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ABSTRACT

In medical applications, sensitivity in detecting medicalprob-
lems and accuracy of detection are often in conflict. A
single classifier usually cannot achieve both high sensitiv-
ity and accuracy at the same time. Methods of combining
classifiers have been proposed in the literature. This paper
presents a study of probabilistic combination methods ap-
plied to the detection of bone fractures in x-ray images. Test
results show that the effectiveness of a method in improving
both accuracy and sensitivity depends on the nature of the
method as well as the proportion of positive samples.

1. INTRODUCTION

In medical applications, sensitivity in detecting medicalprob-
lems and accuracy of the detection (also called specificity)
are two important performance measures that are often in
conflict. Classifiers that are very sensitive (i.e., have high
detection rates) often do so by compromising classification
accuracy (i.e., specificity). On the other hand, when the
number of negative (i.e., healthy) cases is much large than
the number of positive cases (i.e., those with medical prob-
lems), a classifier can easily achieve high classification ac-
curacy with very low detection rate.

Such a problem is particularly acute in our application
of detecting femur (thigh bone) and radius (arm bone) frac-
tures in x-ray images [1, 2, 3]. Among 432 consecutive
cases (i.e., consecutive in date and time at which the x-ray
images were taken) of femur images obtained from a lo-
cal hospital, only about 12% of them contained fractured
femurs. For radius images, about 30% of 145 consecu-
tive cases examined contained fractured radius bones. As
a result, a single classifier working on a single feature type
can often achieve high classification accuracy but very poor
fracture detection rate [2, 3]. In [2, 3], a simple voting
scheme is used to combine the classifiers to improve both
classification accuracy and detection sensitivity.
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In this paper, we present a study of the performance of
classifier combination in our application context. In par-
ticular, the probabilistic combination methods proposed in
[4] are tested and compared with the simple voting scheme
used in [2, 3]. Test results show that the effectiveness of a
method in improving both accuracy and sensitivity depends
on both the nature of the method as well as the proportion
of negative samples in the test set.

2. RELATED WORK

The first published work on the detection of fractures in x-
ray images is that of Tian et al. [1] The method detected fe-
mur fractures by computing the angle between the neck axis
and shaft axis. Subsequently, Gabor, MRSAR, and gradient
intensity were used for fracture detection, and a simple vot-
ing scheme was used to combine the individual classifiers
that work on single features [2, 3]. Since the individual clas-
sifiers tend to complement each other, the combined method
improves both the accuracy and sensitivity significantly.

There are three main approaches in combining classi-
fiers. The first approach applies a voting scheme [2, 3, 5, 6].
This is a simple approach that can be used to combine any
classifiers. The second approach applies Bayesian theory to
derive probabilistic rules such as sum rule and product rule
to combine the classifiers [7, 8, 4]. This approach is simple
to use but requires that the classifiers output posterior prob-
abilities of classification. Majority voting is a simplification
of the probabilistic rule by hardening the posterior probabil-
ities to binary values. The third approach applies boosting
techniques such as AdaBoost to weight each classifier ac-
cording to how well they perform [9, 10]. This approach is
more complex. Typically, boosting techniques weight the
classifiers according to their classification accuracy only. It
is uncertain how to weight the classifiers according to both
classification accuracy and detection sensitivity, which are
conflicting performance measures. Thus, in this paper, we
choose to study probabilistic combination in the context of
bone fracture detection.



Fig. 1. Sample x-ray images of (left) healthy and (right)
fractured (top) femurs and (bottom) radius.

3. IMAGES AND FEATURES

432 consecutive femur images were obtained from a local
public hospital, and were divided randomly into 324 train-
ing and 108 testing images. The percentage of fractured
cases in the training and testing sets were kept approxi-
mately the same (12%). In the training set, 39 femurs were
fractured, and in the testing set, 12 were fractured.

145 consecutive wrist images were obtained from the
same hospital, and divided randomly into 71 training and
74 testing images. The percentage of fractured cases in
the training and testing sets were also kept approximately
the same (30%). In the training set, 21 radius bones were
fractured whereas 23 were fractured in the testing set. Fig-
ure 1 shows sample images containing healthy and fractured
bones.

Three types of texture features were extracted from each
image, namely, Gabor orientation (GO), Markov Random
Field (MRF), and intensity gradient direction (IGD) [2]. Due
to differences in gender and age, the same bone of different
patients can differ in shape and size. To handle such differ-
ences, an adaptive sampling method was employed to sam-
ple the features. This method produced feature maps of the
same size for the same bone and same feature type [2, 3].

The number of sampling points is inversely proportional
to the number of pixels required in a sampling area to accu-
rately extract the features. Gabor features require the most
number of pixels and intensity gradient requires the least.
Thus, GO maps have the smallest size while IGD maps have
the largest size. In addition, the raw femur images are larger
than the radius images. So, femur feature maps are consid-
erably larger than radius feature maps. Figure 2 illustrates
sample GO and IGD maps of healthy and fractured femurs.
MRF maps are not shown because it is difficult to visualize
the multi-dimensional vectors of MRF map entries.

The feature maps contain a vector at each map entry.

Fig. 2. Feature maps extracted from (left) healthy samples
and (right) fractured samples. (top) Gabor orientations are
visualized as lines. (bottom) Intensity gradient directions
are visualized as colors in the standard color circle.

It is difficult to directly use these vector maps for classi-
fication. So, they are converted into scalar maps by com-
puting the scalar differences between the feature maps and
the mean feature maps of the healthy training samples [2].
Then, the scalar maps are arranged into feature vectors (con-
taining scalar feature values) for classification.

4. INDIVIDUAL CLASSIFIERS

Gini-SVM [11] was used for classification tests. A system-
atic method was employed to determine the kernel function
and parameter values that produce the best overall perfor-
mance on the training and testing sets. We found that Gaus-
sian kernel consistently performed better than polynomial
kernel. The best parameter values of the Gaussian kernels
were found to be 2 for MRF and 0.1 for GO and IGD.

We also tested two other probabilistic classifiers, namely
Bayesian and a Matlab implementation of probabilistic SVM
[12]. Test results show that Gini-SVM has better overall
performance in terms of high accuracy and sensitivity com-
pared to the other two classifiers. So, this paper reports only
the test results of Gini-SVM.

Table 1 (top) shows the classification accuracy and sen-
sitivity (i.e., fracture detection rate) of Gini-SVM on femur
images. The training performance is nearly perfect for all
three types of features. This indicates that the classifiers
were well trained. On the testing set, classification with
MRF attained the best performance for both accuracy and
sensitivity. Classification with IGD had high accuracy but
very low sensitivity. This may be because intensity gradient
direction does not contain enough information for discrimi-
nating between healthy and fractured femurs.



Table 1. Performance of Gini-SVM using single features.

training set testing set
femur accuracysensitivity accuracysensitivity
GO 100.0% 100.0% 89.8% 58.3%
MRF 99.3% 100.0% 98.1% 100.0%
IGD 100.0% 100.0% 90.7% 17.0%

training set testing set
radius accuracysensitivity accuracysensitivity
GO 100.0% 100.0% 90.5% 87.0%
MRF 100.0% 100.0% 86.5% 91.3%
IGD 100.0% 100.0% 96.0% 87.0%

Table 1 (bottom) shows the performance of Gini-SVM
on radius images. The classifiers were well trained with
perfect performance on the training set. On the testing set,
classification with IGD now achieved the highest accuracy
but classification with MRF achieved the highest sensitivity.

5. CLASSIFIER COMBINATION

Suppose we haveN classifiers based on different feature
vectorsxi. Each classifieri measures the posterior prob-
ability P (ωj |xi) of a sampleZ belonging to classωj , j ∈
{−1,+1} (healthy or fractured) using feature vectorxi. These
classifiers can be combined using the rules described in [4].
Five of these combination rules were tested:

Max Rule:

assignZ → ωk if

k = arg max
j

[

(1 − N)P (ωj) + N max
i

P (ωj |xi)
]

(1)
Min Rule:

assignZ → ωk if

k = arg max
j

[

P−(R−1)(ωj)min
i

P (ωj |xi)
]

(2)

Product Rule:

assignZ → ωk if

k = arg max
j

[

P−(R−1)(ωj)
∏

i

P (ωj |xi)

]

(3)

Sum Rule:

assignZ → ωk if

k = arg max
j

[

(1 − N)P (ωj) +
∑

i

P (ωj |xi)

]

(4)

Majority Vote Rule:

assignZ → ωk if

k = arg max
j

∑

i

∆ji
(5)

Table 2. Performance of various classifier combinations.

femur radius
accuracysensitivity accuracysensitivity

Max 98.1% 91.7% 95.9% 95.7%
Min 98.1% 91.7% 95.9% 95.7%
Product 20.4% 100.0% 64.9% 100.0%
Sum 22.2% 100.0% 54.1% 95.7%
Majority 91.7% 41.7% 95.9% 91.3%
1-of-3 97.2% 100.0% 85.1% 100.0%
2-of-3 93.5% 41.7% 95.9% 91.3%
3-of-3 89.8% 8.3% 91.9% 73.9%

where

∆ji =

{

1 if j = arg max
l

P (ωl|xi)

0 otherwise.
(6)

In addition, the simplem-of-n rules used in [2, 3] were
also tested. That is, a bone was classified as fractured ifm

of the n classifiers classified it as fractured. So, 1-of-n is
the logic OR rule whereasn-of-n is logic AND rule.

Table 2 illustrates the results of classifying the testing
samples using various classifier combination rules. For the
femur images, max and min rules achieve the highest accu-
racy of 98.1%. The product, sum, and OR (1-of-3) rules
achieve the highest sensitivity of 100.0%. However, the
product and sum rules achieve high sensitivity at the ex-
pense of very low accuracy. On the other hand, the accu-
racy of the OR rule (97.2%) is only slightly lower than that
of the max and min rules (98.1%). Thus, it can be concluded
that for the femur images, the OR rule has the best overall
performance of high accuracy and sensitivity.

Interestingly, none of the classifier combination meth-
ods significantly outperform the best individual classifier
(i.e., using only MRF). The max and min rules achieve the
same accuracy as MRF but at the expense of sensitivity. On
the other hand, the OR rule achieves the same sensitivity as
MRF but at the expense of accuracy.

For the radius images, max, min, majority, and 2-of-3
rules achieve the highest accuracy of 95.9%. Among these
four combinations, the max and min rule achieve very high
sensitivity of 95.7%, which is only slightly lower than that
of the product and OR rule (100.0%). However, the accu-
racy of the max and min rule is significantly higher than
that of the product and OR rule. The majority and 2-of-
3 rules achieve the same accuracy as the max and min rule,
but lower sensitivity. Compared to individual classifiers,the
max and min rules have higher sensitivity than all the indi-
vidual classifiers, and their accuracy (95.9%) is almost the
same as that of IGD (96.0%). So, for the radius images, the
max and min rules have the best overall performance of high



accuracy and sensitivity, which is an improvement over the
individual classifiers.

For both femur and radius images, the max and min
rules consistently achieve the highest accuracy, which is (al-
most) the same as the accuracy of the best individual classi-
fiers. This shows that the max and min rules consistently op-
timize the classification accuracy using the posterior prob-
abilities computed by Gini-SVM. They are not as sensitive
as the best individual classifier in detecting femur fractures.
But, they can detect radius fractures at a higher sensitiv-
ity than the best individual classifier. This may be due to
the fact that only a small fraction (12%) of the femurs are
fractured, whereas a large fraction (30%) of the radius are
fractured. Also, the sensitivity of individual classifiersin
detecting radius fractures is no where near the perfect sensi-
tivity achieved by MRF in detecting femur fractures. How-
ever, it must be commented that this outcome is likely to
be an exception rather than the norm because the test results
reported here are based on the parameter values that achieve
the highest overall performance in both training and testing
samples. In real application, MRF alone is not expected to
be able to achieve perfect sensitivity. So, classifier combi-
nation is still preferred.

The OR rule consistently achieve perfect sensitivity in
detecting both femur and radius fractures because it is the
least stringent rule in fracture detection. Its accuracy for
classifying femur images is marginally lower than that of
max and min rules and the best individual classifier. But, its
accuracy for classifying radius images is much lower than
that of max and min rules. Nevertheless, this result does not
diminish the usefulness of OR rule because in real applica-
tion of screening for possible fractures, one would prefer to
have as high a sensitivity as possible while tolerating, say,
10% false alarm rate.

6. CONCLUSION

This paper reported a comprehensive comparison of vari-
ous classifier combination methods in the context of detect-
ing bone fractures in x-ray images. Test results show that,
in general, the max and min rules have the highest accu-
racy among the various combination methods. The OR rule
has higher sensitivity and comparable accuracy compared
to max/min rule, especially when the fraction of fractured
samples is small.

In real application of screening for possible fractures
while tolerating a small amount of false alarm, the OR rule
appears to perform better than max/min rule. This is ex-
pected to hold when the fraction of fractured cases is small
and the various classifiers are complementary in detecting
different types of fracture [2, 3]. The OR rule is very useful
because it can be applied to standard classifiers that do not
output probabilistic measures. For optimizing both sensitiv-

ity and accuracy, one may explore a method that combines
the strengths of the OR rule and max/min rule.
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