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Abstract. Accurate human posture estimation from single or multiple images is
essential in many applications. Two main causes of difficulty to solve theastim
tion problem are large number of degrees of freedom and self-aouluBree-
structured graphical models with efficient inference algorithms haga beed to
solve the problem in a lower dimensional state space. However, suctisrare
not accurate enough to formulate the problem because it assumestirattie

of each body part can be independently observed. As a result, it mudtith han-

dle partial self-occlusion. This paper presents a more accurateiggapiodel
which can implicitly model the possible self-occlusion between body parise M
important, an efficiently approximate inference algorithm is provided to estim
human posture in a low dimensional state space. It can deal with paifial se
occlusion in posture estimation and human tracking, which has been dhown
the experimental results on real data.

1 Introduction

Human posture estimation and human tracking try to acdyregeover human posture
from single or multiple images [8][9][13]. Accurately regzring posture is essential in
many applications such as human-computer interactioigndsased sport coaching,
and physical rehabilitation.

Top-down approach is often used to estimate human postuvehich a 3D or 2D
human body model is often required to generate a synthetiinige of the corre-
sponding human posture. By measuring the similarity betviee synthetic 2D image
and the input image, the posture estimation can be upda&tediviely. In general, there
are many local minima in such an optimization problem, suwt tontinuous local
optimization methods are not effective [22]. To deal witle tifficulty, prior motion
models are often used to constrain the search space dutimgization [17], although
itis limited to estimating postures similar to those in thatimn models. Another way is
to find multiple local minima and choose the best one from tf&{23], but it requires
more computation and also cannot guarantee to find the gioiséum. In compar-
ison, sampling method [12] may find the global minimum in a Iskate space, but
directly sampling in the state space of body posture is Bifda because of the large
number of degrees of freedom (e.g., 30) of human body.

By observing that the human body is in fact tree-structureskarchers often formu-
late the estimation problem by a tree-structured grapmcalel [24][11][26][7][18]. In
the model, every body part is encoded by one node in the geaphevery edge con-
necting two nodes indicates that there are relationshipredss the two parts. Efficient



inference algorithms exist (e.g., BP [28]) to recover the tbmensional (e.g., 6) pose
of every body part. More importantly, sampling methodsZ4][11][26] can be used in
the low dimensional pose space of each body part.

However, it is not accurate enough to formulate the problgna lree-structured
graphical model. In this model, it assumes that the imageadf dody part can be inde-
pendently observed, while self-occlusion between bodispaften happens in human
motion. In such case, the image of one body part can not beamdkently observed be-
cause it may be partially or fully occluded by other body pasigalet al. [20] tried to
deal with partial self-occlusion by learning the likelittbof the observed image condi-
tioned on the pose state of each body part. But learning én@tcomplex process and
it is not easy to collect training images. What is more, sualmed likelihood functions
are limited to approximately estimating a small set of paestulLeeet al. [14] and Hua
et al. [9] used detected part candidates to obtain proposalhiistins for some body
parts, which are then used to help approximately estimattupes even under partial
self-occlusion. Good proposal distributions are esskyimmportant in their methods.
Sudderthet al. [25] explicitly modelled self-occlusion using factor gtain which one
binary hidden variable is required for each image pixel. iéesv, the large number of
hidden variables inside the model make the inference dlgonnore complicated.

In order to deal with partial self-occlusion in posture mstiion, we use a more
accurate graphical model by explicitly inserting a set afden variables between the
state of human posture and the input image observation. Edden variable repre-
sents the 3D shape and the appearance of one body part, anthtee observation of
every body part depends on all the hidden variables. Theilpesself-occlusion be-
tween body parts can be implicitly modelled by the relatiesifjon between the 3D
shapes of parts. In addition, the non-penetration betweey parts can be explicitly
modelled in the middle level of the model. More importantsdx on the new model,
a novel and efficient approximate inference algorithm isettgwed to accurately esti-
mate each body part’'s pose in a lower (i.e. 6) dimensionalespehis algorithm is an
annealed iteration process. In each iteration, conditioraaginal distribution of each
body part is estimated based on the estimation results sfqu®iteration. The rela-
tionships between body parts’ states and the relationglgpygeen parts’ states and the
image observation are updated by an annealing factor iniesetion. Such annealed
process can help to find the true posture with more probglglien if the initial pos-
ture is far from the truth. This inference algorithm, with@uny learning process, can
deal with partial self-occlusion in 2D posture estimatiod auman tracking, which has
been shown by the experimental results on real data.

2 Redated Work

In general there are two types of approaches to the relatediposture estimation and
articulated human tracking problems: top-down and bottgmCompared with top-
down approach introduced above, bottom-up approach cdd the need for explicit
initialization and 3D or 2D body modelling and renderingdittectly recovers human
posture from images by exemplar based method or non-lineppimg based method.



The exemplar based method [16][2] searches for exemplageémaimilar to the
input image from a set of stored exemplars, and uses the kid@vposture of the
exemplar as the estimated posture. Since multiple bodyipEssimay have very simi-
lar corresponding images, this method often outputs mal8P body posture estima-
tions for the input image. Much computation can be saved Imgtrocting a distance-
approximating embedding [2], such that the similarity meament between images
can be efficiently computed in the embedded low space. Bedhessxemplars record
only a limited number of body postures, this method may ntdiolgood posture esti-
mations if the body posture in the input image is differenhirthose in the exemplars.

The non-linear mapping based method learns a nonlinearingfymction that rep-
resents the relationships between body image featuresharmbtresponding 3D body
postures. During learning, a rich set of image features,(silpouette [6], histogram
of shape context [1]) are extracted from each training inegthe input, and the out-
put is the known 3D posture in the corresponding traininggeaigarwal and Triggs
[1] used relevance vector machine to learn a nonlinear mapipinction that consists
of a set of weighted basis functions. Rosales et al. [19] asgplecial combination of
sigmoidal and linear functions to learn a set of forward niagunctions by one EM
technique. In addition, by embedding the manifold of oneetgphuman motion into
a lower dimensional space, and learning the two non-linegppimgs between the em-
bedded manifold and both visual input (e.g., silhouettasmmnd 3D body pose space,
3D body pose can be estimated from each input image by the &apimg functions
[6]. The mapping based method can directly estimate bodiupmfrom a single input
image, but it is often limited to recovering the body possundich are similar to the
3D postures in the training images.

Recently, the combination of top-down and bottom-up apghiea has also been
used to estimate postures [10][14][9][15]. In general &tfir applies low-level feature
detectors (e.g., rectangle detectors [10]) to generat¢ af sandidates of body parts,
then applies some prior knowledge or constraints (e.gerkatic constraints) to search
for good candidates and find the best 2D posture. To list aN&wi [15] used super-
pixels as the element to represent the input image. Basdtwkedioundaries of superpix-
els and constraints (appearance and width consisten@miatic constraints) between
body parts, a rough 2D posture configuration was obtained. [Bluused the detected
candidates of some body parts to form importance functiotater belief propagation.

Note that both types of approaches can be used in humanrtgapkbblem. Com-
pared to CONDENSATION [12] which efficiently combines topwh approach into
a probabilistic framework for human tracking, Sminchiseftl] recently proposed a
probabilistic framework in which conditional density caa jpropagated temporally in
discriminative (bottom-up), continuous chain models.

3 Problem Formulation

A human skeleton model (Figure 1(a)) is used to represent jmiats and bones, and
a triangular mesh model (Figure 1(b)) is used to represenbdidly shape. Each vertex
in the mesh is attached to the related body part. The relatine length and part width
to a standard human model are used to represent each bosysparie size.
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Fig. 1. Human body model and graphical model. (a) Human skeleton mod&afih vertex in the
mesh model is assigned to one specific body part. (c) A tree-strucjuapti represents human
postureX'. Each node represents one body parand the edge between two nodes represents
the potential relationship between them. (d) Each nodg iepresents one 3D body part and

the edge between nodes represents the non-penetration relationshigiieihem. (e) and (f)
represent the graphical model we used. (g) and (h) represetnethstructured graphical model.

Human body posturg’ is represented by a set of body parts’ po¥es {x;|i € V}
(Figure 1(c)), where’ is the set of body parts. The pose = (p;, 6;) represents the
it" body part's 3D positiomp,; and 3D orientatio®;. Given the shape size of each body
part, a synthetic 3D body payt = f(x;) (Figure 1(d)) is generated for each part's pose
x;, Wheref represents (but is not limited to) a deterministic procBgsprojecting the
synthetic 3D bodyy = {y;|i € V}, a synthetic image observation can be generated.
During posture estimation, each synthetic image obsenvatill be used to compare
with a real input image observatiah The relationship betweeéyiandZ is represented
by the observation functiop(), £). In addition due to the articulation, every pair of
adjacent body partg; andx; must be connected. Such kind of kinematic constraint
is enforced by the potential functiafy; (x;,x;). Denote€ as the set of adjacent body
partsx; andx;, i.e., (¢,j) € £. Another kind of constraint is that body parts cannot
penetrate each other, which can be enforced by potentieliump;,, (y:, y. ). Denote
&’ as the set of part pajr; andy.,, i.e.,(i,m) € £'.

A graphical model (Figure 1(e) and 1(f)) is used to represdirthe relationships
introduced above. Note that this model is different from titee-structured graphical
model that is generally used by other researchers [7][9héntree-structured model
(Figure 1(g) and 1(h)), it assumes that the imagef each body pari can be indepen-
dently observed such that the relationship betwegandz; can be easily evaluated
using local observation. However in general, self-ocdudietween body parts often
happens in human motion. In such a case, local observaticam not be observed inde-
pendently and only the whole body’s image observatioran. In our graphical model,
a middle level ¢,) is inserted betweer; and Z in order to precisely model the image
generation process. Each hidden varighleepresents the 3D shape and appearance of
one body part, and the image observation of every body pagrdts on all the hidden
variables. This is different from tree-structured modektmich every part’s observation
depends only on the part's state. In our graphical modelptissible self-occlusion
between body parts can be implicitly modelled by the retatigsition between the 3D
shapes of parts. In addition, the non-penetration relatignbetween 3D body parts



can be enforced by potential functign,, (y;, ym ), while such relationship cannot be
modelled in tree-structured graphical model.

The problem is to infer and correspondingy’ from Z. From the structure of the
graphical model (Figure 1(e) and 1(f)), the posterior distion p(X,)|Z) can be
factorized as

p(X,Y|Z) o p(Z|Y)p(V|X)p(X) 1)
x ¢V, Z) H Pim (Yis Ym) H 6(f(xi) — yi) H Yij(xi,%5),
(i,m)e &’ eV (1,75)e &€

whered(-) is the Dirac’s delta function becauge is a deterministic function ok;.
Now the objective is to find the maximuaposteriori estimationt’* and corresponding
Y* which makep(X', Y| Z) maximum.

4 Inference Algorithm

Instead of directly inferringt’ and)’ from (1), we calculate the conditional marginal
distribution p(x;, y;|Z). Unfortunately, due to the complex structure of the graphic
model, the generally used efficient belief propagation itlgm cannot be used to cal-
culatep(x;,y;|Z). Here we develop an approximate inference algorithm toutaiie
the maximump(x;, y;|Z) by introducing into it the idea of simulated annealing. This
algorithm is an annealed iteration process. In each itaragveryp(x;,y;|Z) is esti-
mated based on the estimation of the other body parts frorpréhgous iteration and
the real input imageZ. Since the estimation is not accurate in the first severed-ite
tions, the relationships between different body parts elexed and loose at first, and
then become more and more restricted with respect to iberafihe update of relation-
ships is realized by an annealing factor. In the following,fisst explain how annealing
factor is introduced to the iterations. After that, we widlgign the potential functions
and observation functions.

Denotep™ (x;, y;| Z) as the estimation of the trgé™ (x;, y;|2) = {p(x:, yi|Z)}
at iteratiomn, wheren = 0,..., N —landAy_1 > ... > Ay > Ag. When),, increases
(linearly or exponentially) with respect to iteration the MAP estimatiorx; andy
will emerge more and more clearly, becaygéx;, y;|Z)}*» is much larger ak? and
y; than at othex; values. For two adjacent iterations, we have the followipgraxi-
mations:

P (ki il 2) o {p™ (i, i | 2) YA A @
~ {50 (x4, yi | X7, Iy, Z) P A

—1%)

P (x4, i 2) ~ / (™ (xi,yi, Xty Vil 2)}
X_i, Y

= / (P (x4, vl X_i, Voiy, Z2)p™ (X_i, V_i| 2)}
X_, Y

~ / (5™ (i, yal &7, 37, 205 (X, Vi 2))
X_i, Vi



= 5" (x5, yi| X", V7, 2), 3)

whereX_; is the set of body parts’ poses except and)_; is the set of 3D body
parts excepy;. X", and)", are the corresponding estimations at iteratiorin (2),

p™ (x;,y:| Z) is approximated by(™ (x;,y;|X";, V";, Z). Although it needs to be
theoretically explored for such approximation, the appr@tion (3) may be reason-
able at least due to the following observations. During thst Eeveral iterations, the
relationship between paxt; and the other part®_; are so loose that they are indepen-

dent. The second observation is that when iteratias large enoughp (xi,yi|Z)

will become a Dirac’s delta like function. In both cases, € (x;, yi|X";, V";, Z)
can be used to exactly represefit) (x;, y;| Z).

From (1) and (2), we can get

P (s, yilZ) 4)

X Ozgf) n+1 yza —1; H SDE::H) YZaym - Y H w(n—i—l) Xza A;L)

me I (3) JEI(1)
X O[{d)< yza —za H 90123 YHYm (f(x7) - y7) H wfjn) (Xiak;l)})\nJrl//\nv
me I (i) JEI(4)

whereI'(i) = {k|(i,k) € £} is the neighbor of body paft and similarly forI”(z).
« is a normalizing factor including potential functions teld to the other body parts.
From (4), conditional marginal distribution can be updaterhtively. Also, we can get

U (3, I, Z) o {9 (i, I, Z) P/, ©)
9052“)(%%) o {lm i gm) e, (6)
D 6, K5) o {0 G )P )

Observation functiong("*+1) (y;, Y., Z) and potential function@%fl)(yi,y’;l) and

zp@“)(xi, %) will be updated based on (5) (6) and (7) in {e+ 1)"" iteration.

)

4.1 Potential Functions

Potential function/;;(x;,x;) can be used to enforce relationships between body parts
iandj. In our work,;;(x;, x;) is used to enforce kinematic constraints and angle con-
straints between two adjacent body parts. In this casepasgiparti is one neighbor

of partj, we can get

wgl) (Xi’ Xj) X wzgl (Xla Xj)wzJQ (Xi7 Xj)a (8)

Wi (xi,%;) = N(D(x:) — py; 0, A), 9)
(n)/.. N 1 if Qij S @ij

Yija (%i,%;) = {a?j otherwise (10)

wherez/zgl) (x;,%;) represents the probability of; givenx;. wfﬂ)(xl,xj) is used to

enforce kinematic constraints, whefeis a rigid transformation that is obtained from



positionp; and orientatiord; in the posex; and the size information of th#&" body
part, andA}; is the variance matrix of the gaussian functidhin the n*” iteration.

wfj’;) (x4,%;) is used to enforce angle constraints, whégeis the angle between the
two body parts’ orientatio; andé;, ©;; is the valid angle range between body part
andj, andaj; is a value between 0 and 1. Note thff} anda;; are tuned based on (7).

Potential functionp;,,,(y:, y.) is used to enforce non-penetration constraints be-
tween two related body partandm where

(n) (o, _
Pim (Yi:Ym) = {b?m otherwise ’ (11)

d;m is the minimum distance between pgftandy.,,,, andD;,, is the allowable min-
imum distance between the two pan§,, is a value between 0 and &7 is tuned
according to (6) and becomes smaller with respect to thatiter, which means the
non-penetration constraints will be more and more enfarced

4.2 Observation Functions

Observation functior(), £) measures the likelihood & given). In order to mea-
sure the likelihood, the 3D body is projected, and then the similarity between the
projected image and the real input image observaiois computed to estimate the
likelihood. Sincep(), Z) is estimated by the similarity of the two whole images, it can
deal with self-occlusion where one body part is partiallgloded by others.

In our work, edge and silhouette were used as the featurabdaimilarity mea-
surement. Chamfer distance was used to measure the edtggigjnfror the silhouette
similarity, in addition to the overlapping area of the puigdl image and the human
body image region in the input image, the chamfer distano® fthe projected image
region to the body image region in the input image was alsd.uBee relative weight
between edge and silhouette similarity is experimentalgdnined. Note that the edge
similarity was a value between 0 and 1 by normalizing the dbaxfistance, such that
that the scaling problem between the edge similarity anditheuette similarity was
avoided.

4.3 Nonparametric Implementation

Because of the non-Gaussian property of potential funst&m observation functions,
analytic computation of the functions is intractable. We tonte Carlo method to
search for each body part’s state by iteratively updatingddt@mnal marginal distribu-
tion "V (x;, y;| Z), called Annealed Marginal Distribution Monte Carlo (AMDNIC
In our algorithm, each distributight™ %) (x;, y;| Z) is represented by a set Afweighted
samples,

B (e il 2) = {7 m T L <k < K (12)
wheres!"""*) is thekt" sample of the!" body part state; in the (n + 1)t iteration
and 7r,§"+1’k) is the weight of the sample. Note that = f(x;) is a deterministic

function and so it is not necessary in the nonparametriesgmtation.



In each iteration, everg("* 1 (x;,y;| Z) is updated based on (4). The update pro-
cess based on the Monte Carlo method is described in thevialjo

1. Update potential functions and observation functiorsetdan (5)—(11).

2. Compute estimatioX™, of the other body parts from initialization or previous
iteration result, and ge¢”, = f(X",).

3. Use importance sampling to generate new samﬁ?érsl’k) from related marginal
distributions of previous iteration. The related margidadtributions include the
neighbors’ and its own marginal distributions of previotesation. The new sam-
ples are to be weighted in the following step to represengimal distribution.

4. Update marginal distribution. For each new sam;&?él’k), computey@“’k) =

£(s" ™)) and then calculate the weighf" ™**), where

a R = gD (R 2y T el T )
me I (4)

n k) an
< ] vl Ert s, (13)
JETI'(4)

w§"+1’k) is then re-weighted and normalized because we use impertampling
to generate samplel(.”“’k). The updated marginal distributions will be used to

update marginal distributions in the next iteration.

Human body posture can be estimated from the set of margstabdtions. The sam-
ple with the maximum weight ip(**1 (x;, y;| Z) can be used to represent the estima-
tion %! of i*" body part's pose.

Our algorithm can be viewed as the generalization of andgzdeicle filtering [5].
When body posturd’ is a single high dimensional state rather than a set of bodg’'pa
states, our AMDMC algorithm will become exactly the anndalarticle filtering. An-
other related algorithm is the modified nonparametric beliepagation (MNBP) [27].
mNBP can also deal with partial self-occlusion, but it isdzhen the tree-structured
model and there is no theoretical foundation on the modiéinatWhile mNBP is tested
on synthetic image for posture estimation, our AMDMC is oall image sequences.

5 Experimental Results

Evaluation of our AMDMC algorithm and comparison with sonedated work were
performed using real image sequences. The first experimahtaged the algorithm’s
ability to accurately estimating 2D human posture undetigdaself-occlusion from a
single image. The second experiment evaluated its abdityatcking 2D human body
from a monocular image sequence. Note that the algorithnbeaapplied to estimate
3D human postures when multiple images or image sequeneesaitable.

5.1 Preprocess

In the real image sequences in which a TaiChi motion was dechrthe static back-
ground inside each image was removed by a statistical baskdgrmodel. And the
human model was modified to fit the human body size in every énsaguence.
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Fig. 2. Removing noisy edges inside each body part. (a) Input image. (b} image after back-
ground removal. (c) The extracted edge without removing noisy edde©ver-segmentation
result of (a) by mean shift. (e) Cluster every segment inside the boalyamegion into one of the
two clusters. (f) The edge extracted from (e).

Note that the edge information plays an important role inty@sestimation espe-
cially when limbs (e.g., arms) fall inside the torso imaggioa. However, because of
the variability in the appearance of human body, many noikyes inside each body
part will probably happen (Figure 2(c)). Mean shift [4] wased here to remove the
noisy edges. Firstly from the first input image, the body imags manually divided
into several clusters according to their appearance, anthiftogram of each cluster
was obtained. Then for subsequent input images, over-seagtion of the foreground
image region was obtained by mean shift (Figure 2(d)), aedyesegment was classi-
fied into one cluster by comparing the histogram similarigeen the segment and
each cluster (Figure 2(e)). Of course because of similae@@mce between symmetric
body limbs, several body parts are often clustered togetheur experiment, just two
clusters were used. One was for lower arms and the face tibefot the remained body
parts. The noisy edges can be effectively removed by theeapimcess (Figure 2(f)).

5.2 Posture Estimation under Partial Self-occlusion

Because of the depth ambiguity in a single image, 3D joinitipmscannot be estimated
correctly. Therefore not 3D but 2D joint position ertBsp = % Yo P2 — paill
was computed to assess the performance of our algorithnrevhe andp,; are the
estimated and true 2D image position of thebody joint. p,; was obtained by manu-
ally setting the image position of each body joihtis the articulated body height and
it is about 190 pixels in eacd20 x 240 image.

In this experiment, 150 weighted samples were used to represich conditional
marginal distribution. The annealing related fackqr.; /\,, was simply set to 0.9 in
every iteration, and the total iteration number is 50. Fahdgeration, around 12 sec-
onds was spent, most of which was used to generate syntimetiei from mesh model
and compute observation functions.

The skeletons in Figures 3(b) and 3(c) illustrate the 2D prosture and initial pos-
ture respectively. The skeletons in Figures 3(d), 3(e) dfidilBistrate the estimated
posture using BPMC, mNBP, and our algorithm respectivetthBBPMC and mNBP
[9] are efficient inference algorithms based on tree-stmect model, and they have the
same computation complexity as our AMDMC due to the similarcture of the graph-
ical models. Note that the annealing factor was also use@®M® and mMNBP such that
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Fig. 3. Posture estimation from a single image. (a) Input image. (b) 2D true ngostpresented
by skeleton. (c) initial posture. Estimated posture by (d) BPMC, (e) mB&P(f) our AMDMC.
(g) AMDMC is better than BPMC and comparable to mNBP in posture estimation.

they can be compared with ours. Even the annealed BPMC wastepto obtain bet-
ter result than the original BPMC, the pose estimation of sdrody parts (i.e., arms
in Figure 3(d)) was not accurate when there was partial@smfusion between body
parts because local body image observation was used in B&&Servation function.
In comparison, the posture estimation was very close tattitle wwhen using the mNBP
and our AMDMC, in which the global body image observation waed in the obser-
vation function.

For this input image and the initial posture, Figure 3(g)respnts the 2D joint
position errorEs p with respect to the iteration number when using differeférence
algorithms. It shows that, after 10 to 15 iterations, theas decreased to a relatively
small value (i.e., 2.5% of body height or 5 pixels when. is 190 pixels) for both
mNBP and AMDMC, but there was a higher error for BPMC.

Similar results have been reported on estimating body peftom a single image.
Lee and Cohen [14] reported a higher 2D joint error which wapikels whemh, was
150 pixels. Huaet al. [9] also reported a similar higher joint error. Both algbns
can deal with partial self-occlusion by detecting the gasspositions of some body
parts before posture estimation, while our AMDMC does nqtinee any part detection
in dealing with partial self-occlusion. In addition, Sigalal. [20] provided an NBP
algorithm which requires a complex learning process. Tlesyed their algorithm on
a simple walking posture using a multi-camera system. Inpaoieon, our algorithm
does not require any learning process and can deal with noonelex postures.

5.3 Articulated Human Tracking

In the second experiment, a sequence of 88 real images waddarshuman tracking.
The sequence was extracted from one original sequence afr2isf@s by sampling one
from every four consecutive images. This will make humaakirag more challenging
because large posture difference between two adjacen¢fraitl probably happen. In
the tracking process, the initial posture for each imageeciom the estimated posture
of previous frame image, while for the first frame image we oadly set the initial
posture. The annealing factay, 1/, was set to 0.85 for all 30 iterations. Because of
the unknown true postures in the real images, the tracksgtrevas visually compared
with related algorithms. From Figure 4, we can see that béflbMC and mNBP can
accurately track human motion even under severe self-sictitbetween two arms,
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Fig. 4. Results of 2D articulated human tracking. The first row is the result by MIDThe
second row is by mNBP; The third row is by BPMC.

while BPMC failed to track some body parts after a short seqeeThe reason is clear.
Because local image observation was used in BPMC to estimaatebody part’s pose,
it is easy to fall into a local minimum in MAP estimation of thearginal distributions.

6 Conclusion

We presented a new graphical model and developed an effiofemence algorithm
(AMDMC) to accurately estimate human postures under pastH-occlusion. The
AMDMC algorithm can estimate human posture in a low dimensistate space by it-
eratively updating a set of body parts’ marginal distriboti. Experiments showed that
the AMDMC algorithm can accurately estimate 2D human pesfitom a single image
even if the initial posture was far from the truth and if theras partial self-occlusion
between body parts. The AMDMC can be easily extended toudatied human track-
ing, which has been shown by the successful 2D articulat@dahutracking from a
monocular image sequence. Compared to the existing tasbmiqr posture estimation
under self-occlusion, our AMDMC does not require any lemgrprocess or part detec-
tion beforehand. However in a monocular image sequencedifficult to discriminate
the left body limbs from the right ones when human body viefrenh the side. In such
a case, prior motion knowledge or constraints must be egglor advance. Our future
work is to extend the AMDMC algorithm to deal with more genarases in human
posture and tracking by exploring motion models and humaly lsonstraints.
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