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ABSTRACT have different x-ray attenuation coefficients. So, the atrdo

3D visualization and segmentation of organs in abdomin ipal wall is easier to be modelled using its intensity diati
9 9 Fion. This motivates our research on abdominal wall removal

volume images are important in medical image processin . : o :
S : . .t facilitate 3D visualization and segmentation of the agya
for applications such as diagnosis, treatment and surgica

planning. However, the abdominal wall leads to difficulties

in both visualization and segmentation. These difficulties 2. RELATED WORK

can be eliminated by removing the abdominal wall. This

paper presents an algorithm that removes abdominal wall bgeneral deformable segmentation algorithms such as shjpke [
registering a 3D flipping-free deformable model to the innerand level set [2, 3] are not appropriate for extracting the ab
boundary of the wall. To our best knowledge, it is the firstdominal wall. The snake algorithm, which deforms a contour
work in removing the abdominal wall for the purpose of 3D based on strong edge information, may be attracted to noise
visualization and segmentation of the organs. edges instead of the true boundary of the wall. The level set
algorithm adopts an implicit representation and is computa
tionally expensive. It is also prone to the leakage problem.
Moreover, both methods are difficult to be initialized for
extracting the wall.

1. INTRODUCTION Maedaet al. [4] proposed to use rib cage to approxi-

mate the interface between the abdominal wall and the cavity

3D V|su_allzat|on an_d segmer_ltatlon _Of organs in abdo_mlnaép"ne interpolation is used to estimate the position of the
volume images are important in medical image processing fqparface where ribs are missing. A user interface is used

applications such as diagnosis, treatment and surgicat pla, jnitialize a liver model where the edge between the liver

ning. However, the abdominal wall leads to difficulties in 54 the abdominal wall is weak. This approach can work to
both visualization and segmentation. For visualizatio® t ¢5a extent. However, it is in general not accurate enough

existence of the abdominal wall _Wh'Ch consists 9f _skm, faty, approximate the anterior part of the abdominal wall where
muscle and bones prevents the viewer from examining the off, ., i, cage is made up of coastal cartilage. The cartilage

gans in the volume rendered 3D image. A common solutiof 55 yery similar x-ray attenuation coefficient to that of the

in practice is to apply a transfer function for the user to ady,sighhoring muscles, and thus is difficult to be identified. |

just the opacity of the rendered volume. Although adjustinge ho|ation in these regions is inaccurate. Thereforeaipe
transparency of the abdom|nal wall voxels enables the oser Ylone cannot provide enough information for extracting the
see some of the organs, it can also cause organ voxels to Bdominal wall. Moreover, their method requires that the ri
pear transparent and cannot be clearly visible. The organs Ccage be segmented first. Due to highly variant bone density

physically touch the abdominal wall, and their voxel iniens s gifferent patients and noise in the CT volume, simple
ties are close to those of the abdominal wall. Such projsertie,

) r@?orithms such as thresholding are not robust and accurate
lead to gnclear bound_arles bgtween organs ar_ld the abdomi ough for segmenting spine/ribs. In contrast, the prapose
wall, which leads to difficulty in 3D segmentation.

algorithm does not require accurate segmentation of the rib

T_hese problems can be gliminated by remoying the_ abéage’ though a relative good segmentation of these bones can
dominal wall. It usually contains only 4 types of tissues,,|i.

: ) : help to extract the abdominal wall more accurately. Exgstin
skin, fat, muscle, and bones (ribs and spines), and theylysuaip, cage segmentation algorithms such as [5] can be applied.

*This research is supported by SBIC RP C-008/2006 and A*STERG The proposed algorithm requires the user to initialize a
052 101 0103 (NUS R-252-000-319-305). generic mesh sphere inside the body volume. This can be

Index Terms— 3D deformable model, medical image
segmentation, abdominal wall
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R A A T Fig. 2. Quadrilateral mesh on (a) a cube and (b) a sphere.
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] ] ) between the two can be extracted. To do this, for each point
Fig. 1. (a) Extract and sample feature points (red) in the abqp, the skin surface, a ray is projected along the inward sur-
dominal wall for (b) building intensity GMM. face normal direction until it meets a bone voxel. The voxels

along the ray definitely belong to the body wall and are ex-

- . ; ; ._tracted (Fig. 1(a)). If a ray cannot find any bone voxel within
easily automated by putting an appropriately sized spake
Y y P g bprop y SPAETIc ertain distance, all the voxels along the ray are discartied

mesh at the center of gravity of the volume data. Based on tHe : .
constructed intensity distribution of the abdominal walé¢- reduce the number of exiracted voxels, uniform sampling of
tion 3.2), the mesh model is deformed iteratively to regjistethe extracted voxels can be performed.. )
to the inner boundary of the abdominal wall (Section 3.3). Ir_‘ g_eneral, most of the_ parametnc.or non-pgra_metnc
To our best knowledge, this is the first work in removing thedlstrlbutlon functions are suitable for building the inséxy

abdominal wall for the purpose of 3D visualization and seg-diStriletion m_odel_ In our v_vork,_ a Gaussian mixtu_re model
mentation of the organs. (GMM) containing 3 Gaussians is used to serve this purpose,

where each Gaussian approximates the intensity distoiuti
of one type of tissue (i.e., skin, fat and muscle). The pa-

3. METHOD rameters of the GMM are estimated using the Expectation
. , Maximization (EM) method. An example of the recovered
3.1. Overview of Algorithm GMM is shown in Fig. 1(b). The recovered GMM will be

Our algorithm extracts the abdominal wall by i) image fea-used for correspondence search in the deformation stage.
ture extraction from the input volume and ii) 3D flipping-ére

deformation of a generic mesh model to register it to innes 3. Registration by 3D Flipping-free Deformation
boundary of the abdominal wall.
Based on the extracted features, this stage deforms a surfac

mesh, making it registered to the inner boundary of the ab-
dominal wall. Essentially, the deformation of a mesh model
The feature extraction stage estimates the intensityildistr A/ can be defined non-parametrically as the displace®ent
tion of abdominal wall voxels. Since voxels between the skini; — v; whereu; is a mesh vertex and; is the target loca-
surface and the bone structure clearly belong to the abddmintion of u;. However, naively deforming a surface mesh based
wall, they can be sampled to build an intensity distributon on corresponding points is prone to tfi@ping problem as
approximate that of the abdominal wall. Therefore, the feaexplained in [7]. In order to solve this problem, a special
ture extraction stage contains two steps. The firstis tatifyen quadrilateral mesh is initially defined on a cube (Fig. 2(a))
the skin surface and the bones, and the second is to build titleen projected onto a sphere (Fig. 2(b)). Each vertex has ex-
intensity distributions of the body wall voxels. actly 4 neighboring vertices, and 3 orthogonal contour gsou
Identification of skin surface and bones Identification  can also be defined on the mesh. These internal properties
of the skin surface is straight-forward by using a contoaicir ~ contribute to an easier solution of the flipping problem dgri
ing algorithm [6]. Since accurate segmentation of the bondeformation. This stage iteratively performs correspoge
structure is not necessary, identification of bone voxets casearch for mesh vertices, flipping detection/resolutiahder
simply be performed by applying thresholding with a highformation of the mesh until convergence.
threshold and then by extracting the largest connectedoemp  Correspondence searchThis step searches for each ver-
nent. Note that thresholding alone may get voxels belongintex u; on the modelM a possible corresponding poinf on
to other body parts as well besides bones. These parts hataget volumel™ along the projection lind’(u;). The direc-
similar or even higher x-ray attenuation coefficients tHeatt tion of P(u;) can be defined as the surface normakat
of the bones. A practical example is shown in Fig. 4, where The idealv; is located on either the inner boundary of
the stool in the colon has such a property. the muscle layer or the bones. Therefore, the algorithm can
Building intensity distribution of body wall voxels.  start fromu; (inside the abdominal wall), and estimate fqr
Once the skin surface and the bones are identified, the voxeddong a ray going outwardsv; can be the first bone voxel

3.2. Feature Extraction



Fig. 4. Volume rendering of two sample CT volumes by set-
ting the abdominal wall to transparent (a,c). Volume render
ing of organs after removing the abdominal walls (c,d). Some
of the organs such as colons and blood vessels that cannot be
visualized in the former can be clearly visualized in theelat

Best viewed in color.

(e)

Fig. 3. Initial 3D quadrilateral mesh (a) and its 2D view (b) in

one axial slice. Extracted 3D surfaces (c,e) and their speget 1o null except the middle one of them. The vertices

tive 2D axial views (d.f) for sample CT volume Images. without proper corresponding points initially may get thei
correspondence later on by means of interpolation.

or muscle voxel. To ensure robust estimation of muscle, This step creates valid correspondence without flipping

voxel is treated as muscle only if its subsequent consezuti or most of the vertices on the mesh. For vertices with-

n voxels are all within a standard deviation of the computed)Ut val!d correspon_dence, their d|s_placemen_ts are solyed b
Gaussian distribution. Larger guarantees more robust esti- Laplamar_] deformation [8]. For deta|I§ of the f||p_p|ng-f|:az|a
mation, since the joint probability of making false estifoat deformathn, please refgr to our previous work n [71.

goes down significantly with larger. Howevern cannot be Laplacian deformation.  During deformation, non-

too large because the muscle layer has limited thickness. Usﬂ'p_IOIng mesh vertices toget_h_er with thelr_ corresponding
ally . — 5 will suffice. points are regarded as positional constraints. The other

Flipping detection & resolution. The flipping of a mesh mesh vertices are displaced according to the generic shape

cell after mesh deformation can be characterized by the flip(—:OHStr"’Ilnts mcgrpor_ated Into Lapla.C|an deformapon. Sene
hape constraints include Laplacian preservation, sarfac

i f at | fi . Th flippi
ping of at least one of its edges e edge flipping can bsmoothness, and uniform vertex distribution.

detected by checking the following condition: . . .
y g g In deforming the mesh, instead of moving the mesh vertex
u; — uj Vi —V;j from u; to v; in one time step, the algorithm can also move

[w; — uy v — vill =T @ u; by a fraction of the distance to;, for instance

whereu,; andu; denote two neighbors on a closed cont6ur u; — (1= A)u; + Avy, 2
of mesh modelM, v; andv; denote their respective corre- . _ _
sponding points on the targét andr € [0, 1) is a predefined Where € (0,1) is the step size. In general, choosing a
threshold. This condition essentially states that thentaie SmallerA may help keep the deformed mesh smoother, and
tion of u;u; andv,v, should not differ significantly. Note to distribute vertices on the surface of the mesh better.
that each vertexi; is an intersection of two closed contours
on M. As aresult, it will undergo two rounds of flip detection 4. EXPERIMENTS AND APPLICATIONS
checks as the algorithm iterates.

Once flipping is detected along certain contour, correQur abdominal wall removal algorithm was tested on 10 ab-
spondence for consecutive vertices causing flipping will belominal CT volumes, each containing around 200 slices of



The initial snake was initialized with the manually segneent
liver contour. As shown in Fig. 5(a), before removing the ab-
dominal wall, even though the algorithm was initializediwit
the ground truth, it was still attracted to the edges produce
by the wall. In contrast, Fig. 5(b) shows a good segmentation
result after removing the wall. Essentially, removal of &te
dominal wall can help not only the snake algorithm, but also
all the other algorithms to segment the inner organs. Simila
facilitations were obtained for other segmentation akhons

such as the level set method.
Fig. 5. Segmentation results of the snake algorithm with (a)

and without (b) the abdominal wall.

5. CONCLUSIONS

This paper presented an abdominal wall removal algorithm to
help to visualize and segment inner organs in the CT volume.
with appropriate size inside the body. In the feature eximac T-he p,ropos?d algorithm IS bgsed on the estimation of inten-

sity distribution of voxels inside the body wall, followeg b

stage, around 30k sample points were collected. Constructi o ) ; .
of their intensity GMM took about 5 seconds. The deforma-N€ flipping-free 3D deformation of a quadrilateral sphairic

tion of the quadrilateral mesh containing around 10k vestic mesh. By removing the wall in the 3'.3 volgme, t_he organs in

took 15 iterations with a step size of — 0.4 in 25 sec- the abdomen can_be exposed and V|sual|ze_d_d|rectly. It al_so

onds. The experiment was performed on an Intel Xeon ZGH%:akeS segmentation more accurat.e and eff|C|ent by reducing

computer with 4G memory. The extracted inner boundary of® search space of the segmentation algorithm.

the abdominal wall is represented as a surface mesh. Sam-

ple results of the extracted inner boundaries of the abdamin 6. REFERENCES
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