

USε(S)V
⊤ = argmin

X

ε‖X‖∗ +
1

2
‖M−X‖2F , (6)

Sε(M) = argmin
X

ε‖X‖1 +
1

2
‖M−X‖2F . (7)

Applying Eq. 6 and 7 to the optimization ofA, E, andC in Problem 4 give

A = US1/µ(S)V
⊤, (8)

E = Sλ1/µ (F−B−N+Y1/µ) , (9)

C = Sλ3Wb/µ (DB+Y3/µ) , (10)

whereUSV⊤ is the SVD ofB+Y2/µ. In our problem, the ranks of the static back-
ground and reflection are known to be 1. Therefore, Eq. 8 is equivalent to

A = US1V
⊤, (11)

whereS1 is a diagonal matrix that contains only the first singular value ofS.
The optimization ofN, with other variables fixed, involves only Frobenius norm,

and can be derived directly as

N =
µ

λ2 + µ

(

F−B−E+
1

µ
Y1

)

. (12)

Now, withA, E,C, andN fixed, Problem 4 reduces to

min
B

µ

2
‖B− (F−E−N+

1

µ
Y1)‖

2

F+

µ

2
‖B− (A−

1

µ
Y2)‖

2

F +
µ

2
‖DB− (C−

1

µ
Y3)‖

2

F ,
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which can be rearranged as

min
B

µ

2

(

B⊤(D⊤D+ 2I)B−T⊤B
)

, (13)

where

T = F−E−N+
1

µ
Y1 +A−

1

µ
Y2 +D⊤

(

C−
1

µ
Y3

)

.

Problem 13 is a quadratic optimization problem whose solution is given by [5]

(D⊤D+ 2I)B = T. (14)

Eq. 14 can be efficiently solved using fast Fourier transform(FFT) [5] as follows: Let
bi andti denote the 2D forms of columni of B andT respectively. Then,

bi = F−1

(

F(ti)

F(D) ◦ F(D) + 2

)

, (15)

whereF , F−1, andF are the 2D FFT, 2D inverse FFT and the complex conjugate of
2D FFT, respectively, and2 is a matrix whose elements are all 2. The division in Eq. 15
is performed element-wise.

Finally, the Lagrange multipliers and parameterµ are updated according to ALM
method [15] as follows:

Y1 = Y1 + µ(F−B−E−N),

Y2 = Y2 + µ(B−A),

Y3 = Y3 + µ(DB−C),

µ = ρµ, for ρ > 1.

(16)

The variables discussed in this section are updated iteratively according to ALM until
convergence (Algorithm 2).

2.4 Updating of Reflection Transformations

In our alternating optimization scheme, updating of transformationsTr andT ′
r of re-

flection is performed before updating of the aligned reflection R. After the aligned
backgroundB is obtained (Section 2.3), the unaligned reflection is computed asR′ =
F′−T ′

b(B). Among the reflection imagesr′i in R′, the one that corresponds to the neu-
tral viewing angle, denoted asr′

0
, is selected as reference. All other reflection imagesr′i

are aligned tor′
0
. That is, the transformation ofr′

0
is identity function, givingr′

0
= r0.

The transformation betweenr′i andr′
0
= r0 is computed as follows. First, matching

pairs of feature points are extracted fromr′i and r0 based on scale-invariant feature
transform (SIFT) [17] and speeded up robust features (SURF)[2]. The matching pairs
may contain undesirable features that belong to the background instead of the reflection.
Consider a matching pair(pi, p0). If their positionsTb(pi) andTb(p0) after aligning to
the backgroundB are close to each other, then they belong to the background instead
of the reflection. So, they are removed from matching pairs for computingTr andT ′

r.
As the reflection scene is non-planar, a single homography may not be sufficient

to model the transformation. So, RANSAC is applied to find thelargest set of con-
sistent matching pairs that fits a homography. Then, the consistent set is removed and
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RANSAC is applied to find the next largest set of consistent matching pairs. This pro-
cedure is repeated until there are too few remaining matching pairs. If the number of
consistent set is one, then a pair of homographies can be computed from the consistent
set asTr andT ′

r. Otherwise, thin-plate spline is used to deriveTr andT ′

r from the union
of the consistent sets.

This procedure is repeated for eachr′i. The transformations for differentr′i are dif-
ferent. Initially, the transformations computed are betweenr′i and the referencer0. As
the algorithm iterates, the rank-1 matrixR converges such thatri = r0 for all i. Then,
desired transformations betweenr′i andri are obtained.

2.5 Updating of Background Weights

There are three kinds of edges in the images: (1) edges that belong to the background,
(2) edges that belong to the reflection, and (3) phantom edgesthat result from separating
non-edge pixels into background and reflection. To discriminate between these edges,
three gradient fields are computed from the aligned images, namelyGf = DTb(F

′),
Gr = DTb(T

′
r(R)), andGb = Gf − Gr. Note thatTb(F

′) andTb(T
′
r(R)) make up

F that is used for optimization of background (Section 2.3). Salient edges are extracted
by thresholding the gradient fields into corresponding binary matricesHf , Hb, andHr

at thresholdτ . Then, element[j, k] of background weightWb, denoted asWb[j, k], is
updated as follows:

Wb[j, k] =



























0, if majority of Hf [j, l], for l = 1, . . . , n, satisfies
Hf [j, l] = 1 and|Gb[j, l]| > α|Gr[j, l]|,

5, if Hf [j, k] = 1 and|Gr[j, k]| > α|Gb[j, k]|,

5, if Hf [j, k] = 0 and(|Gb[j, k]| > τ or |Gr[j, k]| > τ),

1, otherwise.

(17)

The first three conditions correspond, respectively, to background edges, reflection edges,
and phantom edges. In other words, background edges are associated with zero weight
whereas non-background edges are associated with large weights. The first condition
fills the whole rowj of Wb with 0 if the majority of the elements in rowj of Hf sat-
isfies the condition. This condition overrides the 2nd and 3rd conditions. This method
facilitates the convergence ofB into a rank-1 matrix. The last condition provides default
weight of 1 for the other pixels. In the current implementation,τ = 0.05 andα = 1.2.

2.6 Initialization

The initialization of our algorithm CLORD is similar to the min-max alternation method
of [23] for reflection separation. Among the superimposed imagesf ′i in F′, the one at
the neutral viewing angle, denoted asf ′

0
, is selected as the reference. Since the image

intensity is dominated by background intensity, we can apply the transformation update
algorithm described in Section 2.4 onf ′i to estimate the transformationsTb andT ′

b of
the background. Next, an initial estimate of the backgroundimageb is obtained by
finding the row-minima ofTb(F

′), which is inserted into each column ofB. Next,R′

is computed asF′ − T ′

b(B). Then, the transformation update algorithm is applied onr′i
to estimate the transformationsTr andT ′

r of the reflection. Finally, an initial estimate
of the reflection imager is obtained by finding the row-maxima ofTr(R

′), which is
inserted into each column ofR.
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2.7 Summary

Our CLORD method handles backgroundB and reflectionR in a uniform manner. So,
the optimization ofR, updating of background transformationsTb andT ′

b, and updating
of reflection weightsWr are achieved by applying the same algorithms described in the
preceding sections, withB andR swapped. The complete algorithm is summarized in
Algorithm 1, and the optimization of rank-1 matrixB (as well asR, with B andR
swapped) is summarized in Algorithm 2. In the current implementation,λ1, λ2, λ3 are
set to50λ, 2000λ, and10λ respectively, whereλ = 1/

√

max(m,n) [4].

Algorithm 1: Coupled Low-Rank Decomposition (CLORD)
Input : F′

1 InitializeB, R, Tb, T ′

b, Tr, T ′

r (Section 2.6).
2 repeat
3 Update the weight matrixWb (Section 2.5).
4 Optimize backgroundB (Algorithm 2, Section 2.3).
5 Estimate the transformations of reflectionTr andT ′

r (Section 2.4).
6 Update the weight matrixWr (Section 2.5).
7 Optimize reflectionR (Algorithm 2, Section 2.3).
8 Estimate the transformations of backgroundTb andT ′

b (Section 2.4).
9 until convergence;

Output : B, R.

Algorithm 2: Updating of Rank-1 Matrix
Input : F

1 InitializeY1,Y2,Y3, µ > 0, ρ > 1.
2 InitializeB,A,E,C,N to 0.
3 repeat
4 U,S,V = SVD(B+Y2/µ).
5 A = US1V

⊤.
6 E = Sλ1/µ(F−B−N+Y1/µ).
7 C = Sλ3Wb/µ(DB+Y3/µ).
8 N = µ

λ2+µ
(F−B−E+Y1/µ).

9 UpdateB according to Eq. 15.
10 Y1 = Y1 + µ(F−B−E−N).
11 Y2 = Y2 + µ(B−A).
12 Y3 = Y3 + µ(DB−C).
13 µ = ρµ.
14 until convergence;

Output : B

3 Experiments and Discussions
This section compares the performance of CLORD and those of recent existing methods
denoted as LI [14], GUO [8], and XUE [24]. As the program for XUE is not publicly
available, we compare it only with the results published in [24] (Section 3.1, 3.2). To
handle color images, the methods are applied to each of the R,G and B channels and
their outputs are combined into the final results. Test programs were implemented in
Matlab, and ran on a PC with Intel Core 3.5GHZ CPU and 32GB RAM.
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(a) (b) (c) (d)

(a, B) (a, R) (b, B) (b, R)

Fig. 1.Test results of night scene images with planar background and reflection. (Row 1) Recov-
ered background, (row 2) separated reflection, (row 3) zoom-in views of bottom-right corner of
the images. White boxes show that XUE’s background has remnants of reflection. (a) CLORD,
(b) XUE, (c) LI, (d) GUO. (B) Background, (R) reflection.

3.1 Planar Background and Reflection Scenes

This test evaluates the methods’ base-case performance on images of planar background
and reflection scenes. This scenario is valid when all objects are far away from the
camera. 5 images of a night scene captured through a window, and 5 images of indoor
scene with glass reflection were used for the test. These images were obtained from
[24] and ground truth was not available.

For the night scene, Figure 1 shows that the results of CLORD and XUE are visu-
ally accurate whereas GUO and LI cannot separate the background and the reflection
well. This could be because GUO and LI explicitly optimize the background but not the
reflection, which implies that better reflection recovery can improve background recov-
ery. There is a subtle difference between the results of CLORD and XUE (Fig. 1, row
3). The background recovered by XUE has some remnants of reflection. On the other
hand, the background recovered by CLORD does not have reflection, and its recovered
reflection is much more complete than that of XUE. This difference could be due to
XUE’s non-locally linear flow filed.

The indoor results of CLORD and XUE are shown in figure 2(b) and2(c). Consis-
tent with the previous test, XUE’s background has more remnants of reflection com-
pared to that of CLORD. Figure 2(d) and 2(e) show that input images transformed by
the computedTb align very well to the reference background. Figure 2(f) visualizes the
weightWb of the reference image in figure 2(a). It shows that the edge ofbackground
and reflection objects are well separated. In this test, CLORD takes 8 minutes to process
5 images of size1152×648 whereas XUE takes about 20 minutes.
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(a) (b) (c) (d) (e) (f)

Fig. 2. Test results of indoor scene images with planar background and reflection. (a) Reference
image, (b) CLORD, (c) XUE, (d, e) input images transformed bythe computedTb align very
well to the reference background in (a), (f)Wb associated with (a). As shown in (b) and (c),
XUE’s background has more remnants of relection compared tothat of CLORD, their recovered
reflections are similar and are omitted. In (f), background edges (dark) and reflection edges (light)
are well separated.

Table 1.Normalized cross correlation of various methods tested on images with non-planar back-
ground and reflection scenes.

method CLORD XUE LI GUO

background 0.94 0.90 0.79 0.77

reflection 0.83 0.75 0.61 0.69

3.2 Non-Planar Background and Reflection Scenes

This test evaluates the methods’ performance on images of non-planar background and
reflection scenes. This scenario is valid when the objects are located at different depths
near the camera. 5 images from [24] captured at different viewing angles were used,
and ground truths of the background and reflection were available. The degree of match
between the recovered images and the ground truths were measured as normalized cross
correlation (NCC).

Figure 3 shows that the results of CLORD and XUE are visually accurate. On the
other hand, GUO and LI cannot separate the background and thereflection well because
they do not explicitly optimize the reflection. In addition,GUO is not designed to handle
non-planar scenes. In comparison, CLORD’s recovered background is more accurate,
and XUE’s background has some distortions around the head ofthe toy frog. Table 1
confirms that CLORD is more accurate than the other methods for non-planar scenes.

3.3 Scene Distance

This experiment investigates the effect of the distances ofbackground objects and re-
flection objects from the reflecting glass on the methods’ performance. A background
object was placed behind a piece of glass, and a reflection object was placed in front.
The ratiodr of the distances of the reflection object and the background object from
the glass was varied from4/8 to 8/8 = 1 in steps of1/8. For each distance ratiodr,
ground truths and 5 superimposed images were captured at different viewing angles.
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(GB) (GR)

(a) (b) (c) (d)

Fig. 3.Test results on images of non-planar background and reflection scenes. (GB) Ground truth
background, (GR) ground truth reflection. (Row 2) Recoveredbackground, (row 3) separated
reflection. (a) CLORD, (b) XUE, (c) LI, (d) GUO.

The methods were tested, and NCC between ground truths and recovered images were
measured.

Figure 4 shows that CLORD is more accurate than LI and GUO. CLORD’s back-
ground NCC exceeds 0.9 fordr ≤ 6/8. On the other hand, LI’s background NCC is less
than 0.9, and GUO’s background NCC hovers around 0.6. The accuracies of CLORD
and LI decrease gradually with increasingdr as expected because the background scene
and virtual scene become more coplanar. The accuracy of GUO remains low for alldr.
The methods’ reflection NCC shows a similar trend as their background NCC.

3.4 Degree of Non-Planarity

This experiment investigates the effect of the degree of non-planarity on the method-
s’ performance. Two background objects, were placed behinda piece of glass, and a
reflection object was placed in front. The ratio of the distance of the reflection object
and the nearer background object from the glass was set at1/2. The further background
object was placed behind the nearer object, and its distanceratiodb from the nearer ob-
ject varied from 0 to4/8 in steps of1/8. For each distance ratiodb, ground truths and
5 superimposed images were captured at different viewing angles. The methods were
tested, and NCC between ground truths and recovered images were measured.

Figure 5 shows that CLORD’s background NCC exceeds 0.9 for all db, whereas
LI’s background NCC is less than 0.9. GUO’s background NCC isslightly above 0.7 at
db = 0 when the background scene is planar, and it decreases with increasingdb, which
makes the background scene more and more non-planar. CLORD’s reflection NCC is
around 0.9 for alldb. LI’s reflection NCC is slightly below 0.7 atdb = 0, and it increases
with increasingd, suggesting that LI can identify reflection more accuratelyfor non-



11

4 / 8  5 / 8 6 / 8 7 / 8 1

d_r0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NCC

CLORD
LI
GUO

4 / 8  5 / 8 6 / 8 7 / 8 1

d_r0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NCC

CLORD
LI
GUO

(a) Background (b) Reflection

Fig. 4. Normalized cross correlation (NCC) of various methods at varying distance ratiodr of
reflection with respect to background. Smallerdr means greater depth disparity between back-
ground and reflection objects.
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Fig. 5. Normalized cross correlation (NCC) of various methods at varying distance ratiodb of
the further background object from the nearer background object. Largerdb means greater non-
planarity.

planar scenes. GUO’s reflection NCC is slightly above 0.6. The test results show that
CLORD is more accurate than LI and GUO for the non-planar scenes.

4 Conclusion
This paper presented a multiple-view method for separatingreflection and background
in unaligned images by coupled low-rank decomposition (CLORD). It is based on the
method of robust PCA. It models the background and reflectionas rank-1 matrices in
a uniform manner, which are decomposed according to different transformations that
align the background images and the reflection images separately. Comprehensive test
results show that CLORD is more accurate and robust than recent related methods,
especially for images with non-planar scenes and global reflection.
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