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ABSTRACT

Accurate human body posture refinement from single or multi-
ple images is essential in many applications, such as vision-based
sport coaching and physical rehabilitation. Two main causes of
difficulty to solve the refinement problem are high degree freedom
of human body and self-occlusion. One of the most recent algo-
rithms is nonparametric belief propagation (NBP) that solves the
problem in a lower dimensional state space. However, it is diffi-
cult to handle self-occlusion. This paper presents an NBP-based
algorithm that can refine body posture even in self-occlusion case,
which has been shown by experimental results. The experimen-
tal results also show that our algorithm can accurately refine body
posture even if the initial posture has large difference from the true
posture.

1. INTRODUCTION

Human body posture refinement tries to accurately recover human
posture from single or multiple images, given one or multiple ini-
tial postures. Accurately recovering posture is essential in such
applications as vision-based sport coaching and physical rehabili-
tation. In this paper, we present an algorithm to refine articulated
human body posture from images.

Posture refinement is an optimization problem. Three kinds of
search strategies are often used to solve the problem: local descent
method, multiple random start, and sampling method including
NBP. Local descent method [1, 2] can be used to incrementally up-
date an existing posture estimate, e.g., using the gradient to guide
the search direction toward a local optimal posture, but it cannot
guarantee globally optimal. Multiple random start [3, 4] performs
local descent method from each of multiple initial postures to gen-
erate multiple local optimality, and then selects the local optimal
posture with the best similarity measurement as the solution. This
method works better, although it cannot guarantee to find the best
posture. Another search strategy is sampling method [5, 6], which
generates a large number of samples in the posture state space,
and selects one with the most similarity between the sample and
the image observation as the globally optimal. Although densely
sampling the entire state space can guarantee a good solution, it is
infeasible to densely sample from even a local region of the high
(e.g., 30) dimensional posture state space.

Instead of directly recovering whole body posture, NBP [7, 8,
9] divides human body into several body parts and recovers the low
dimensional (e.g., 6) pose of each body part by considering the re-
lationships between every two adjacent body parts. It represents
human body and the relationships between body parts by a graph-
ical model. Every body part is encoded by one node in the graph,

and every edge connecting two nodes indicates that there are rela-
tionships between the two nodes. However, the original NBP [9]
cannot deal with self-occlusion. In the original NBP, each node (or
body part) has its own observation function that is estimated by the
similarity measurement between state of the body part pose and
the corresponding image part. If the body part is partially or fully
occluded by other body parts, the observation function cannot be
correctly estimated by the similarity measurement. Although the
observation function can be learned from training images that in-
clude the case of self-occlusion [10], learning is often a complex
process and not easy to collect training images. What is more, such
learned observation function is used not to refine but to initialize
body postures, and it is limited to initialize a small set of postures.

In this paper, one modified NBP algorithm is presented that
can deal with the self-occlusion of body parts, without any learn-
ing process. Based on a graphical model(Section 2), the modified
NBP algorithm is designed (Section 3). Initial experimental results
show that the algorithm can refine body posture even in the case
of self-occlusion between body parts. The results also show that,
even if the initial posture is largely different from the true posture,
accurate posture can be recovered.

2. ARTICULATED HUMAN BODY MODEL

A human skeleton model (Figure 1(a)) is used to represent body
joints and bones, and a triangular mesh model (Figure 1(b)) is used
to represent the body shape. Each vertex in the mesh is attached
to the related body bone, and each body part consists of one or
multiple bones and the corresponding vertexes (Figure 1(c)). For
each body part’s size, assuming there is a fixed ratio between width
and thickness, two parameters (length and width) can be used to
represent the size of each body part.

Human body postureX is represented by a set of body parts’
poses,X = {xi|i ∈ V}, whereV is the set of body parts, and
body part posexi = (pi, θi) represent theith body part’s 3D
positionpi and 3D orientationθi. Given the shape and size of hu-
man body, any body postureX can be rendered (by rotating body
bones and the corresponding mesh vertexes) and projected to gen-
erate a synthetic image observation. During posture refinement,
each synthetic observation will be used to compared with a real
image observationZ = {zi|i ∈ V}, wherezi represents the im-
age observation for theith body part. The relationship between
xi andzi is represented by the observation functionφi(xi, zi). In
addition due to the articulation, every pair of adjacent body parts
xi andxj must be connected. This constraint is enforced by the
potential functionψij(xi,xj).

A tree-structured graphical model (Figure 1(d)) is used to rep-
resent the articulated human body model. The tree consists of a



set of nodesV and a set of edgesE . Each nodei ∈ V is associ-
ated withxi andzi of ith body part, and each edge(i, j) ∈ E is
associated with the potential functionψij(xi,xj).

(a) (b) (c) (d)

Fig. 1. Human body model. (a) Human skeleton model. (b) The
vertexes in the body mesh model. (c) Each vertex and triangle in
the mesh model is assigned to one specific body part. (d) A tree-
structured graphical model for representing human body model.

3. POSTURE REFINEMENT ALGORITHM

NBP can be used to estimate each body part’s pose. However, it as-
sumes that observation of each part can be obtained independently
[7, 9]. This limits it to cases where there is no self-occlusion. We
modified NBP to handle occlusion by changing the joint proba-
bility of body postureX and corresponding image observationZ
to Equation (1). Similar to NBP [7], we may calculate marginal
distributions by Equations (2) and (3),
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∏
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wheremn
ij(xj) is the message propagated from nodei to j in it-

erationn. Γ(i) = {k|(i, k) ∈ E} is the neighbor of nodei, and
Γ(i)\j is the neighbor ofi exceptj. X̃n−1

−i is the set of body parts’
estimations except theith body part which come from the previous
(n− 1)th iteration (or from initial estimates whenn is 1).

When body parti is partially occluded by some others, its im-
age observationzi is generated by both this part and the others. To-
gether with the other body parts’ estimationsX̃n−1

−i coming from
previous iteration, each estimate ofxi can generate corresponding
observations to measure the observation functions, although the
convergence of Equation (3) is remained to be proved.

3.1. Potential Functions

Potential functionψij(xi,xj) can be used to enforce relationships
between body parti andj, such as kinematic constraint and joint

angle limits. In our work,ψij(xi,xj) is used to enforce just kine-
matic constraint between two adjacent body parts, i.e. the corre-
sponding two ends of the two body parts should be at the same 3D
position (i.e. the position of body joint connecting them) without
noise. Therefore in general, assuming nodei is the parent ofj, po-
tential function can be a single Gaussian with a zero mean vector,
i.e.

ψ
n
ij(xi,xj) = N (T (xi) − pj ; 0,Λ

n
ij) (4)

whereψn
ij(xi,xj) represents the probability ofxj givenxi. T is

a rigid transformation that is obtained from the the posexi and the
size information of theith body part.Λn

i,j is the variance matrix
of the gaussian functionN in thenth iteration of NBP. Note that
Λn

i,j may be different in different iterations. HereΛn
i,j is gradually

decreasing byΛn
i,j = λΛn−1

i,j , whereλ is a decreasing factor be-

tween 0 and 1. It is easy to getψn
ij(xi,xj) = {ψn−1

ij (xi,xj)}
1/λ,

which makesλ have similar effect to simulated annealing in an-
nealed particle filtering [6].

Similarly, wheni is a child of nodej, there is

ψ
n
ij(xi,xj) = N (T ′(xj) − pi; 0,Λ

n
ij) (5)

3.2. Observation Functions

Observation functionφi(xi, X̃
n−1
−i , zi) measures the likelihood of

zi givenxi. In order to measure the likelihood, each estimate of
body part posexi is required to be rendered and then projected
together withX̃n−1

−i , and then the similarity between the projected
image and the input image observationZ is computed to estimate
the likelihood. Sinceφi(xi, X̃

n−1
−i , zi) is estimated by the similar-

ity of the two whole images, it can deal with self-occlusion where
one body part is partially occluded by others. In our work, edge
and silhouette are used as the feature for the similarity measure-
ment. Chamfer distance is used to measure the edge similarity,
and overlapping area of the projected image and the human body
image region in the input image is used to measure the silhouette
similarity. The relative weight between edge and silhouette simi-
larity is experimentally determined.

3.3. Nonparametric BP

After designing potential functions and observation functions, NBP
can be used to search for body parts’ states by iteratively updating
each message and each marginal distribution. In our NBP algo-
rithm, like BP Monte Carlo (BPMC) [11], each messagemn

ij(xj)
is represented by a set ofK weighted samples,

m
n
ij(xj) = {(s(n,k)

j , ω
(n,k)
ij )|1 ≤ k ≤ K} (6)

wheres(n,k)
j is thekth sample of thejth body part state in thenth

iteration andω(n,k)
ij is the weight of the sample. Correspondingly,

the marginal distribution is represented by

p̂
n(xj |Z) = {(s(n,k)

j , π
(n,k)
j )|1 ≤ k ≤ K} (7)

wheres
(n,k)
j is the same as that in Equation 6 andπ(n,k)

j is the
corresponding weight.

In each iteration, each messagemn
ij(xj) and each marginal

distributionp̂n(xj |Z) are updated based on Equations (2) and (3).
Since the messages and marginal distributions are nonparametric,
the update is based on the Monte Carlo method. The update pro-
cess is described in the following:



1. Modify potential functions byΛn+1
i,j = λΛn

i,j .

2. Use importance sampling to generate new sampless
(n+1,k)
j

from related marginal distributions of previous iteration.
The related marginal distributions include the neighbors’
and its own marginal distributions of previous iteration. The
new samples are to be weighted respectively in the fol-
lowing two steps to represent corresponding messages and
marginal distributions.

3. Update messages. For each new samples
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Equation (8) is the nonparametric version of Equation (9),
which represents message in terms of marginal distribution
[9].

m
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The updated messages will be used to update marginal dis-
tributions.

4. Based on the updated messages, each marginal distribution
is updated. For each samples(n+1,k)

j , calculate the weight

π
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j , where

π
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j = φj(s

(n+1,k)
j , X̃n
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Thenπ(n+1,k)
j is re-weighted because we use importance

sampling to generate samples
(n+1,k)
j . The updated marginal

distributions will be used to update messages in the next it-
eration.

Human body posture can be estimated from the set of marginal
distributions. The mean of̂pn(xj |Z) or the sample with the max-
imum weight inp̂n(xj |Z) can be used to represent the estimation
of jth body part state.

There are several differences between our algorithm and oth-
ers’ NBPs. Sudderth et al. [7, 9] used Gaussian mixtures to rep-
resent messages and marginal distributions, and a complex Gibbs
sampler is required to generate samples in each iteration. In our
algorithm, like BPMC [11], it just uses a set of weighted sam-
ples to represent messages and marginal distributions, and uses
importance sampling to generate samples. Compared to BPMC in
which importance function comes from the same node’s marginal
distribution of previous iteration, and in which they re-weight mes-
sages by the importance function, our importance function comes
from multiple marginal distributions, i.e. both the neighboring
marginal distributions and the same node’s marginal distribution
of previous iteration. And we re-weight the marginal distribu-
tions, not messages, by the importance function. We believe that
such re-weighting is more reasonable because the samples from
importance sampling are essentially used for marginal distribu-
tions. In addition, BPMC is used for rigid object whereas our
algorithm deals with articulated body. More important, compared
to these existing algorithms [9, 11], our algorithm can deal with
self-occlusion by using estimated postures of previous iteration.
Furthermore, our algorithm embeds the simulated annealing idea
into the algorithm by modifying potential functions in each itera-
tion.

4. QUANTITATIVE EVALUATION

Quantitative evaluation of our NBP algorithm was performed with
two tests. The first test evaluated the algorithm’s ability to refine
body posture in the self-occlusion case. The second test evalu-
ated the accuracy of recovered body posture when the difference
between initial posture and true posture is large.

In order to quantitatively evaluate our algorithm, we captured
motion using Gypsy motion capture system and extracted 3D pos-
tures from the motion. Each posture was mapped to 54-DOF hu-
man skeleton model with mesh model for skin, and rendered using
OpenGL to get input image. To obtain initial posture, we added
some uniform random noise to joint angles of the true posture.

In the tests, our algorithm was used to refine posture from
a single image, therefore the depth information cannot be accu-
rately estimated. As a result, 2D joint position errorE2D =
1

nh

∑n
i=1 ‖p̂2i − p2i‖ is computed to assess the performance of

our algorithm. p̂2i andp2i are the estimated and true 2D image
position of theith body joint.h is the articulated body height and
it is about 195 pixels in the tests. Note that each estimated joint po-
sition was obtained from the estimated pose of one corresponding
body part.

4.1. Posture refinement in self-occlusion case

In this test, the performance of our NBP algorithm in refining self-
occluded posture was evaluated. 150 weighted samples were used
to represent each message and each marginal distribution respec-
tively. Generally, the decreasing factorλ should be close to 1
(e.g., 0.95) according to the simulated annealing theory [6]. But
this makes the algorithm very slowly to obtain the final solution.
Whenλ is smaller (e.g., 0.5), it converges fast but may converge
to a local optimal. For balance, here we used a two-level iteration
framework,λ is set 0.6 and 5 iterations for the NBP are repeated
8 times (i.e., totally 40 iterations). Test results showed that such
two-level iteration alternative resulted in similar good solutions to
the original annealing method withλ close to 1, while obtaining
faster convergence. For each iteration, around 20 seconds is spent,
most of which is used to compute observation functions.

Figures 2(a) (b) and (c) illustrate one input image (with posture
truth represented by the skeleton) and the corresponding images of
an initial posture and the best refined posture. We can see that the
estimated (projected 2D) posture is very close to the true posture.
For this pair of input image and the initial posture, Figure 2(d) rep-
resents the 2D joint position errorE2D with respect to the iteration
number. It shows that, after 15 iterations, the error has decreased
to a relatively small value (i.e., 0.1% of body heighth, or 2 pixels
whenh is 195 pixels). Note that the edge information plays an im-
portant role in posture refinement especially when arms fall inside
the torso image region, in which case silhouette information itself
often cannot get good refinement result.

Sudderth et al. [9] reported a similar result on refining body
posture from initial posture estimates. However, their NBP algo-
rithm required a complex learning process and was tested on a
simple walking posture using a multi-camera system. In compar-
ison, our algorithm does not require any learning process and can
deal with more complex postures.

4.2. Posture refinement from different initial postures

In the second test, we tested the accuracy of the recovered body
posture when the difference between initial posture and true pos-
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Fig. 2. Test results. (a) Input image with the truth. (b) Image of initial posture.(c) Image of refined posture. (d) ErrorE2D with respect to
BP iteration. (e) ErrorE2D with respect to joint angle noise. The estimated posture error in (e) is computed after 40 iterations of NBP.

(a) (b) (c)

Fig. 3. One result in the second test. (a) Input image with the truth.
(b) Image of initial posture. (c) Image of refined posture.

ture increases. The uniform random noise of each joint angle was
increased from0o to [−30o, 30o]. For each range of random noise,
the mean ofE2D is averaged over a sequence of 20 images.

Figure 2(e) illustrates the mean errors of initial posture and
estimated posture. It shows that when the joint angle noise is
increased, the 2D error of estimated posture remains small even
when the joint angle random noise is large (e.g.,30o). Figure 3 il-
lustrates one test result, from which we can see that the projection
of the refined posture is very similar to the input image even if the
initial posture is very different from the true posture.

5. CONCLUSION

This paper presented an algorithm to refine human body posture
from single or multiple images. Compared to existing NBP algo-
rithms, our algorithm can deal with self-occlusion and can accu-
rately recover the projected 2D postures from single image, which
has been shown by the test results. In the future work, tests on pos-
ture refinement from multi-view images and on real images will be
performed. We also plan to apply the algorithm to articulated hu-
man body tracking and vision-based sport coaching applications.
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