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Abstract. Style-specific harmonization aims at generating a chord sequence that 
matches a given melody in a specific style. Existing methods for generating chord 
sequence have some shortcomings. Most of them are trained on a large training 
set of a specific genre such as pop or jazz. To accommodate to different styles, 
they need to train a different version of the method on a different style-specific 
training set, increasing the total training time. If they are trained on a mixed-style 
set that contains examples of various styles, they will mix up the styles and pro-
duce results that are diluted in style. Moreover, existing methods cannot cater to 
cadence and voice leading. Many recent deep neural networks (DNNs) for har-
monization are tested on 8-bar phrases instead of complete music pieces. While 
this makes testing easier, they cannot handle the global structure of music which 
lead to better overall harmonic coherence. This paper proposes a style-specific 
harmonization method called FlexChord that overcomes the shortcomings of ex-
isting methods. FlexChord achieves style specificity by producing chord se-
quence that matches the style of a selected set of example music, which can be 
as little as a single example music piece. It applies direct optimization during 
chord generation that does not require training. Thus, it can easily produce chord 
sequence of a specific style or a custom style. The requirement of cleaning, an-
notating and training on large datasets is avoided. In addition, FlexChord can 
handle cadence and voice leading effectively. It can generate chords that match 
full-length melodies, complete with global music structure. Test results show that 
FlexChord's harmonization is better than those of comparable DNNs and is close 
to that of human harmonization. 

Keywords. Chord generation, harmonization, multi-objective optimization, 
style-specificity. 

1 Introduction 

Harmonization is the process of generating a chord progression to accompany a mel-
ody. There are two forms of harmonization [1]: chord generation and chorale genera-
tion. The first form generates a sequence of chords at strong beats to match the melody. 
The second form distributes chord notes into three to four voices to support the melody. 
This paper focuses on chord generation. 
Music style is influenced by the relationships between melody, chords, and chord pro-
gressions. It can be understood at multiple levels. At the coarsest level, it refers to spe-
cific genres such as pop, jazz and classical. Style can also refer to music in specific 
historical periods such as Baroque, Classical, Romantic, etc. At a finer level, it reflects 



the style of individual composers like Beethoven and Chopin. Even within a com-
poser’s work, different pieces can be stylistically different such as Chopin’s Mazurkas 
and Nocturnes. At the finest level, each piece of music can have a different style. For 
example, Chopin’s Mazurkas No. 1 and No. 2 are stylistically distinct even though they 
are both Mazurkas.  
Past works on harmonization [2], [3], [4], [5], [6], [7], [8] use well-defined rules and 
grammar to encode genre-specific harmony. It is difficult to manually create rules and 
grammars for various styles. Evolutionary algorithms [9], [10], [11], [12], [13] offer 
flexibility by maintaining a population of chord sequences and selecting them based on 
fitness function. Unfortunately, defining style-specific fitness function is difficult, if 
not impossible, for some styles. 
Recent methods train hidden Markov models (HMMs) [14], [15], [16] and deep neural 
networks (DNNs) [17], [18], [19], [20], [21], [22], [23], to generate chords sequences. 
These DNNs are trained on a large training set specific to a particular genre, such as 
pop or jazz, whereas the HMMs are trained on smaller datasets. An exception is the 
HMM of [16] that requires the chord sequence of only one reference song for generating 
the chord sequence of a different target song. To accommodate to different styles, both 
HMMs and DNNs need to train a different version of the method on a different style-
specific training set, increasing the total training time. If they are trained on a mixed-
style set that contains examples of various styles, they will mix up the styles and pro-
duce results that are diluted in style. Except for the HMM of [24] that handle cadence, 
the other HMMs and DNNs cited above do not cater to cadence and voice leading. 
Moreover, they are tested on 8-bar to 12-bar phrases instead of full-length melodies.  
This paper proposes a harmonization method called FlexChord that overcomes the 
shortcomings of existing methods, and contributes to the following: 

• FlexChord can generate harmonization of the required style at various levels 
such as pop, jazz, a particular Greek composer and high-tension harmonization 
based on Hitchcock's Psycho. 

• As for [16], FlexChord achieves style-specificity using as few as a single ref-
erence music piece. Unlike [16], FlexChord is fully automated and does not 
require the user to provide the start and end chords of a melody section. 

• Generate harmonizations of custom styles using different reference music. 

• FlexChord belongs to the category of direct optimization method (Section 2) 
that does not require training, thus eliminating the need to clean and annotate 
large amounts of training data. 

• Handle cadence and voice-leading that are absent in existing work. 

• Generate harmonization for full-length melodies. 

Audio files of test results are available in https://tinyurl.com/flexchord.  

https://tinyurl.com/flexchord


2 Related Work 

Chord generation methods can be grouped into five categories, namely rule-based 
methods, evolutionary algorithms, neural networks, Markov models and direct optimi-
zation. The first two categories are reviewed in Section 1 and [1].  
Neural networks [25], [26] and deep neural networks (DNNs) [17], [18], [19], [20], 
[21], [22], [23], are trained to generate chords that fit the melodies and chord sequences 
of training examples. Training of these methods require large training sets that can mix 
up the various styles of the training samples, diluting the resulting harmonization style. 
They cannot harmonize a melody with various music styles without re-training [27]. 
The DNNs in [20], [21] support only simple triads and a few seventh chords. Conse-
quently, their results are stylistic limited. 
Existing Markov models for harmonization consist of two main types, namely Markov 
chains and hidden Markov models. The Markov chains of [28], [29] generate chords 
for melody using state transition probabilities. [28] derives state transition probabili-
ties from the frequency counts of chord transitions in a small example set during data 
preparation. [29] defines chord transition probabilities based on neo-Riemannian prin-
ciples. Thus, these methods do not require training. However, it is difficult to adapt 
[29] to various styles. 
The hidden Markov models (HMMs) of [14], [15], [16], [24], [30], [31], [32] model the 
relationship between hidden states and observable melody from the training data, and 
capture both state transition and output probabilities. The HMMs of [14], [15], [31], 
[32], [33] apply the Viterbi algorithm, a dynamic programming method, to determine 
the optimal chord sequence for the given melody. HMMs can be trained on a small 
training set [34]. An exception is the HMM of [16] which requires only the chord se-
quence of a single reference song for training. 
The DNNs and HMMs cited above are tested only on 8-bar to 12-bar phrases. To handle 
full-length melodies, they need to train on examples of various lengths, increasing the 
complexity and training time of these methods significantly. Moreover, the HMM of 
[16] is not fully automated because they require the user to specify the start and end 
chords of a melody section. 
Direct optimization methods [27], [35], [36] generate chord sequences by directly op-
timizing an objective function using optimization algorithms without the need for train-
ing. In principle, they can incorporate reference inputs or constraints in the optimization 
process to achieve style specificity. Unfortunately, these methods do not adopt any ap-
proach that is style-specific. 
All the above methods optimize a weighted-sum of loss functions. This is a common 
technique for solving multi-objective optimization but it can miss good solutions (Sec-
tion 4.1). It is very difficult for them to handle cadence, which is a hard constraint at 
phrase and section endings, unless the ending chords are specified by the user as for 
[15], [16]. Incorporating cadence into the weighted loss function turns cadence into a 
soft constraint. This technique encourages the generated chords to follow cadence but 
cannot enforce it. Moreover, these methods do not consider chord inversion, which can 
improve voice leading. 



3 Style-specific Harmonization 

FlexChord is guided by three objectives: (1) good chord-melody matching, (2) good 
chord progression and (3) good voice leading. It generates a sequence of chords that 
simultaneously optimizes the three objectives, given a melody.  

3.1 Representation of Melody and Chords 
Melody is represented as a step function with a sequence of 𝑚 pitches over integer time 
index 𝑖	 = 	0, . . . , 𝑚	 − 	1. Chords are generated at each strong beat to match the pitch 
sequence and structure of the melody. Let 𝑗  denote strong beat index, for 𝑗	 =
	0, . . . , 𝑛	 − 	1. It is related to time index 𝑖 by  

𝑗 = 𝑖𝑛𝑡(𝑖/𝛼𝛽), 𝛼 = 2	2 if 𝑆 ∈ 2/4,4/4,
	3 if 𝑆 ∈ 3/4,6/8, (1) 

where 𝛽 is the number of pitches per beat, which is 4, 8, 16 or 32, and 𝑆 is the key 
signature of the melody. This gives 1 strong beat per bar for 2/4 and 3/4 music and 2 
strong beats per bar for 4/4 and 6/8 music. With strong beat index 𝑗, the melody is 
organized as a sequence of fragments ℎ! , 𝑗	 = 	0, … , 𝑛 − 1. Each fragment ℎ! contains 
pitches 𝑝"#! , … , 𝑝"#(!%&)(&. It has a structure label 𝜆! that takes the value of ‘P’, ‘S’, or 
‘ ’, respectively for end of phrase, end of section, which is also end of phrase, or neither. 
A phrase is a 4-bar or 8-bar sequence that is no longer than a section. For a fragment ℎ! 
that is not the end of phrase and section, and repeats an earlier phrase ℎ!! exactly, its 
𝜆! = 𝑗).  
FlexChord produces chords 𝑐*, each consisting of multiple pitches 𝑞*+, for 𝑘 = 1,… , 𝜅 
where 𝜅 is the number of pitches or voices in the chord. Chord 𝑐! at strong beat j is 
matched to fragment ℎ! of the melody, and it is held for the duration from 𝑖	 = 	𝛼𝛽𝑗 to 
𝛼𝛽(𝑗 + 1) − 1. Thus, it is required that 𝑚	 = 	𝛼𝛽𝑛. Only chords 𝑐!  have onsets; the 
others are sustained.  

3.2  Chord-Melody Matching 
Music perception studies point to the match between a chord 𝑐! and a melody fragment 
ℎ! as the amount of dissonance between their pitches [37], [38]. The dissonance value 
𝑑(𝑝, 𝑞)  between two pitches 𝑝  and 𝑞  depends on their pitch interval 𝜃(𝑝, 𝑞) =
|𝑝 − 𝑞|	𝑚𝑜𝑑	12, and is given in Huron’s study [37]. The higher the dissonance, the less 
harmonious are 𝑝 and 𝑞 when they are played together.  
A similar concept can be defined for the dissonance 𝑑Gℎ! , 𝑐!H between fragment ℎ! and 
chord 𝑐!. It is measured by the average dissonance between them:  

𝑑Gℎ! , 𝑐!H  =  
1

Jℎ!JJ𝑐!J
K K 𝑑,G𝑝* ,  𝑞!+H

-"# ∈ 0",$ ∈ 1"

,   for  𝑝*   ≠   rest ,   (2) 

where Jℎ!J  and J𝑐!J  are the total number of pitches in fragment ℎ!  and chord 𝑐! 
respectively.  



3.3  Chord Progression and Harmonization Style 
In music theory, chord progression is one of the key elements in conveying harmoniza-
tion style [39].  It is noted that chord progression alone may not differentiate between 
styles like Baroque, Classical and Romantic. Nevertheless, it can differentiate between 
pop and jazz, and between high-tension and low-tension harmonization. It can also 
characterize the styles of specific music pieces. 
Let 𝑐  and 𝑐)  denote consecutive chord pairs in an example music set, where 𝑐) 
immediately follows c. The chord transition probability 𝑃(𝑐)|𝑐) is easily computed by 
measuring the frequency of occurrence of chord pair (𝑐, 𝑐)) in the set. These transition 
probabilities form the chord transition model 𝐶 that captures the required style. By 
using different chord transition models that captures different styles, our algorithm 
FlexChord can produce different results that follows the style of the chord transition 
model. As for Markov chains [28], [29], preparation of chord transition model is done 
in data preparation, which does not involve FlexChord algorithm. On the other hand, 
HMMs’ computation of hidden states involves the HMMs themselves, which is 
analogous to DNN training. 
As for [16], FlexChord’s chord transition model can be prepared with as few as a single 
example music piece (Section 5.5). A caveat of using single example piece is that some 
chord transitions may be absent in the example. A common practice in HMM is to 
replace zero transition probability by a small arbitrary value. [16] comments that this 
approach can introduce inappropriate transitions, and resorts to using chord transition 
blending to enrich possible chord transitions. Although chord transition blending has 
been demonstrated for several styles such as Bach Chorales, Jazz, neo-tonal and post-
tonal harmony [40], it is unclear whether it is feasible for other styles. This approach 
also creates additional complexity in the harmonization method. The issue of zero 
transition probability is significant for existing HMMs because they use short 8-bar to 
12-bar examples. In contrast, our approach uses full-length example music piece to 
generate chord transition model, significantly mitigating the issue of zero transition 
probability. If needed, more example music pieces can be used. In essence, we choose 
the simpler data-driven approach over more complex approach of [16]. 
The chords in chord transition model 𝐶  are represented by Roman numerals and 
captured at the root position. This representation is independent of music key and actual 
chord positions. Thus, the chord transition model C can be applied to the harmonization 
of melodies of any key. In contrast, most DNNs represent each position of the same 
chord (e.g., C-E-G, E-G-C) as a different chord.  

3.4  Cadence 
In music theory, cadence refers to melody or harmony at the end of a phrase or 
section that creates a sense of full or partial resolution [39]. Different cadences create 
different senses of resolution. They help to clarify the overall hierarchical structure of 
music [41]. 
In practice, it remains difficult to define a fixed set of cadences across multiple music 
styles [42]. A simplified approach is to refer to cadence as specific chord-pairs at the 
phrase and section endings. Each chord pair (𝑐, 𝑐)) in chord transition model 𝐶 is given 
a structure label that takes the value ‘P’, ‘S’ , ‘ ’, as defined in Section 3.1. Then, 



cadence can be handled by matching melody fragments labeled ‘P’ and ‘S’ to chord 
pairs with the same labels (see Section 4.2 for details).  

3.5  Voice Leading 
Voice leading refers to the interaction of individual voices that creates harmony [43]. 
It is an important aspect of music where multiple voices play supporting roles in held 
chord generation. According to the pitch proximity principle, a chord progression that 
minimizes voice fluctuation has a good or efficient voice leading, which improves the 
coherence of the music [44, 43]. The voice fluctuation between two successive chords 
can be defined as the average distance moved by the implied voice parts between them. 
For two chords 𝑐* = {𝑞*+} and 𝑐*(& = Q𝑞*(&,+R, the voice fluctuation 𝛿* between them 
is defined as   

𝛿* = TKJ𝑞*+ − 𝑞*(&,+J 
3

+4&

for 𝑞*+ ≠ rest and 𝑞*(&,+ ≠ rest

0 otherwise.

(3) 

3.6 Constraint and Optimization Objectives 
The conditions of harmonization discussed in the previous sections are translated into 
a hard constraint for cadence and three optimization objectives:  
1. Good chord progression and style matching:  

Style is captured in the chord transition model 𝐶. By maximizing chord transition 
probability 𝑃G𝑐!J𝑐!(&H, for	𝑗 = 1,… , 𝑛 − 1, the generated chords 𝑐!  follows the 
style of 𝐶. Note that chord 𝑐5 has no previous chord. å 

2. Good chord-melody matching:  
By minimizing overall chord-melody dissonance 𝐷 

𝐷 = K𝑑Gℎ! , 𝑐!H
6(&

!45

(4) 

the generated chords will match the melody well in terms of harmonization. 
3. Smooth voice leading:  

Minimizing voice fluctuation ∆ produces smooth chord voices: 

∆= K 𝛿*
7(&

*4&

. (5) 

For held chords, voice fluctuation 𝛿! can also be defined between the chords at 
successive strong beat indices 𝑗	 − 	1  and 𝑗  because the chords between them 
remain unchanged. 

4 Multi-objective Optimization 
4.1  Overview 
In general, a problem with multiple objectives cannot be perfectly solved by optimizing 
all the objectives simultaneously. A principled way of handling more than one objective 



is to apply multi-objective optimization [45], [46]. This family of methods generalizes 
the optimality condition of single-objective optimization to the condition of Pareto 
optimality. A multi-objective optimization problem can have many Pareto optimal 
solutions. The set of all Pareto optimal solutions defines the Pareto front. A good 
method should be able to produce all possible Pareto optimal solutions, for example, 
by varying internal parameters randomly. 
One commonly used approach for multi-objective optimization, called linear 
scalarization, combines multiple objective functions into a single function by a 
weighted sum. Then, the single weighted function is optimized using standard methods. 
This approach is used by many solution methods including Markov models and 
DNNs. Despite its simplicity, it has an inherent shortcoming — it cannot produce some 
Pareto optimal solutions when the Pareto front is non-convex [45], [46]. In other words, 
these methods can miss many good solutions regardless of how well they are designed 
and trained. 
An alternative to linear scalarization is the lexicographic method. This method takes a 
set of objective functions sorted in decreasing order of importance by the decision 
maker. It first minimizes the most important objective function. If this step produces a 
set of optimal solutions, then it looks for solutions in the set that minimizes the next 
most important objective function. This procedure is continued until a unique 
solution remains or after all objective functions are optimized. A shortcoming of 
the lexicographic method is that less important objective functions are minimized only 
when there are multiple optimal solutions or ties. If there is no tie, less important 
objective functions are ignored. 
The lexicographic method can be modified to overcome its shortcomings. In each step, 
instead of looking for solutions that minimize each objective function, the modified 
method looks for solutions on the Pareto front that are close to and including the 
minimum [46]. The bounds that specify closeness are manually set. When the bounds 
are small, the Pareto solutions obtained are very near to the minima of the first few 
objective functions. On the other hand, when the bounds are large, the Pareto solutions 
are far from the first few objective functions and nearer to the last few objective 
functions. Thus, by varying the bounds, the modified lexicographic method can produce 
all solutions on the Pareto front. 

4.2 Harmonization Algorithm 
FlexChord (Algorithm 1) adopts discrete modified lexicographic method (Lines 3–4, 
14–15). Its overall structure is to assign a chord to the first beat of each fragment and 
hold the chord for the duration of the fragment length of 𝛼𝛽 by repeating the same 
chord without onset (Line 17). The first chord of the melody, with 𝑗 = 𝑖 = 0, is set to 
a chord c from the chord set C having a high transition probability to any chord with 
low dissonance with the first fragment ℎ5 (Lines 2–5). 
For a fragment ℎ! at 𝑗	 > 	0, several cases are considered. If ℎ! is just before a phrase 
or section ending labelled ‘P’ or ‘S’, a chord-pair (𝑐, 𝑐)) that matches structure label 
𝜆!%& and has the lowest combined dissonance is chosen. Chord 𝑐 is assigned to 𝑐𝑗 , and 
𝑐′ is assigned to 𝑐𝑗+1 (Lines 6–10) to satisfy the cadence constraint. Chord 𝑐𝑗  is set at a 
position with the least voice fluctuation and 𝑐𝑗+1 is set at the root position as cadence.  



If 𝜆!  is any integer 𝑗’, it means that fragment ℎ𝑗  repeats ℎ𝑗′  exactly. So, chord 𝑐𝑗
′  is 

copied to chord 𝑐𝑗  (Lines 11–12). This method generates the same chord sequence for 
repeated phrases. 
Otherwise, K chords having the largest transition probabilities are selected (Line 14). 
This step maximizes chord transition probability (Objective 1). Among these K chords, 
the chord c with the least dissonance is selected (Line 15). This step minimizes chord-
melody dissonance (Objective 2). When K = 1, the algorithm ignores Objective 2. 
When 𝐾 = |𝐶| (all the chords in C), it ignores Objective 1. A good balance between 
Objectives 1 and 2 is found with 1 < 𝐾 < |𝐶|. This balancing of Objectives 1 and 2 
are also applied to the first chord at 𝑗 =  0 (Lines 3–4). Line 16 sets chord 𝑐𝑗  at a 
position of 𝑐 that minimizes voice fluctuation (Objective 3). Objective 3 is omitted at 
end of phrase and section to cater to cadence. In summary, FlexChord performs 
modified lexicographic optimization of 3 objective functions and 1 constraint. 
FlexChord performs local optimization at each strong beat 𝑗 sequentially. Although it 
does not perform global optimization as for the HMMs of [15], [16], it can handle full-
length music via structure labels. In contrast, [15], [16] are tested only on 12-bar 
phrases. This approach neatly balances the handling of global structure versus 
algorithm complexity and efficiency. Experimental results show that this approach is 
feasible for producing good harmonization results. 

5 Experiments and Discussions  

5.1  Data Preparation  
Two public datasets, namely Chord Melody Dataset (CMD) [47] and Hook Lead Sheet 
Dataset (HLSD) [48] were adapted for testing. The original datasets contain a mixture 
of pop, jazz, classical and new age music. For the purpose of style-specific tests, three 
sets of songs of distinct genres, namely pop and jazz, were extracted from the combined 
pool of CMD and HLSD (Table 1). The Pop-L and Jazz-L sets have more than 17,000 
phrases, which are typical of the training sets used in [17]–[23]. 
To cater to the DNNs that were compared [19], [22], only songs in 4/4 time were 
selected. The songs were transposed to all 12 music keys for DNN training. Each song 
was encoded as a step-function with number of pitches per beat 𝛽 = 16. The songs were 
split into 8-bar phrases, and a chord was sampled every half-bar. 
Each dataset was split into training, validation and testing set at the ratio of 8: 1: 1. 
Subsets for neural network training and validation consisted of 8-bar phrases with an 
overlap of 2 bars. On the other hand, subsets for testing consisted of 8-bar phrases 
aligned to phrase boundaries without overlap. For testing, each 8-bar phrase in the test 
set was assigned a structure label where 𝜆𝑗 = ‘P’ for 𝑗 = 7, 15 and 𝜆𝑗  = ‘ ’ otherwise. 
As a direct optimization method, FlexChord does not require training. The training set 
was used to build the chord transition model during data preparation and the testing set 
was used for performance testing. The validation set was not used. Chord transition 
probabilities were computed by measuring the frequency of occurrence of consecutive 
chord-pairs in the training set (Section 3.3). Structure labels were assigned to the chord-
pairs as described above. 



 

5.2  Quantitative Evaluation 
To evaluate the performance of FlexChord (FC), a handicapped version of FlexChord 
called FC− was also tested. In essence, FC− is FC without Lines 6– 12. That is, FC− 
does not handle cadence and is unaware of structure labels. In addition, FlexChord was 
compared with two well-known DNNs, namely VTHarm [19] and DAT-VAE [22]. 
Both DNNs have different architectures but use similar loss functions for 
harmonization.  
Both VTHarm and DAT-VAE were trained on the training set (Section 5.1) with 
published hyperparameters [19], [22], validated on the validation set and tested on the 
testing set. FC and FC− used the chord transition model derived from the training set. 
They were tested on the testing set without training. The number of candidate chords K 
was set to 5 for both variants. This procedure was repeated for each of the three datasets 
of Pop-S, Pop-L and Jazz-L. 
  

Algorithm 1: FlexChord Harmonization

Input: Melody M , style-specific chord transition model C.
Output: Chords ci, i = 0, . . . ,m� 1.

1 for j = 0, 1, . . . , n� 1 do
2 if j = 0 then
3 Select K chords with the largest transition probabilities to any

chord.
4 Among K chords, select chord c with the least dissonance

d(h0, c).
5 Set c0 at the root position of c.
6 else if �j+1 = ‘P’ or ‘S’ then
7 Select a matching chord-pair (c, c0) with the lowest combined

dissonance.
8 Set cj at the position of c with the least voice fluctuation �j .
9 else if �j = ‘P’ or ‘S’ then

10 Set cj at the root position of c0.
11 else if �j is an integer j0 then
12 Set cj = cj0 .
13 else
14 Select K chords with the largest transition probabilities

P (c | cj�1).
15 Among K chords, select chord c with the least dissonance

d(hj , c).
16 Set cj at the position of c with the least voice fluctuation �j .
17 Set ci = ci�1, i = ↵�j + 1, . . . ,↵�(j + 1)� 1.
18 Set chord onset for chord cj .

Structure labels were assigned to the chord-pairs as described above.

5.2 Quantitative Evaluation

To evaluate the performance of FlexChord (FC), a handicapped version of Flex-
Chord called FC� was also tested. In essence, FC� is FC without Lines 6–
12. That is, FC� does not handle cadence and is unaware of structure la-
bels. In addition, FlexChord was compared with two well-known DNNs, namely
VTHarm [19] and DAT-VAE [22]. Both DNNs have di↵erent architectures but
use similar loss functions for harmonization.

Both VTHarm and DAT-VAE were trained on the training set (Section 5.1)
with published hyperparameters [19], [22], validated on the validation set and
tested on the testing set. FC and FC� used the chord transition model derived
from the training set. They were tested on the testing set without training. The
number of candidate chords K was set to 5 for both variants. This procedure
was repeated for each of the three datasets of Pop-S, Pop-L and Jazz-L.
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TABLE 1. SUMMARY STATISTICS OF THE DATASETS USED FOR THE COMPARATIVE EVALUATION.  

Dataset no. of songs no. of phrases no. of chord types 
Pop-S 30 2,867 43 
Pop-L 1000 81,625 70 

Jazz-L 266 17,969 71 

 

A.  Quantitative Metrics  
A set of simple but musically meaningful metrics were identified:  

• Voice Fluctuation V (Eq. 3) 
A low V value means that voices in successive chords have lower pitch 
difference. This enhances the smoothness of chord progression.  

• Fraction of inverted chords IC  
IC is the fraction of inverted chords in the chord sequence. A high IC value 
means that a large variety of chord positions beside root position exist in the 
chord sequence, and they encourage lower voice fluctuation. 

• Chord histogram entropy H  

The entropy H of chord histogram is defined as: 

𝐻 =K𝑝+𝑙𝑜𝑔𝑝+
8

+

, (6) 

where 𝑝+ denotes the probability of the 𝑘-th bin of the histogram and 𝑁 is the 
total number of chord types present in the sequence. It ignores inversions. A 
higher H indicates a wider variety of chords used.  

• Dissonance D  

The average dissonance D between melody notes and chords is defined as:  

𝐷 =
1
𝑛K𝑑Gℎ! , 𝑐!H

!

, (7) 

where 𝑑Gℎ! , 𝑐!H denotes the average dissonance between pitches of melodic 
fragment ℎ! and chord 𝑐! (Eq. 2). The lower the D the more harmonious is the 
matching between the chord and the melody.  

• Pure chord tone to non-chord tone ratio R0  

R0 is the ratio of chord tones 𝑛0 to non-chord tones 𝑛6 in the melody fragment 
ℎ! in relation to its assigned chord 𝑐!:  

𝑅0 = 𝑛0/(𝑛0 + 𝑛6). (8)	 
The higher the R0, the better is the match between the chord and melody.  

  



TABLE 2. QUANTITATIVE EVALUATION FOR CHORD DIVERSITY AND CHORD-MELODY MATCH.  
   Chord diversity  Chord-melody matching 

Dataset Method  V↓ IC↑ H↑  D↑ R0↑ R1↑ 
Pop-S VTHarm  NA 0.00 1.15  6.81 0.80 1.23 

DAT-VAE  NA NA 1.46  4.25 0.63 0.63 
FC–  0.66 0.61 1.57  5.02 0.86 1.12 
FC  0.90 0.48 1.74  5.01 0.88 1.15 

Pop-L VTHarm  NA 0.00 1.72  6.44 0.83 1.27 
DAT-VAE  NA NA 1.44  4.36 0.57 0.57 

FC–  0.69 0.52 1.44  5.10 0.89 1.32 
FC  0.97 0.44 1.68  5.21 0.88 1.31 

Jazz-L VTHarm  NA 0.00 2.09  7.27 0.81 1.23 
DAT-VAE  NA NA 2.00  4.55 0.55 0.55 

FC–  0.63 0.63 1.57  5.75 0.88 1.42 
FC  0.96 0.53 1.91  5.75 0.88 1.41 

 

• Chord tone to non-chord tone ratio R1  

R1 is similar to R0, except that proper non-chord tones are counted as chord 
tones [21]. A proper non-chord tone is a non-chord tone 𝑝𝑖 that is within two 
semitones of its next tone 𝑝*%&. 

𝑅1 = G𝑛0 + 𝑛,H/(𝑛0 + 𝑛6), (9) 

where 𝑛, is the number of proper non-chord tones. 

Among these metrics, V, IC and H measure chord diversity, while D, R0 and R1meas-
ure chord-melody match. In particular, H and R1 are part of the canonical metrics [21] 
used in existing DNN-based harmonization works [19]. The remaining metrics in [21] 
are omitted because they are related to H and R1. Metric R1 uses the concept of proper 
non-chord tone that is not defined in music theory. Therefore, the alternative R0 is in-
cluded along with R1. The metrics V, IC and D are added to contrast the performance 
of FlexChord and DNNs. 

B.  Quantitative Results  
Table 2 tabulates the quantitative results. FC− inverts chord positions to minimize voice 
fluctuation (Lines 8, 16). Thus, it achieves the lowest voice fluctuation V and highest 
number of inverted chords IC. FC satisfies the cadence constraint that enforces chords 
at root position (Lines 9–10). Hence, it has a slightly higher V and slightly lower IC 
compared to FC−. DAT-VAE has no V and IC values because its results do not include 
information about chord position. VTHarm has no V value and has IC of 0 because its 
results are in root position. 
FC− chooses frequently-used chords that maximize chord transition probability 
(Lines 3, 14). This restricts its chord choice, leading to lowest chord histogram entropy 
H. FC caters to cadence that enriches its chord diversity, thus achieving larger H than 
does FC−. DAT-VAE and VTHarm minimize chord reproduction error and KL 
divergence rather than explicitly maximizing chord transition probability. Their H 
scores appear to depend on the training and testing sets. 



 
Fig. 1. Chords generated by various methods for the first 8 bars of Colors of the Wind. 

 
FC and FC− have very similar dissonance D. They balance between the maximization 
of chord transition probabilities (Lines 3, 14) and the minimization of dissonance 
(Lines 4, 15). DAT-VAE has the lowest D because it minimizes chord reproduction 
error, allowing it to choose chords with the lowest dissonance. In contrast, VTHarm 
has a self-attention mechanism that allows it to choose less frequently-used chords, 
leading to largest dissonance D. 
R0 is negatively correlated to D as more chord tones leads to lower dissonance. FC and 
FC− follow this negative correlation, with similar large R0 and small D. In contrast, the 
R0 scores of VTHarm and DAT-VAE seem to be positively correlated to their D scores, 
which is counter-intuitive. 
R1 is expected to be larger than (or equal to) R0 because it counts proper non-chord 
tones as chord tones. All methods exhibit this property. Thus, R0 could replace R1 as a 
better performance metric because it does not require proper non-chord tone, which is 
a concept that is not defined in music theory. 
Overall, FC achieves the best performance compared to other methods. It balances 
between good chord-melody matching (small D, large R0) and good chord progression 
that follows the required style. It caters to cadence and smooth voice leading (small V, 
large IC). Although DNNs may excel in an individual metric, they do not handle 
cadence and voice leading. Moreover, their D and R0 scores have a relationship that is 
opposite to the expected negative correlation. 

5.3  Qualitative Evaluation  
Figure 1 illustrates the chords generated by various methods for the first 8 bars 
of Colors of the Wind, a song in the testing set. Note that VTHarm and DAT-VAE 
generate chord pitches without information of exact chord positions. For 
display purpose, their chord labels are inferred from the generated pitches and their 
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chords are shown in root position. The original chords of Colors of the Wind are 
included to serve as a reference for evaluation. 
Figure 1 reveals that FC and FC− produce chords that are stylistically similar to 
the original chords of Colors of the Wind. They include F and C, the tonic and 
dominant  chords, that form the harmonic basis for the melody, which is in the key of 
F major. Furthermore, they include the relative minor chord Dm, which is integral 
to  the original harmonization. Dm shares two pitch classes, namely F and A, with the 
F chord. This commonality ensures smooth transitions between major and minor 
chords within the key. 
Figure 1 also illustrates how FC handles cadence. For instance, FC produces the 
chord transition Dm–Dm in bar 8, which is identical to the original chords. 
In contrast,  FC− is unable to consistently produce cadences because it does not handle 
cadence during chord generation. For example, in bar 4, it produces Dm–F, 
which is not a proper cadence. 
VTHarm produces a chord progression that noticeably deviates from the original chord 
progression. It produces B♭maj7 twice with unexpected chord progressions that are not 
in the original chord sequence. In bars 1 and 2, the chords change from B♭maj7 to Gm 
to B♭, resulting in an unusual harmonic shift. Similarly, DAT-VAE introduces 
surprising progressions that include Csus4 and G7. Nevertheless, it fares slightly better 
than VTHarm since it reproduces the tonic F chord in bar 1 that reinforces the 
melody’s key. However, the sequences of Csus4–G7–C and Csus4–D are disruptive to 
the overall chord progression. 

5.4  Subjective Evaluation  
Subject evaluation was conducted to compare the perceived harmonization quality of 
various methods. 27 subjects with strong music background (play piano, at least 5 years 
of music training) were recruited via CloudConnect. Each subject was presented with 
two 8-bar songs with chord accompaniment. One of the pair was either the original 
manual harmonization or FlexChord’s result. The other was a result of either VTHarm 
or DAT-VAE. The subject was asked to pick the one that was more harmonious. In 
addition, the subject was asked to rate how harmonious each song was on a 5-point 
Likert scale. The ratings were used to verify whether the subject’s choice was consistent 
with the ratings. Each subject repeated the above procedure for 40 pairs of pop songs. 
These pairs included 10 unique melodies presented in different contexts. Jazz songs 
were omitted because very few subjects recruited were familiar with jazz 
harmonization.  
The subjects’ assessments were grouped into one of the following cases:  

• O+: original harmonization is more harmonious than DNN’s result.  
• O−: original harmonization is less harmonious than DNN’s result.  
• F+: FlexChord’s result is more harmonious than DNN’s result. 
• F−: FlexChord’s result is less harmonious than DNN’s result. 

Table 3 tabulates the subjects’ assessments. A large majority of subjects judge the 
original harmonizations as more harmonious than those of VTHarm DAT-VAE (68.3% 
and 74.7% respectively). This expected result indicates that the subjects understand and  



TABLE 3. SUBJECTIVE EVALUATION FOR VARIOUS CASES. 
Cases VTHarm DAT-VAE 
O+ 179 (68.3%) 195 (74.7%) 
O− 83 (31.7%) 66 (25.3%) 
F+ 158 (60.3%) 159 (60.9%) 
F− 104 (39.7%) 102 (39.1%) 
O+ and F+ 124 (47.3%) 132 (50.6%) 
O− and F− 55 (21.0%) 63 (24.1%) 
O+ and F+ 34 (13.0%) 27 (10.3%) 
O− and F− 49 (18.7%) 39 (15.0%) 
Total votes 262 (100%) 261 (100%) 

 

appreciate harmonization. Among them, DAT-VAE’s results are the least harmonious. 
Similarly, most subjects judge FlexChord’s harmonizations to be more harmonious 
than those of VTHarm and DAT-VAE (60.3% and 60.9% respectively), with DAT-
VAE results being the least harmonious. In addition, more subjects judge both the 
original and FlexChord’s harmonizations to be more harmonious than those of the 
DNNs (47.3%, 50.6%), compared to the other three cases. These subject test results 
indicate that FlexChord’s harmonizations are better than those of the DNNs, and are 
comparable to those of the original harmonizations.  

5.5  Harmonization with Custom Styles  
FlexChord generates chord sequence according the chord transition model that captures 
harmonization style. Moreover, it performs chord generation without the need for time-
consuming training. These properties allow FlexChord to perform harmoniza-
tion with custom style.  
To demonstrate FlexChord’s ability to harmonize with custom style, Hitchcock’s Psy-
cho was selected as the reference music for generating spooky style. Chord pairs were 
extracted from Psycho and chord transition probabilities were computed for the 
spooky chord transition model.  
Figure 2 illustrates the result of harmonizing the first 8 bars of In the Hall of the Moun-
tain King with the spooky chord transition model. Compared to the original harmoni-
zation, FlexChord generates a higher concentration of dissonant chords, similar to the 
style of Psycho. For instance, the A#dim and F#7 chords in bars 2 and 6 clash with the 
melody’s natural notes, intensifying the overall tension. In contrast, the original chords 
are triads such as Bm, C#, and D which are more consonant with the melody.  
Section 5.3 presents the harmonization of the first 8 bars of Colors of the Wind in pop 
style. FlexChord can also harmonize in various styles. Figure 3 shows chords generated 
using two chord transition models: one based on jazz and the other based on the folk 
songs of Constantinidis, a Greek composer. The jazz version adds seventh chords like 
Dm7 and Gm7 with chromatic voice leading. The Constantinidis version generally 
avoids the dominant C chord except for bars 5 and 7, creating slightly unresolved 
harmony typical of modal music.  



 
Fig. 2. Custom-style chords for the first 8 bars of Hall of the Mountain King.   

 

Fig. 3. Harmonization of Colors of the Wind in various styles.  

 

5.6  Full-length Melody Test  
FlexChord can harmonize full-length songs, taking into account the global structures 
of the songs. To illustrate this capability, FlexChord was tested on generating the chords 
for the full song of Colors of the Wind, which includes diverse melodic variations and 
intervals. For comparison, VTHarm and DAT-VAE were applied to generate the chords 
for individual 8-bar phrases.  
Figure 4 illustrates selected fragments of the test results as it is too long to show all 62 
bars of Colors of the Wind. For all methods, the results for the first 8 bars are identical 
to those of the short-phrase test (Fig. 1). With the exception of bars 15 and 16, the 
melody of section A is repeated exactly in section B. FlexChord (FC) repeats the chords 
of section A exactly in section B, due to the enforcement of repetition constraint 
(Algorithm 1, Lines 11, 12).  
For the transition to section C (bars 16 to 17), FC creates a relevant major-major 
contrast from chord F to Am. Both chords share two pitches, which are A and C. 
Similarly, VTHarm creates a major-minor contrast with chord Dm transitioning to B♭. 
Both chords also share two pitches, which are D and F. However, DAT-VAE does not 
create contrast when transitioning to section C. Instead, it produces repeated 
chords of Dm–Dm.  
Section C contains the chorus of the song, with the melodic climax located in bar 17 
and its partial resolution in bar 18. The tension leading to the climax is built by the 
ascending pitches F–A–C in bar 16, which leap to F in the next octave, followed by 
descending notes into bar 18. FC follows the same trend by selecting chords that 
initially create dissonance with the melody, followed by chords that are consonant with 
the melody. For example, in bar 17, the pitch E of chord Am clashes with the melody 
pitches F and D, producing a high dissonance. This is followed by a F–Dm cadence in 
bar 18, which is consonant with the melody. Thus, FC effectively builds tension to the 
climax and then resolves it. The results of VTHarm follow the same trend but uses the  
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Fig. 4. Selected fragments from the test results of the full song Colors of the Wind.  

 
chord transition B♭–Am instead to build and release tension. In contrast, the results 
of DAT-VAE go against the melodic trend. It repeats the Dm chord in bar 17 
which is consonant with the melody transitions to Gm–B♭add#4 that are dissonant 
with the melody.  
For the transitions to section F (bars 43 to 44), FC creates a tonic-dominant contrast 
with the transition from chord F to C. In contrast, VTHarm does not feature any chord 
contrast in the transition from F to F. DAT-VAE generates an F–F+ transition, which 
introduces a chromatic shift. This transition is harmonically incoherent with the key of 
F major and the pop style because F+ chord creates an unexpected dissonance.  
These test results demonstrate that FlexChord can produce key-relevant chord 
progressions that align with the full-length melody with section contrasts to support the 
global melody structure. In contrast, VTHarm and DAT-VAE occasionally generate 
chords that disrupt the overall chord progression, resulting in a lack of or 
odd contrast between sections.  

6  Conclusion  
This paper proposes a style-specific harmonization method called FlexChord that over-
comes the shortcomings of existing methods. FlexChord achieves style specificity by 
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producing chord sequence according to a chord transition model that captures the re-
quired style. Chord transition model is easily prepared by counting the frequency of 
occurrence of consecutive chord pairs in a set of example music. The example set can 
contain as little as a single music piece.  
FlexChord applies multi-objective optimization during chord generation that does not 
require training. Thus, it can easily produce chord sequence of a specific style. In par-
ticular, it can harmonize a melody to custom styles.  
FlexChord balances between good chord-melody matching and good chord progression 
that follows the required style. It caters to cadence and smooth voice leading effec-
tively. It can generate chords for full-length melodies, complete with global music 
structure. Test results show that FlexChord’s harmonization is better than those of com-
parable DNNs and is close to that of human harmonization.  
As part of future work, the chords generated by FlexChord can be utilized for generat-
ing style-specific accompaniments to full-length melodies. Generation of accompani-
ment involves transforming the generated chords into multiple rhythmic voices that fit 
a specific accompaniment style. The generated accompaniment should also match the 
global music structure of a full-length melody. 
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