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Abstract. Accurate human posture estimation from single or multiple images is
essential in many applications. Two main causes of difficulty to solve the estima-
tion problem are large number of degrees of freedom and self-occlusion. Tree-
structured graphical models with efficient inference algorithms have been used to
solve the problem in a lower dimensional state space. However, such models are
not accurate enough to formulate the problem because it assumes that the image
of each body part can be independently observed. As a result, it is difficult to han-
dle partial self-occlusion. This paper presents a more accurate graphical model
which can implicitly model the possible self-occlusion between body parts. More
important, an efficiently approximate inference algorithm is provided to estimate
human posture in a low dimensional state space. It can deal with partial self-
occlusion in posture estimation and human tracking, which has been shownby
the experimental results on real data.

1 Introduction

Human posture estimation and human tracking try to accurately recover human posture
from single or multiple images [8][9][13]. Accurately recovering posture is essential in
many applications such as human-computer interaction, vision-based sport coaching,
and physical rehabilitation.

Top-down approach is often used to estimate human posture, in which a 3D or 2D
human body model is often required to generate a synthetic 2Dimage of the corre-
sponding human posture. By measuring the similarity between the synthetic 2D image
and the input image, the posture estimation can be updated iteratively. In general, there
are many local minima in such an optimization problem, such that continuous local
optimization methods are not effective [22]. To deal with the difficulty, prior motion
models are often used to constrain the search space during optimization [17], although
it is limited to estimating postures similar to those in the motion models. Another way is
to find multiple local minima and choose the best one from them[3][23], but it requires
more computation and also cannot guarantee to find the globalminimum. In compar-
ison, sampling method [12] may find the global minimum in a lowstate space, but
directly sampling in the state space of body posture is infeasible because of the large
number of degrees of freedom (e.g., 30) of human body.

By observing that the human body is in fact tree-structured,researchers often formu-
late the estimation problem by a tree-structured graphicalmodel [24][11][26][7][18]. In
the model, every body part is encoded by one node in the graph,and every edge con-
necting two nodes indicates that there are relationships between the two parts. Efficient



inference algorithms exist (e.g., BP [28]) to recover the low dimensional (e.g., 6) pose
of every body part. More importantly, sampling methods [7][24][11][26] can be used in
the low dimensional pose space of each body part.

However, it is not accurate enough to formulate the problem by a tree-structured
graphical model. In this model, it assumes that the image of each body part can be inde-
pendently observed, while self-occlusion between body parts often happens in human
motion. In such case, the image of one body part can not be independently observed be-
cause it may be partially or fully occluded by other body parts. Sigalet al. [20] tried to
deal with partial self-occlusion by learning the likelihood of the observed image condi-
tioned on the pose state of each body part. But learning is often a complex process and
it is not easy to collect training images. What is more, such learned likelihood functions
are limited to approximately estimating a small set of postures. Leeet al. [14] and Hua
et al. [9] used detected part candidates to obtain proposal distributions for some body
parts, which are then used to help approximately estimate postures even under partial
self-occlusion. Good proposal distributions are essentially important in their methods.
Sudderthet al. [25] explicitly modelled self-occlusion using factor graph in which one
binary hidden variable is required for each image pixel. However, the large number of
hidden variables inside the model make the inference algorithm more complicated.

In order to deal with partial self-occlusion in posture estimation, we use a more
accurate graphical model by explicitly inserting a set of hidden variables between the
state of human posture and the input image observation. Eachhidden variable repre-
sents the 3D shape and the appearance of one body part, and theimage observation of
every body part depends on all the hidden variables. The possible self-occlusion be-
tween body parts can be implicitly modelled by the relative position between the 3D
shapes of parts. In addition, the non-penetration between body parts can be explicitly
modelled in the middle level of the model. More important, based on the new model,
a novel and efficient approximate inference algorithm is developed to accurately esti-
mate each body part’s pose in a lower (i.e. 6) dimensional space. This algorithm is an
annealed iteration process. In each iteration, conditional marginal distribution of each
body part is estimated based on the estimation results of previous iteration. The rela-
tionships between body parts’ states and the relationshipsbetween parts’ states and the
image observation are updated by an annealing factor in eachiteration. Such annealed
process can help to find the true posture with more probability even if the initial pos-
ture is far from the truth. This inference algorithm, without any learning process, can
deal with partial self-occlusion in 2D posture estimation and human tracking, which has
been shown by the experimental results on real data.

2 Related Work

In general there are two types of approaches to the related human posture estimation and
articulated human tracking problems: top-down and bottom-up. Compared with top-
down approach introduced above, bottom-up approach can avoid the need for explicit
initialization and 3D or 2D body modelling and rendering. Itdirectly recovers human
posture from images by exemplar based method or non-linear mapping based method.



The exemplar based method [16][2] searches for exemplar images similar to the
input image from a set of stored exemplars, and uses the known3D posture of the
exemplar as the estimated posture. Since multiple body postures may have very simi-
lar corresponding images, this method often outputs multiple 3D body posture estima-
tions for the input image. Much computation can be saved by constructing a distance-
approximating embedding [2], such that the similarity measurement between images
can be efficiently computed in the embedded low space. Because the exemplars record
only a limited number of body postures, this method may not obtain good posture esti-
mations if the body posture in the input image is different from those in the exemplars.

The non-linear mapping based method learns a nonlinear mapping function that rep-
resents the relationships between body image features and the corresponding 3D body
postures. During learning, a rich set of image features (e.g., silhouette [6], histogram
of shape context [1]) are extracted from each training imageas the input, and the out-
put is the known 3D posture in the corresponding training image. Agarwal and Triggs
[1] used relevance vector machine to learn a nonlinear mapping function that consists
of a set of weighted basis functions. Rosales et al. [19] useda special combination of
sigmoidal and linear functions to learn a set of forward mapping functions by one EM
technique. In addition, by embedding the manifold of one type of human motion into
a lower dimensional space, and learning the two non-linear mappings between the em-
bedded manifold and both visual input (e.g., silhouette) space and 3D body pose space,
3D body pose can be estimated from each input image by the two mapping functions
[6]. The mapping based method can directly estimate body posture from a single input
image, but it is often limited to recovering the body postures which are similar to the
3D postures in the training images.

Recently, the combination of top-down and bottom-up approaches has also been
used to estimate postures [10][14][9][15]. In general it firstly applies low-level feature
detectors (e.g., rectangle detectors [10]) to generate a set of candidates of body parts,
then applies some prior knowledge or constraints (e.g., kinematic constraints) to search
for good candidates and find the best 2D posture. To list a few,Mori [15] used super-
pixels as the element to represent the input image. Based on the boundaries of superpix-
els and constraints (appearance and width consistency, kinematic constraints) between
body parts, a rough 2D posture configuration was obtained. Hua [9] used the detected
candidates of some body parts to form importance function for later belief propagation.

Note that both types of approaches can be used in human tracking problem. Com-
pared to CONDENSATION [12] which efficiently combines top-down approach into
a probabilistic framework for human tracking, Sminchisescu [21] recently proposed a
probabilistic framework in which conditional density can be propagated temporally in
discriminative (bottom-up), continuous chain models.

3 Problem Formulation

A human skeleton model (Figure 1(a)) is used to represent body joints and bones, and
a triangular mesh model (Figure 1(b)) is used to represent the body shape. Each vertex
in the mesh is attached to the related body part. The relativebone length and part width
to a standard human model are used to represent each body part’s shape size.
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Fig. 1. Human body model and graphical model. (a) Human skeleton model. (b) Each vertex in the
mesh model is assigned to one specific body part. (c) A tree-structuredgraph represents human
postureX . Each node represents one body partxi and the edge between two nodes represents
the potential relationship between them. (d) Each node inY represents one 3D body partyi and
the edge between nodes represents the non-penetration relationship between them. (e) and (f)
represent the graphical model we used. (g) and (h) represent thetree-structured graphical model.

Human body postureX is represented by a set of body parts’ posesX = {xi|i ∈ V}
(Figure 1(c)), whereV is the set of body parts. The posexi = (pi,θi) represents the
ith body part’s 3D positionpi and 3D orientationθi. Given the shape size of each body
part, a synthetic 3D body partyi = f(xi) (Figure 1(d)) is generated for each part’s pose
xi, wheref represents (but is not limited to) a deterministic process.By projecting the
synthetic 3D bodyY = {yi|i ∈ V}, a synthetic image observation can be generated.
During posture estimation, each synthetic image observation will be used to compare
with a real input image observationZ. The relationship betweenY andZ is represented
by the observation functionφ(Y,Z). In addition due to the articulation, every pair of
adjacent body partsxi andxj must be connected. Such kind of kinematic constraint
is enforced by the potential functionψij(xi,xj). DenoteE as the set of adjacent body
partsxi andxj , i.e., (i, j) ∈ E . Another kind of constraint is that body parts cannot
penetrate each other, which can be enforced by potential functionϕim(yi,ym). Denote
E ′ as the set of part pairyi andym, i.e.,(i,m) ∈ E ′.

A graphical model (Figure 1(e) and 1(f)) is used to representall the relationships
introduced above. Note that this model is different from thetree-structured graphical
model that is generally used by other researchers [7][9]. Inthe tree-structured model
(Figure 1(g) and 1(h)), it assumes that the imagezi of each body parti can be indepen-
dently observed such that the relationship betweenxi andzi can be easily evaluated
using local observation. However in general, self-occlusion between body parts often
happens in human motion. In such a case, local observationzi can not be observed inde-
pendently and only the whole body’s image observationZ can. In our graphical model,
a middle level (yi) is inserted betweenxi andZ in order to precisely model the image
generation process. Each hidden variableyi represents the 3D shape and appearance of
one body part, and the image observation of every body part depends on all the hidden
variables. This is different from tree-structured model inwhich every part’s observation
depends only on the part’s state. In our graphical model, thepossible self-occlusion
between body parts can be implicitly modelled by the relative position between the 3D
shapes of parts. In addition, the non-penetration relationship between 3D body parts



can be enforced by potential functionϕim(yi,ym), while such relationship cannot be
modelled in tree-structured graphical model.

The problem is to inferX and correspondingY from Z. From the structure of the
graphical model (Figure 1(e) and 1(f)), the posterior distribution p(X ,Y|Z) can be
factorized as

p(X ,Y|Z) ∝ p(Z|Y)p(Y|X )p(X ) (1)

∝ φ(Y,Z)
∏

(i,m)∈E′

ϕim(yi,ym)
∏

i∈V

δ(f(xi) − yi)
∏

(i,j)∈E

ψij(xi,xj),

whereδ(·) is the Dirac’s delta function becauseyi is a deterministic function ofxi.
Now the objective is to find the maximuma posteriori estimationX ∗ and corresponding
Y∗ which makep(X ,Y|Z) maximum.

4 Inference Algorithm

Instead of directly inferringX andY from (1), we calculate the conditional marginal
distributionp(xi,yi|Z). Unfortunately, due to the complex structure of the graphical
model, the generally used efficient belief propagation algorithm cannot be used to cal-
culatep(xi,yi|Z). Here we develop an approximate inference algorithm to calculate
the maximump(xi,yi|Z) by introducing into it the idea of simulated annealing. This
algorithm is an annealed iteration process. In each iteration, everyp(xi,yi|Z) is esti-
mated based on the estimation of the other body parts from theprevious iteration and
the real input imageZ. Since the estimation is not accurate in the first several itera-
tions, the relationships between different body parts are relaxed and loose at first, and
then become more and more restricted with respect to iteration. The update of relation-
ships is realized by an annealing factor. In the following, we first explain how annealing
factor is introduced to the iterations. After that, we will design the potential functions
and observation functions.

Denotep̃(n)(xi,yi|Z) as the estimation of the truep(n)(xi,yi|Z) = {p(xi,yi|Z)}λn

at iterationn, wheren = 0, ..., N − 1 andλN−1 > . . . > λ1 > λ0. Whenλn increases
(linearly or exponentially) with respect to iterationn, the MAP estimationx∗

i andy
∗
i

will emerge more and more clearly, because{p(xi,yi|Z)}λn is much larger atx∗
i and

y
∗
i than at otherxi values. For two adjacent iterations, we have the following approxi-

mations:

p̃(n+1)(xi,yi|Z) ≈ {p(n)(xi,yi|Z)}λn+1/λn (2)

≈ {p̃(n)(xi,yi|X̂
n
−i, Ŷ

n
−i,Z)}λn+1/λn ,

p(n)(xi,yi|Z) ≈

∫

X−i,Y−i

{p̃(n)(xi,yi,X−i,Y−i|Z)}

=

∫

X−i,Y−i

{p̃(n)(xi,yi|X−i,Y−i,Z)p(n)(X−i,Y−i|Z)}

≈

∫

X−i,Y−i

{p̃(n)(xi,yi|X̂
n
−i, Ŷ

n
−i,Z)p̃(n)(X−i,Y−i|Z)}



= p̃(n)(xi,yi|X̂
n
−i, Ŷ

n
−i,Z), (3)

whereX−i is the set of body parts’ poses exceptxi, andY−i is the set of 3D body
parts exceptyi. X̂n

−i andŶn
−i are the corresponding estimations at iterationn. In (2),

p(n)(xi,yi|Z) is approximated bỹp(n)(xi,yi|X̂
n
−i, Ŷ

n
−i,Z). Although it needs to be

theoretically explored for such approximation, the approximation (3) may be reason-
able at least due to the following observations. During the first several iterations, the
relationship between partxi and the other partsX−i are so loose that they are indepen-
dent. The second observation is that when iterationn is large enough,p(n)(xi,yi|Z)
will become a Dirac’s delta like function. In both cases, thep̃(n)(xi,yi|X̂

n
−i, Ŷ

n
−i,Z)

can be used to exactly representp(n)(xi,yi|Z).
From (1) and (2), we can get

p̃(n+1)(xi,yi|Z) (4)

∝ αφ(n+1)(yi, Ŷ
n
−i,Z)

∏

m∈Γ ′(i)

ϕ
(n+1)
im (yi, ŷ

n
m)δ(f(xi) − yi)

∏

j∈Γ (i)

ψ
(n+1)
ij (xi, x̂

n
j )

∝ α{φ(n)(yi, Ŷ
n
−i,Z)

∏

m∈Γ ′(i)

ϕ
(n)
im (yi, ŷ

n
m)δ(f(xi) − yi)

∏

j∈Γ (i)

ψ
(n)
ij (xi, x̂

n
j )}λn+1/λn ,

whereΓ (i) = {k|(i, k) ∈ E} is the neighbor of body parti, and similarly forΓ ′(i).
α is a normalizing factor including potential functions related to the other body parts.
From (4), conditional marginal distribution can be updatediteratively. Also, we can get

φ(n+1)(yi, Ŷ
n
−i,Z) ∝ {φ(n)(yi, Ŷ

n
−i,Z)}λn+1/λn , (5)

ϕ
(n+1)
im (yi, ŷ

n
m) ∝ {ϕ

(n)
im (yi, ŷ

n
m)}λn+1/λn , (6)

ψ
(n+1)
ij (xi, x̂

n
j ) ∝ {ψ

(n)
ij (xi, x̂

n
j )}λn+1/λn . (7)

Observation functionsφ(n+1)(yi, Ŷ
n
−i,Z) and potential functionsϕ(n+1)

im (yi, ŷ
n
m) and

ψ
(n+1)
ij (xi, x̂

n
j ) will be updated based on (5) (6) and (7) in the(n+ 1)th iteration.

4.1 Potential Functions

Potential functionψij(xi,xj) can be used to enforce relationships between body parts
i andj. In our work,ψij(xi,xj) is used to enforce kinematic constraints and angle con-
straints between two adjacent body parts. In this case, assuming parti is one neighbor
of partj, we can get

ψ
(n)
ij (xi,xj) ∝ ψ

(n)
ij1 (xi,xj)ψ

(n)
ij2 (xi,xj), (8)

ψ
(n)
ij1 (xi,xj) = N (T (xi) − pj ; 0, Λ

n
ij), (9)

ψ
(n)
ij2 (xi,xj) =

{

1 if θij ∈ Θij

an
ij otherwise

, (10)

whereψ(n)
ij (xi,xj) represents the probability ofxi givenxj . ψ(n)

ij1 (xi,xj) is used to
enforce kinematic constraints, whereT is a rigid transformation that is obtained from



positionpi and orientationθi in the posexi and the size information of theith body
part, andΛn

i,j is the variance matrix of the gaussian functionN in thenth iteration.

ψ
(n)
ij2 (xi,xj) is used to enforce angle constraints, whereθij is the angle between the

two body parts’ orientationθi andθj ,Θij is the valid angle range between body parti
andj, andan

ij is a value between 0 and 1. Note thatΛn
ij andan

ij are tuned based on (7).
Potential functionϕim(yi,ym) is used to enforce non-penetration constraints be-

tween two related body partsi andm where

ϕ
(n)
im (yi,ym) =

{

1 if dim > Dim

bnim otherwise
, (11)

dim is the minimum distance between partyi andym, andDim is the allowable min-
imum distance between the two parts.bnim is a value between 0 and 1.bnim is tuned
according to (6) and becomes smaller with respect to the iteration, which means the
non-penetration constraints will be more and more enforced.

4.2 Observation Functions

Observation functionφ(Y,Z) measures the likelihood ofZ givenY. In order to mea-
sure the likelihood, the 3D bodyY is projected, and then the similarity between the
projected image and the real input image observationZ is computed to estimate the
likelihood. Sinceφ(Y,Z) is estimated by the similarity of the two whole images, it can
deal with self-occlusion where one body part is partially occluded by others.

In our work, edge and silhouette were used as the features forthe similarity mea-
surement. Chamfer distance was used to measure the edge similarity. For the silhouette
similarity, in addition to the overlapping area of the projected image and the human
body image region in the input image, the chamfer distance from the projected image
region to the body image region in the input image was also used. The relative weight
between edge and silhouette similarity is experimentally determined. Note that the edge
similarity was a value between 0 and 1 by normalizing the chamfer distance, such that
that the scaling problem between the edge similarity and thesilhouette similarity was
avoided.

4.3 Nonparametric Implementation

Because of the non-Gaussian property of potential functions and observation functions,
analytic computation of the functions is intractable. We use Monte Carlo method to
search for each body part’s state by iteratively updating conditional marginal distribu-
tion p̃(n+1)(xi,yi|Z), called Annealed Marginal Distribution Monte Carlo (AMDMC).
In our algorithm, each distributioñp(n+1)(xi,yi|Z) is represented by a set ofK weighted
samples,

p̃(n+1)(xi,yi|Z) = {(s
(n+1,k)
i , π

(n+1,k)
i )|1 ≤ k ≤ K} (12)

wheres(n+1,k)
i is thekth sample of theith body part statexi in the(n+ 1)th iteration

and π(n+1,k)
i is the weight of the sample. Note thatyi = f(xi) is a deterministic

function and so it is not necessary in the nonparametric representation.



In each iteration, everỹp(n+1)(xi,yi|Z) is updated based on (4). The update pro-
cess based on the Monte Carlo method is described in the following:

1. Update potential functions and observation functions based on (5)–(11).
2. Compute estimation̂Xn

−i of the other body parts from initialization or previous
iteration result, and get̂Yn

−i = f(X̂n
−i).

3. Use importance sampling to generate new sampless
(n+1,k)
i from related marginal

distributions of previous iteration. The related marginaldistributions include the
neighbors’ and its own marginal distributions of previous iteration. The new sam-
ples are to be weighted in the following step to represent marginal distribution.

4. Update marginal distribution. For each new samples
(n+1,k)
i , computey(n+1,k)

i =

f(s
(n+1,k)
i ) and then calculate the weightπ(n+1,k)

i , where

π
(n+1,k)
i = φ(n+1)(y

(n+1,k)
i , Ŷn

−i,Z)
∏

m∈Γ ′(i)

ϕ
(n+1)
im (y

(n+1,k)
i , ŷn

m)

×
∏

j∈Γ (i)

ψ
(n+1)
ij (s

(n+1,k)
i , x̂n

j ). (13)

π
(n+1,k)
i is then re-weighted and normalized because we use importance sampling

to generate samples(n+1,k)
i . The updated marginal distributions will be used to

update marginal distributions in the next iteration.

Human body posture can be estimated from the set of marginal distributions. The sam-
ple with the maximum weight iñp(n+1)(xi,yi|Z) can be used to represent the estima-
tion x̂

n+1
i of ith body part’s pose.

Our algorithm can be viewed as the generalization of annealed particle filtering [5].
When body postureX is a single high dimensional state rather than a set of body parts’
states, our AMDMC algorithm will become exactly the annealed particle filtering. An-
other related algorithm is the modified nonparametric belief propagation (mNBP) [27].
mNBP can also deal with partial self-occlusion, but it is based on the tree-structured
model and there is no theoretical foundation on the modification. While mNBP is tested
on synthetic image for posture estimation, our AMDMC is on real image sequences.

5 Experimental Results

Evaluation of our AMDMC algorithm and comparison with some related work were
performed using real image sequences. The first experiment evaluated the algorithm’s
ability to accurately estimating 2D human posture under partial self-occlusion from a
single image. The second experiment evaluated its ability to tracking 2D human body
from a monocular image sequence. Note that the algorithm canbe applied to estimate
3D human postures when multiple images or image sequences are available.

5.1 Preprocess

In the real image sequences in which a TaiChi motion was recorded, the static back-
ground inside each image was removed by a statistical background model. And the
human model was modified to fit the human body size in every image sequence.
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Fig. 2. Removing noisy edges inside each body part. (a) Input image. (b) Input image after back-
ground removal. (c) The extracted edge without removing noisy edges. (d) Over-segmentation
result of (a) by mean shift. (e) Cluster every segment inside the body image region into one of the
two clusters. (f) The edge extracted from (e).

Note that the edge information plays an important role in posture estimation espe-
cially when limbs (e.g., arms) fall inside the torso image region. However, because of
the variability in the appearance of human body, many noisy edges inside each body
part will probably happen (Figure 2(c)). Mean shift [4] was used here to remove the
noisy edges. Firstly from the first input image, the body image was manually divided
into several clusters according to their appearance, and the histogram of each cluster
was obtained. Then for subsequent input images, over-segmentation of the foreground
image region was obtained by mean shift (Figure 2(d)), and every segment was classi-
fied into one cluster by comparing the histogram similarity between the segment and
each cluster (Figure 2(e)). Of course because of similar appearance between symmetric
body limbs, several body parts are often clustered together. In our experiment, just two
clusters were used. One was for lower arms and the face, the other for the remained body
parts. The noisy edges can be effectively removed by the above process (Figure 2(f)).

5.2 Posture Estimation under Partial Self-occlusion

Because of the depth ambiguity in a single image, 3D joint position cannot be estimated
correctly. Therefore not 3D but 2D joint position errorE2D = 1

nh

∑n
i=1 ‖p̂2i − p2i‖

was computed to assess the performance of our algorithm, where p̂2i andp2i are the
estimated and true 2D image position of theith body joint.p2i was obtained by manu-
ally setting the image position of each body joint.h is the articulated body height and
it is about 190 pixels in each320 × 240 image.

In this experiment, 150 weighted samples were used to represent each conditional
marginal distribution. The annealing related factorλn+1/λn was simply set to 0.9 in
every iteration, and the total iteration number is 50. For each iteration, around 12 sec-
onds was spent, most of which was used to generate synthetic image from mesh model
and compute observation functions.

The skeletons in Figures 3(b) and 3(c) illustrate the 2D trueposture and initial pos-
ture respectively. The skeletons in Figures 3(d), 3(e) and 3(f) illustrate the estimated
posture using BPMC, mNBP, and our algorithm respectively. Both BPMC and mNBP
[9] are efficient inference algorithms based on tree-structured model, and they have the
same computation complexity as our AMDMC due to the similar structure of the graph-
ical models. Note that the annealing factor was also used in BPMC and mNBP such that
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Fig. 3. Posture estimation from a single image. (a) Input image. (b) 2D true posture represented
by skeleton. (c) initial posture. Estimated posture by (d) BPMC, (e) mNBPand (f) our AMDMC.
(g) AMDMC is better than BPMC and comparable to mNBP in posture estimation.

they can be compared with ours. Even the annealed BPMC was expected to obtain bet-
ter result than the original BPMC, the pose estimation of some body parts (i.e., arms
in Figure 3(d)) was not accurate when there was partial self-occlusion between body
parts because local body image observation was used in BPMC’s observation function.
In comparison, the posture estimation was very close to the truth when using the mNBP
and our AMDMC, in which the global body image observation wasused in the obser-
vation function.

For this input image and the initial posture, Figure 3(g) represents the 2D joint
position errorE2D with respect to the iteration number when using different inference
algorithms. It shows that, after 10 to 15 iterations, the error has decreased to a relatively
small value (i.e., 2.5% of body heighth, or 5 pixels whenh is 190 pixels) for both
mNBP and AMDMC, but there was a higher error for BPMC.

Similar results have been reported on estimating body posture from a single image.
Lee and Cohen [14] reported a higher 2D joint error which was 12 pixels whenh was
150 pixels. Huaet al. [9] also reported a similar higher joint error. Both algorithms
can deal with partial self-occlusion by detecting the possible positions of some body
parts before posture estimation, while our AMDMC does not require any part detection
in dealing with partial self-occlusion. In addition, Sigalet al. [20] provided an NBP
algorithm which requires a complex learning process. They tested their algorithm on
a simple walking posture using a multi-camera system. In comparison, our algorithm
does not require any learning process and can deal with more complex postures.

5.3 Articulated Human Tracking

In the second experiment, a sequence of 88 real images were used for human tracking.
The sequence was extracted from one original sequence of 350images by sampling one
from every four consecutive images. This will make human tracking more challenging
because large posture difference between two adjacent frames will probably happen. In
the tracking process, the initial posture for each image came from the estimated posture
of previous frame image, while for the first frame image we manually set the initial
posture. The annealing factorλn+1/λn was set to 0.85 for all 30 iterations. Because of
the unknown true postures in the real images, the tracking result was visually compared
with related algorithms. From Figure 4, we can see that both AMDMC and mNBP can
accurately track human motion even under severe self-occlusion between two arms,
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Fig. 4. Results of 2D articulated human tracking. The first row is the result by AMDMC; The
second row is by mNBP; The third row is by BPMC.

while BPMC failed to track some body parts after a short sequence. The reason is clear.
Because local image observation was used in BPMC to estimateeach body part’s pose,
it is easy to fall into a local minimum in MAP estimation of themarginal distributions.

6 Conclusion

We presented a new graphical model and developed an efficientinference algorithm
(AMDMC) to accurately estimate human postures under partial self-occlusion. The
AMDMC algorithm can estimate human posture in a low dimensional state space by it-
eratively updating a set of body parts’ marginal distributions. Experiments showed that
the AMDMC algorithm can accurately estimate 2D human posture from a single image
even if the initial posture was far from the truth and if therewas partial self-occlusion
between body parts. The AMDMC can be easily extended to articulated human track-
ing, which has been shown by the successful 2D articulated human tracking from a
monocular image sequence. Compared to the existing techniques for posture estimation
under self-occlusion, our AMDMC does not require any learning process or part detec-
tion beforehand. However in a monocular image sequence, it is difficult to discriminate
the left body limbs from the right ones when human body viewedfrom the side. In such
a case, prior motion knowledge or constraints must be explored in advance. Our future
work is to extend the AMDMC algorithm to deal with more general cases in human
posture and tracking by exploring motion models and human body constraints.
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