Automated Generation of Test Programs From
Closed Specifications of Classes and Test Cases

Wee Kheng Leow, Siau Cheng Khoo, and Yi Sun
Dept. of Computer Science, National University of Sing&por
leowwk, khoosc, sunyi@comp.nus.edu.sg

Abstract systems. Automation of the testing process could reduce de-
velopment costs and improve software quality.

Most research on automated specification-based soft- gpecification-based testing involves three main stages
ware testing has focused on the automated generation of[le]; (1) test case generation, (2) text case execution, and
test cases. Before a software system can be tested, it must b@) test result evaluation. The first stage generates tessca
set up according to the input requirements of the test casesfrom a software system’s specification. Before the system
This setup process is usually performed manually, espe-can be tested, it must be properly set up, i.e., prepare the
cially when testing complex data structures and databases.input variables and data used in the tests according to the
After the system is properly set up, a test execution tod run requirements stated in the test cases. This setup process is
the System according to the test cases and pre-recorded teslljsua”y performed manua”y, especia”y when testing com-
scripts to obtain the outputs, which are evaluated by a test pjex data structures and databases. After the system is prop
evaluation tool. erly set up, a test execution tool runs the system according

This paper complements the current research on auto-tg the test cases and pre-recorded test scripts to obtain the
mated specification-based testing by proposing a schemeyutputs, which are evaluated by a test evaluation tool.
that combines the setup process, test execution, andtestva Test execution and test result evaluation are easy to au-
idation into a single test program for testing the behavibr o tomate, and tools for these stages in software testing are
object-oriented classes. The test program can be generatedyjready available. There has also been much research on
automatically given the the desired test cases and closedyytomated specification-based software testing focusing o
specifications of the classes. With closed specifications, € the automated selection or generation of test cases [16].
ery class method is defined in terms of other methods whichrpisg paper complements this trend of research by propos-
are, in turn, defined in their own class specifications. The jng a scheme that combines the setup process, test execu-
core of the test program generator is a partial-order plan- tjon, and test validation into singletest program for test-
ner which plans the sequence of instructions required in theing the behavior of object-oriented classes. The test pro-
test program. The planner s, in turn, implemented as a tree- gram can be generated automatically given the desired test
search algorithm. It makes function calls to the Omega Cal- ¢ca35es andlosed specificationsf the object classes (Sec-
culator library, which solves the constraints given in the tjon 3). After compiling and linking with the object classes
test cases. A first-cut implementation of the planner hasnder test, it can be executed to perform test case setup,
been completed, which is able to handle simple arithmeticsiest execution by invoking the class methods, and valida-
and existential quantifications in the class specificati®s tion of the results returned by the class methods, all in a
soundness and completeness proof sketch of the planner i§ingle program. This scheme provides great convenience in
also provided in this paper. automated specification-based testing by removing the need

to perform manual system setup and invoking separate tools

. for test execution and test evaluation.
1. Introduction

Testing is a very important but expensive and time- 2. Background and Related Work
consuming process in software development. It can con-
sume at least 50% of the total costs involved in develop- Most research on automated specification-based test-
ing software [1]. Although there has been steady advance-ng has focused on the automated generation of test cases
ment in formal methods for program verification, testing re- [8, 16, 20]. For example, Donat developed a technique for
mains the primary method for discovering faults in software generating test cases from specifications that contain-quan

tifications [4]. Offutt and Liu presented a method for gener- to testing also. Although testing of supporting func-
ating test cases from specifications written in SOFL, which tions can be accomplished by specifying them in ADL,
is a kind of formal specification language [14]. Memon et such a requirementis not enforced by ADL. Moreover,
al. developed a method based on Al planner to generate testing of these supporting functions may, in turn, re-
test cases for testing GUI [11]. Scheetz et al. also applied quire other supporting functions.

Al planner but it was used to generate test cases from test The research work described in this paper complements

objectives derived from UML models [20]. Graves et al. e

g the current research on automated specification-based soft
conducted empirical study to compare the cost and bene- o) -
. .) ware testing in two ways: (1) It proposeslased specifica-
fit of several techniques for selecting subsets of test case

for regression testing [5]. Other recent work has focused%Ion systen(Section 3) that can overcome the above short-

on automated testing of specific software properties such agomings of opened specification systems. (2) It proposes a

L . . scheme that combines automated test data generation (i.e.,
safety violation in telephone switching systems [10] iaste) 2T
. s system setup), test execution, and test validation irgin-a
of general software testing. Chan et al. [2] classified the

various integration testing techniques for object-oeent gle tes.t program. The te;t_prqgram is generated automati-
programs into state-based, event-based, fault-based '[es.(:"’.IIIy given the_clqss specifications and the test cases. When
ing against formal specificat,ion (aka. algeb,raic speciﬁue;t it is executed, it will perform system setup and test data gen

o L eration, test execution, and test validation automaticall
and contract specification [3]), and deterministic andheac To fulfill these goals. the specification must be defined
ability techniques. 9 ' b

. . or an object class instead of a single function. The seman-
In comparison, there is not much research on automated.

. : ics of the class methods are specified in terms of other
generation of test programs that combine system setup, tes . . L :

) P . methods which are, in turn, specified in their own class
execution, and test validation into a single framework, ex-

copt for the wellknoun ADL (Asserton Do Lan- e aucn. 1 T rde e metiods wed i o
guage) system [19] and its successor, ADL2 [13]. P P

ADL provides a framework for specifying the semantics in other class specifications, and the methods can be defined
of a sof[t)ware component such aspa funct?on or a module mutually recursively. So, a closed specification is a form of

. s "algebraic specification that emphasizes the completeffiess o
Given an ADL specification, the ADL Translator can auto- 9 P P b

; . semantic information within the specification itself. The-t

matically generate a test program that executes the functio . . o .
et programming language is Java because it is a practically
or module under test and checks the test results. To suppo o ;
: ~"useful language and is simpler to handle than is C++.
the automated generation of test programs, ADL requires - . -
- : , Fulfilling the above requirement of the closed specifica-

the user to supplguxiliary functionghat define the seman-

tics of the function to be tested. We call this type of speci- tion system may, at fII’S.t glance, appear to be a daunting
S e . task for a software that involves many classes. More care-
fication system aopened specification system addition,

the user also needs to provide implementations optbe ful thought, however, reveals that the effort required is re

vide functiondor constructing the required test data and the ally no_t muph more than providing t emmhary_, _proylde
o . . andrelinquishfunctions for ADL. Once a specification has
relinquish functiondor destroying the test data.

. . .. been defined for a class, it can be readily reused in the spec-
The strength of an opened specification system is thatiit...” ~ .
. . . . ifications of many other classes. On the other hand, the sup-
can be used to specify a single function or to partially spec-

. orting functions developed for testing a particular fumrct
ify a module, and test program can be generated to test theD g functions develop sling a particu

function or partially specified module. However, an opened or module are less readily re_usable for testi_ng other func-
specification system also has the follé)wing sho,rtcomings tions or modules. Therefore, in the long run, it is more ben-
P . " eficial to use a closed system than an opened system.

* An opened spec_|f|cat|on_|s mcompletefn does not The core of our test program generator is an Al plan-
°°’?ta'” enough information for generating test data ner that plans the sequence of instructions required in the
by itself. In testmg complex SO“W""TG compongnts, the test program (Section 4.2). The Al planner is an appropri-
user cannot avoid ,the m_eed to prqwde supp.ortln.g func- ate tool since it is able to sequence the instructions, ¢akin
tlons_such as A_DLsauxmary, pro_wde andr_elmqws_h into account the constraints between them [18]. Moreover,
fun_ctlons Additional programming ef_fort IS requwed the partial-order plannercan plan a sequence of instruc-
to implement these supporting functions, which may

h her than f g, C I tions that are only partially ordered but not totally orakre
not have any use ot etr)t an for teztl?g. (;]nseque_?t Y:[18]. As discussed above, Al planner has also been applied
test programs cannot be generated from the speci ICa3, generate test cases from specifications [11, 20]. So, it is

t'o? alor:e(,jand test program generation cannot be fully a very useful tool for automated software testing.
automated. Our planner is, in turn, implemented as a tree-search al-

e Supporting functions for testing complex modules may gorithm (Section 5). It makes function calls to the Omega
be quite complex themselves and should be subjectedCalculator library [17], which solves the constraints give

by the test cases and obtains valid variable instances. A#si ze refer to state labels. They specify the information
first-cut implementation of the planner has been completed,that is contained in a class without saying how the infor-
which is able to handle simple arithmetics and existential mation is organized and stored in the class. Symbols pre-
guantifications in the class specifications. A soundness andixed with ‘@ refer to thepre-statesof the objects. For in-
completeness proof sketch of the planner is also provided instance@¥si ze refers to the value ofsi ze at the entry of

this paper (Section 4.4).

3. Closed Specifications of Classes

theadd method. Therefore@#si ze has the same value as
the#si ze in the precondition, and thési ze in the post-
condition is equal t@¥si ze+1. A method argument must
either be bound to a state label (elgane in constructor

In our system, the behavior of the classes are specifiedSt udent) or appear in the pre- or postcondition. Other-
using an ADL-like specification language. The following Wwise, it does not carry any useful information and can be

example shows the specification of two clas&taident ,
which is an atomic class, ar€bur se, which is an aggre-

gate class.

cl ass Student {
Student (String nane)
{ nane !'= null /1 precondition
--> #name = nane // postcondition

}

String nane()
{ true --> nane() = #nane }

}

cl ass Course {
Course(String code, int capacity)
{ code !'= null && capacity > 0
--> #size = 0 && #code = code &&
#cap = capacity

}

String code()
{ true --> code() = #code }

int capacity()
{ true --> capacity() = #cap }

int size()
{ true --> size() = #size}

voi d add(Student student)
{ student !'= null &&
#si ze < #capacity
--> f#size = @size + 1 &&
exi sts(#s in Course){#s = student}

}

bool ean regi stered(Student student)
{ true
--> regi stered(student) =
exi sts(#s in Course){#s = student}

discarded. Note that the semantics of all the methods in the
two classes are completely specified within them. That is,
the specification is closed.

Test generation for closed specifications does possess
difficulties such as theyclic definition problem-A usesB
in its specification and usesA in turn. Methods for han-
dling these difficulties are described in Section 5.2.

4. Automated Generation of Test Programs

The IEEE Standard 829 [9] defines a Test Case Specifi-
cation as a document that consists of seven parts:

Part 1 Test case specification identifier

Part 2 Test items: a list of functions that this test case will
exercise

Part 3 Input specifications: inputs to the functions

Part 4 Output specifications: expected results of the func-
tions

Part5 Environmental needs: special hardware or software
needed

Part 6 Special procedural requirements: constraints on
procedures that exercise this test case

Part 7 Intercase dependencies: a list of test cases that must
be exercised before this test case is exercised

Test case generators usually produce information on Parts
1-4 only. Information in Parts 5-7 are included in other doc-
uments such as test plans or test procedures ([16], Chap. 2).
In our research work, we use Parts 1-4 of a test case to
generate test programs. Moreover, our framework is able to
generate information regarding intercase dependenages (i
Part 7) automatically given the closed class specifications
and the test cases (Section 5.2).

A test program that exercises a class method according to
atest case consists of three steps: (1) constructs targetob
and method arguments that satisfy the conditions in the test
case, (2) applies the method on the object with the method
arguments, (3) checks whether the actual results tally with

In this specification, preconditions are specified before the expected results given in the test case. It is straightfo
the arrow symbol- - >’ while postconditions are specified ward to automatically generate program codes for steps 2

after - - >’. Symbols prefixed with#' such as#nane and

and 3 but not so for step 1:

e The method arguments of the object constructor of the

target object may be objects as well, and they are re-

quired to satisfy the conditions given in the test case.
Therefore, the object construction algorithm must be
applied recursively to construct the method arguments.
e The object constructor may not be able to create an

object construction codes. Thereforecursive planninds
needed to correctly generate the program codes.

A recursive bidirectionaplanner called REBID has been
developed to generate object construction codes. REBID
starts the planning process by generating object creation
code (part 2). This is a good strategy because a class typ-

object that meets the test case conditions (e.g., creatdcally has far fewer constructors than modifier methods.

a stack with 10 elements). Additional modifier meth-
ods (e.g., stack push) may need to be invoked to bring
the object to the required state.

In the remainder of this paper, we will focus on the au-
tomated generation of object construction codes. A con-
cise definition of the problem is first defined in Section 4.1,
which leads to a planning algorithm called REBID (REcur-
sive BIDirectional planner) for the generation of objeat€o
struction codes (Section 4.2).

4.1. Problem Statement

The problem of automated generation of object construc-
tion codes can be specified as follows:

Given the closed specifications of classes, the
classC of a target object, and the conditiorR
(which does not contain conflicting terms) that
must satisfy (as described in a test case), gener-
ate the object construction codes that, when exe-
cuted, will creater that satisfiesc. R, assuming
that such object construction codes exist.

The notationz. R means that the methods R if any, are
applied onz. The conditionR is given as a conjunction of
terms of the forme;.M;() = v;, wherez;.M;() is the ap-
plication of access methatd; on z;, andv; denotes a free
variable, a string literal, or a constant of primitive datpd.
Conditions with more complex forms can be reduced to this
canonical form(see Section 4.2 for details).

Object construction codes consist of three partsafl)
gument creationcreate arguments,, . . ., u,, of the target
constructorC’; (2) object creation create the target object
z; and (3)object modificationmodify the state of by ap-
plying modifier method$44, . .., M,,. For example,

Ci u; =newCq(...); // partl

Cn Up, = NewCy(...);
Cz=newC(uy,...,up); /! part2
z.Mq(...); // part3

2 M.);

Many classes may even have only one constructor. REBID
works backwardto generate the codes for constructing the
argumentsuq, . .., u, recursivelybecause the construction
of the arguments may also involve 3-part codes. At the same
time, REBID also workdorward, if necessary, to generate
the codes to bring the the target object to the required.state
To further facilitate the automation of the testing pro-
cess, we adopt Gries’s semantics of method invocation [6]:
{P} M {Q}. Thatis, if methodV is invoked in a state sat-
isfying the preconditior?, thenM is guaranteedo termi-
nate in a finite amount of time in a state satisfying the post-
condition@. Note that Gries’s notation denottstal cor-
rectnessvhich is slightly different from Hoare’s notation of
P {S} @ which denotegpartial correctnes$7].

4.2. Recursive Bidirectional Planner

REBID performs bidirectional plan-space search [18] for
a plan (i.e., a sequence of instructions). A (partial) ptaa i
5-tuple(R,Z, L, B, Q) whereR is the set of test case con-
ditions that the target object must satisfyjs a list of in-
structions, £ is a list of ordering information of the cor-
responding instructions ifl, B contains variable bindings,
and Q contains constraints on the variables (which are de-
rived from methods’ pre- and postconditions).

Each instructiord; in Z is a 5-tupl€(zy, M;, u;, R, Sk)
wherez;, refers to an objecf)/; is the constructor of;, or a
method to be applied oz, u; is a list of arguments ai/;,

Ry is a set of conjunctive terms to be satisfieday and

Sy is the set of conjunctive terms currently satisfiedzlpy

R, represents the subgoal that an object must satisfy and
Sy represents a part of the subgoal that will be satisfied af-
ter instructionZ; is executed.

Note that the object; and the condition set®; and
Si have the same subscripts because the condition sets are
associated with an object instead of an instruction. On the
other hand/;, M;, andu; have the same subscripts because
a method and its arguments are associated with an instruc-
tion. Each piece of ordering informatid®; in £ is associ-
ated with an instructiod;. It is an ordered list that describes
the sequence of instructions before and after

For notational convenience, we use both conditfén
and condition seR; to represent a conjunctive condition.

Because an argument can also be an object, the codes fdn particular,R; = A, ., r;. Note that, with this nota-

creating an argument may also involve three parts, just like

tion, R; AR; & R;UR;. Moreover, we defin®; < R; &

R; C Rj, andR; = true& R; = 0 (thoughR; = {true}
would work just the same).

Before presenting the planner algorithm, let us briefly
describe a procedure that converts the conjunctive terms in

a setR into canonical forms

¢ Instantiate existential quantifications into unique vari-

ables.
¢ Replace conditions of the form A() opy.B(), where
opis a comparator, into two conditionsA() opv and
v opy.B() by introducing the free variable
e Replace a multidot method

form z.My().Mi().---.Mp() opv by a con-
junction of single-dot method invocations
.’EM()() =x1 A .’l?l.Ml() =x3 A+ A .’EnMn() opv
by introducing free variables, ..., z,.

e Replace access method invocations by appropri-

ate state labels according to class specifications.

After canonization, all the terms iR are of the form
z.#1 opv for some object variable, label#1, operatoiop,

and valuev. Examples of the application of this procedure

are illustrated in Section 4.3. A sRtin canonical form can

invocation of the

1. Choosean instructionl; = (zg, M;,u;, R, Sk) € Z,
for somek, such thatV; = nil, u; = nil.

2. Choose a constructor C(a) with semantics
{P}C(a) {Q} and argument listu such that the
condition P2 A (2;.Q2 = zi.R') is true, for some
R' < Ry, with appropriate bindings of free vari-
ables inR' to arguments inu or instantiated state
labels ofzy,.

3. Set method and arguments of instructipnM; + C,
u; < u.

4. Setthe conditions that will be satisfiedjfis executed:

Sk + {termsin@Q2}.

5. Note variable binding8 < B U {bindings in Step 2.

6. Include constraintsQ «+ Q U {termsinP2} U
{terms inz;.Q3}.

7. ExpandArguments ((R,Z,L,B,Q), i, P), where
P = {termsinPZ}, i.e., create argumentsinthat sat-
isfy P.

The keywordChoose means nondeterministic selection.
The notationP? refers to the conditio® with formal argu-
ments ina replaced simultaneously by actual arguments in

be divided into mutually exclusive subsets such that each" [6].
subsefR(z;) contains all the terms that refer to a particular \vodifyobject ((R,Z, £, B, Q)

Objectmi. That IS,R(.’EZ) = {’I“j ER | ri = .’Ez#l] op ’Uj},
R(z;) NR(z;) = 0 foranyz; # z;, and|J, R(z;) = R

REBID can be most succinctly described in terms of the

following nondeterministialgorithmst Note that although

REBID is conceptually a recursive planner, it is easier to de

scribe the algorithm by implementing recursion as iteratio
Given a canonicaR that a target object needs to satisfy,
the instruction sequence for constructingcan be gener-
ated by applyindMakePlan:

MakePlan (z, R)

1. Initialize condition setsRq + R(z), Sp « 0.

2. Create initial instructionly = (zo, nil, nil, R, So).

3. Create initial planp + (R,Z, L, B, Q) whereZ =
{I(]}, L = {Oo}, 00 = {Io}, B = {a: = Zo}, and
Q=0.

4. Repeat

(a) If all conditions inR have been satisfied, i.e.,
UrSk = R, andM; # nilVI; € Z, andQ

is satisfiable, then instantiate unbound variables

such thatQ is satisfied and return plan
(b) Else,CreateObject(p) or ModifyObject ().

CreateObject((R,Z, L, B, Q))

1 Most Al planner algorithms are described as nondetertiiniggo-
rithms, which are then implemented as deterministic teseeh [18].

1. Choosean instructionl; = (zy, M;, u;, Rg, Sk), for
somek, such thatl; is the last instruction i for ob-
jectzg, M; # nil, andS;, # Ry, i.e., methodV; has
been identified but conditions have not been fully sat-
isfied.

2. Choose a modifier M(a) with semantics
{P}M(a){Q} and argument listu satisfying
{S3M (a){S;}

Zk.PS A (Zk.Qi = Zk.R’)
for someS;, < Si andR' such tha(S;, A R') < Ry,
with appropriate bindings of free variablesi# to ar-
guments i or instantiated state labels of.
3. Update conditions satisfiedS, «+ S, U
{termsin@2}.

4. Create instructiont; = (zy, M, u, Ry, Sk).

5. Update planZ + Z + {I,;}, £ + £+ {O,} where
0; ={I;}.

6. Update ordering informatiod?; «— O, + {I;}, where
I = (zx,Ci,u;, Ry, Sk) is an instruction that creates
zi, andC; is a constructor method. That i&; comes
afterthe instruction that creates objegt

7. Note variable binding8 < B U {bindings in Step 2.
8. Update constraints®® « Q U {termsinz;.P3} U

{terms inz;.Q3}.

9. ExpandArguments ((R,Z,L,B,9Q), j, P), where

P = {termsinP2}.

The '+’ operators in steps 5 and 6 denote list concatenation. Given the test casdlakePlan first identifies the con-
ditions that must be satisfied by the target object (step 1),

. which is instantiated as0. These terms are included in the
ExpandArguments (R, Z, £, B, Q), j, P) condition sefR, of c0 givingRo = {R1, R2}.In step 2, it
Foreachy; € u; ofinstructionl; = (2, Mj, u;, R, Sm) creates the first instructialy = (c0, nil, nil, Rq, So), with
€ T thatis not a string literal and not a constant of primi- s, initialized to (). Step 3 creates a plan with one instruc-
tive data type: tion I, and the first variable binding i is c0? = cO.

1. Update condition set€Choose based on the class Next, CreateObjectis executed. In step 1, the only in-
specifications, am; from the free variables iR that struction in the plany, is chosen for expansion. In step 2,
can be bound ta;. UpdateR; < R(zx) U P(u;) U the only constructor availabl€our se, is chosen forl,.

{zr = ui}, Si 0. This constructor’s postcondition does not satisfy any ef th

2. Create instructionf; = (u;, nil, nil, R;, S;). termsinR,. In particular, it says thati ze() , whichis the

3. Update planZ < I + {[;}, £ < L + {O;} where same a#si ze, is equal to 0 instead of 2 as requiredip.

O, ={L}. Thus, R’ is just taken as true.

4. Update ordering informatior®; < {I;} + O;, i.e., At this time, there is insufficient information for instan-
I, comesbeforethe instruction/; that creates or mod- tiating the method arguments. So they are left unbound. To
ifies objectz,,. ensure that instructiofy can indeed be executed, the argu-

5. Update variable bindind8 « BU {z; = u;}. ments must be chosen such that they satisfy the construc-

In the above algorithm, the nondeterminisiboosese- tor’s preconditionP?. So, terms inP2 are collected in the

lects five types of candidates: instructions, class methods Plan’s constraint se@ (step 6 ofCreateObjecy).
arguments, free variables, and subsets of conditionseTher ~ Now, I, the instantiated pre- and postconditidfisand
are finite and enumerable numbers of instructions, classQo, and the satisfied condition s&§ at this step are:
methods, free variables, and condition sets. Thus, in the ex o 1 (0, Cour se, {code0, cap0}, Ro, So)

planatory example in the next section, the correct caneiidat So = 0

can be nondeterministically chosen. Selection of argusent £o : code0 !'= null && cap0 > 0
is more complicated because there is potentially an infinite Qo : 0. #si ze0 = 0 && c0. #code0 = code0 &&
number of possible values and they may need to satisfy the c0. #cap0 = cap0

preconditions of several methods (see next section for ex-Step 6 adds terms i, and Qo into the constraint set
ample). If the value of an argument is given in the test case @- The last step ofCreateObject executesExpandAr-
(which is assumed to satisfy the preconditions), then it canguments on Io. But the arguments of, take values of
be assigned the value. Otherwise, the preconditions have t@fimitive data types. So, nothing is done.

be collected inQ and the values can only be determined at Following CreateObject, the method ModifyOb-

the end of the planning process (step 4(aylakePlan) by ject is executed and it nondeterministically chooses the

proper instantiation of the argument variables. add method to modifyc0. With appropriate variable bind-
ings (see below), the postcondition afld can satisfy

4.3. A Nondeterministic Example conditionR2. The condition{S;,} M (a){S;} in step 2, to-

gether with step 3, means that the terms in the current

This section uses the specification example given in Sec-S, of object ¢, that remain unchanged after apply-
tion 3 to explain the nondeterministic algorithm presented ing add are kept in the new§,. In addition, terms Q2
in the preceding section. Suppose a test case requires are satisfied by the application afdd, and are also in-
Cour se objectc0? that satisfies the conditios0?. R = cluded into the newS,. A new instructionl; is created,
c0?.size() = 2 && s1?.nanme() = "Tinl && and step 6 updates the ordering informati@p to indi-
c07?.regi stered(sl?) =true. For notational clar- cate thatl; comes afterly. Step 7 updates the binding
ity, free or unbound variables are postfixed with th¢ * set by addingB; into B and step 8 updates the con-
symbol. After canonizingcO?. R, we obtain two mu- straint set by adding?’, and @, into Q. Now, we ob-

tually exclusive subsetsR(c0?) = {R1,R2} and tain:

R(s1?) = {R3}: Iy :(c0,add, {s1}, Ro, So)

(R1) cO0?.#size? = 2 So ={R:2}

(R2) c0?.#s? = s1? Py sl !'=null && cO0.#size0 < cO0. #cap0
(R3) s1?.#nane? = "Tinl Q: :cO.#sizel = cO.#size0 + 1 =1 &&
Note that the existential quantification of the method c0.#sl1 = s1

regi st er ed has been instantiated with the unbound la- B1 : s1? =s1, c0?. #s? =cO0. #s1
bel#s? and the unbound variab$l ?. Note that the existential quantification add’s post-

condition has been instantiated. The quantified varigble
which ranges over the aggregate objéatir se is instanti-
ated as a state lab#bk 1 of objectc0. The label#si ze is
instantiated a¢si ze0 and#si zel to represent the pre-
state and post-state #6i ze. Thatis, an ordered sequence
of labels is used to denote the conditions satisfied by an ob-Theorem 1 REBID is sound and complete.

ject after executing some instructions. The last labeli® th - proof sketch(Soundness) To prove that a plan generated by
sequence would denote the object's final conditions. REBID is correct, we need to show that (1) the sequence of
Next,ExpandArgumentsis executed for creatingthe ar- instructions can be executed successfully, and (2) afeer ex

guments1 of ;. Step 1 collects the condition terms® cuting the instructions, the target object satisfies thelzon
and?P that should be satisfied 317 ands1 respectively tion R specified in the test case.

Student s2 = Student("Jim'); [l 14
c0. add(s2); /1 13

4.4. Soundness and Completeness

givingR; = {Rs A s1 != null}. Step 2 creates a new
instructionI; for creatings1. Step 4 updates the order in-
formationO; of I; to indicate thel; preceded;.

Next, CreateObject nondeterministically chooses in-
struction I, for expansion, which selectSt udent as
the constructor. The postcondition 8f udent can sat-
isfy condition terms irR; giving:

I, :(s1,Student,{"Tim} Ry, S)

81 = Rl

P :"Tim = null

Q> :sl.#nanmel = "Tint'

By :s1?=s1, s1?. #nane? =sl. #nanel

Next, I; is selected for expansion again, aadd is se-
lected as the modifier. The process of creatir® adent
object is executed, resulting in new instructidpandly:
I, :(c0,add, {s2}, Ro, So)

So ={R1,R2} =Ry

P; :s2 = null && cO0. #sizel < cO0. #cap0

Qs : c0.#size2 = cO.#sizel + 1 = 2 &
c0. #s2 = s2

Bz : c0?. #si ze? =cO0. #si ze2

I : (s2, nil, nil, @, 0)

After creating object fod,, we obtain:
Iy :(s2,Student, {name2},0,0)
Py :nane2 ! = nul |

Q4 :S2. #nane2 = nane2

At this point, R can be satisfied b§, U S; and all the

1. Step 6 oModifyObject places object modification in-
struction after object creation instruction and step 4
of ExpandArguments places argument creation in-
struction before object creation instruction. That is, a
method is invoked after its arguments are created, and
an object is modified after it is created. In addition,
REBID ensures that the precondition of the method in
each instructiod; is satisfied. Therefore, the sequence
of instructions can be executed successfully.

2. The methods are chosen to satisfy the condiBgm
(2£.Q% = 2zp.R'). It follows directly from Gries’s
theorem of procedure ca]6] that the constructed ob-
ject or argument;, will indeed satisfyz;,.R' because
the instruction will terminate successfully (sinBg is
true) and the postconditiog,.Q2 will imply z;.R'.
During the planning process, the condition term®in
that are satisfied are recorded in the condition 8gts
When the planner terminateS; = R for eachz
and{J, Sy = R. That is, the arguments satisfy their
respective requirements, and the target object and its
components as a whole satisi; if there is no con-
flictin |J, Sk. But, there can be no conflict because

(a) there is no conflict iR and the set®R(z;) are
mutually exclusive, and

(b) in ModifyObject, only the conditions that are
unchanged (i.e$};,) and those that are satisfied
by the modifier (i.e.Q2) are placed irS.

(Completeness) To prove that REBID is complete, we need

methods in the instructions have been identified. The re-to show that REBID can generate a correct sequence of in-
maining unbound variables are bound to appropriately cho-stryctions if one exists.

sen values according to the constraintsdn In particu-
lar, there is no constraint farode0 andnane?2. So they

can be bound to any randomly generated strings such as

"cs101" and" Ji m' respectively. The argumeaapO is
bound toc0. #cap0 which is constrained to be larger than
cO0. #si zel which is equal to 1. ThereforeapO can be

bound to any value larger than 1 such as 2. The instruc-

tion sequence is encoded &y and the following instruc-
tions can be generated from the plan:

Course c0 = Course("csl1l01", 2); [/ 10
Student s1 = Student("Tinl); 1112
c0. add(s1); /711

1. Aclass has a finite number of constructors. So, step 2
of CreateObjectcan enumerate all possible choices of
constructors.

2. A class has a finite number of modifiers. So, step 2 of
ModifyObject can enumerate all possible choices of
modifiers. In addition, the length of a correct instruc-
tion sequence is finite. So, step 4(b)MékePlan can
enumerate all possible sequences of modifiers.

3. A method has a finite number of arguments. So, we
only need to show that REBID can find the correct ar-
guments.

R = ¢[-¢|Tvg|Yv.d|d1V |1 A2 Moreover, addition and subtraction are restricted to
¢ == True| False|a =as|a # as adding and subtractlngla constant from a var|ablg. In this

la1 < as]a1 >as|a1 <as|ar > a case, the se.arch algorlth_m can terminate even if a pIa.n
a u= nlv|nkv|at+a| —a does not exist because it can decide that further addi-
n € Integer Constants tions or subtractions will cause the plan to deviate further

from the requirement. For example, if anld method in-

. crements thesi ze of an aggregate class by 2 instead
Figure 1. Syntax of Presburger formulae. of 1, then no plan exists for creating an empty aggre-
gate object and then adding elements to the object to get
odd-numbered size.

Figure 2 illustrates a screen-shot of the execution of
the REBID planner. The top-right pane shows an internal
representation of the class specification. The middle pane
shows some of the test case conditions that must be satis-
e If a method argument is a primitive constant or fied by aSt udent object. The bottom pane shows the se-

string literal that is specified in target condition quence of instructions generated for creating the required

R, then REBID can use the value specified. St udent object. This example illustrates the construction
e For the case that a method argument is not spec-0f theSt udent object, followed by modification of the ob-

ified, REBID collects inQ the preconditions of ~ Ject’s attributes. The modifier methazkt Cont requires

the methods used in the entire p|an_ These condi- another ObjeCt as its input argument, which is created as

tions are used to instantiate unbound argumentsObj O before theset Cont method is invoked. In sum-

in step 4(a) oMakePlan after all the instructions ~ mary, this example illustrates that the REBID planner can
are found. Since a correct instruction sequence correctly sequence the instructions that invoke the correc
exists (assumed in the problem statement), then methods.

it must be possible to instantiate the arguments

for the correct sequence. 5.2. Test Sequencing

Therefore, REBID can enumerate all possible sequences of))

instructions whose method arguments can be instantiated, !N testing several or all the methods of a class, the vari-

and they include the correct instruction sequence. O ous test cases for the class need to be sequenced in an ap-
propriate order. This is not necessary for software testing

systems such as ADL that test single function specifica-

v € Variables

¢ If a method argument is an object instance of
a class, therExpandArgument is invoked for
each argument, which creates subproblems that
REBID can solve recursively.

5. Implementation tion. On the other hand, it is important for testing an en-
o tire class defined by a closed specification. For example,
5.1. Deterministic Tree-Search to test the methodour se. add at the boundary value

of si ze() = capacity(), itis necessary to first add

A prototype of the REBID algorithm has been developed enough instances &t udent into aCour se object using
as a proof of concept. The non-deterministic aspect of thethe methodCour se. add which is under test. To make the
algorithm has been realized bydaterministic tree-search test meaningful and useful for locating program buagsd
algorithm in depth-first mannefThe tree nodes represent should first be tested witi ze() = 0, which is satis-
partial plans for potential solutions. Depth-first searsh i fied by a freshly constructegbur se object. Subsequently,
chosen for its simplicity, and it works well for the sample add can be tested witsi ze() greater than 0 but smaller
specifications that we have tested so far. It is noted that,thancapaci t y() , and finally withsi ze() = capac-
in general, a more intelligent search algorithm is needed toj t y().

avoid searching the entire tree for a solution. Test sequencing consists of three steps. The first step
In the prototype, we restrict the description of program identifies thedependencpetween the methods in a class.

specification toaffine relations Specifically, the pre- and A method4 is said todepend oranother method if one

post-conditions of methods, as well as the condition®gts of the followings is satisfied:

andS; are expressed usingresburger formulaelts syn-

tax is defined in Figure 1. Consequently, the satisfiability o -) i

the conditions is known to be decidable. The currentimple- 2- 4’S postcondition contains a call to methd i.e.,

mentation uses the Omega Calculator [17] for satisfiability B(b).

check, as well as instantiation of unbound variablesinthefi 3. A’s postcondition contains a state lal#l or an ex-

nal step of the algorithm (Step 4(a) lakePlan). istentially quantified expressio®, and B’s post-

1. B is a constructor of the class in whichis defined.

% Automat Software Testing System - [E:\hyp'\data\ADL_spec\sample.*]
File Edit Advanced Help

Ses BEES 3
= |

R - | | ADLStudent java tjava |
ey {class? Student ﬂ
@ ADL

{state> #age int <{[stated
{state> #id String {/stated>
£ 4

" state? #name String <,f_-'.':f-:-."-.=> =
KIN LFI K | R _>l_l
roo{.Student =5 il
s, #age = 21 -

Contact obj0 = new Contact ("SINGAPORE" , BS33677)

Student root = new Student (“JACKY" , “stringd®)
root. sethge (21)

root. setWationality ("PRC™)

root. setCont (obj0)

sunyi@comp.nus, edu,sg

condition contains a matching assertion of the form As discussed in previous paragraphs, a test of a method, say,
B(b) = #l orB(b) = E. add on aCour se object with fewer elements should pre-
4. Asin 3 but withA andB swapped. cede the test on an object with more elements.
The final step of test sequencing sorts the class meth-

Case (1) is obvious: testing of a class method is possibleods according to the partial-ordering of the test casessiA te
only after an instance of the class has been constructedcaseT that precedes another test cdSeshould be tested
Case (2) is also obvious: the test program for metidod beforeT”.
needs to call metho® to check the test result. Cases (3)
and (4) refer to the case afclic definitioni.e., A usesB . . .
in its specification and vice versa. Methods involved in a 6. Discussions and Conclusion

cyclic definition depend on each other and have to be tested . e
This paper presented a closed specification system such

as a group called theyclic grou) . X
group heyclic group that every class method is defined in terms of other meth-

BY?'Ca"yaa cyclic group cotrr113|;ts Ef a constlructtr(])r O 5ds which are, in turn, defined in their own class specifica-
Modihier and Some access Metnoads. For example, e CoNg, o it closed specifications, it is possible to autemat
structor St udent of class St udent and the accessor

: i if) ically generate a test program for testing the behavior of
Phame orm alpyc Ic gro;Jhp. .tan acgessor app;fars n rlrore object-oriented classes given their closed specifications
an one cyclic group, then it can be removead Irom al €x* 4, jesjred test cases. The test program combines the setup
cept one of the groups, s&y, because it needs to be tested

. . rocess, test execution, and test validation into a single
only once together with the other methods in grétip P ngle p

i .) gram so that all three stages of software testing can be exe-
The second step establishepartial orderingbetween ¢\ ted automatically.

test cases. A test cageis said toprecede(i.e., tested be-

) . \ o This paper also presented a method for automated gener-
fore) a test casg” if one of the followings is satisfied:

ation of the test program. The core of the generator is a Al
1. T tests methodi, T" tests a different methoR not in planner. A first-cut implementation has been completed. In

the same cyclic group a4, andB depends ont. addition, a soundness and completeness proof of REBID is
also provided.
2. BothT andT' test the same method and the ob- We are now working on the following extensions to the

jectunder test il has a shorter construction sequence current implementation. REBID can be easily extended to
than that inl7"”'. generate program codes for testing a method’s exception

handling. This can be achieved by including the exception [6] D. Gries. The Science of ProgrammingSpringer-Verlag,

handling semantic§—P} M {E} where E is the condi-
tions that must be satisfied when the preconditfbis vi-

(7]

olated. Single inheritance of a class can also be easily han-

dled by inheriting the closed specification of the class.

The current REBID implementation does not han-
dle universal quantifications. Universal quantifications

can be eliminated through a technique caligrheraliza-

tion, originally introduced by Suzuki and Ishihata [21].

Given a universally-quantified formuk f(z), we com-
pute —eliminate(—f(z)). The functioneliminate uses

the Fourier-Motzkin variable-elimination method to elim-
inate z from —f(z). This results in a simplified formula

with the same integer solutions as the original formula, 11
and is used in place of the universally-quantified for-

mula.

To handle more complex specifications and test cases[12]

a measure of thékelihood of successf an instruction is

needed to allow REBID to search for a plan efficiently. The

likelihood can be defined in terms of tlistancebetween
the conjunctive terms in the subgdgl and the currently

satisfied condition sef;. Symbolic labels in the terms can
be compared syntactically whereas numerical values can14l

be compared numerically. In addition, we require more so-

phisticated constraint solving tools, in place of Omega Cal
culator, to handle more expressive specification than Pres-

burger formulae. Some theorem-proving tools, such as Is-

abelle [12], PVS [15] etc., can be employed here.
The object construction codes generated by REBID can [16]

be executed to construct objects that satisfy known condi-

(8]

(9]

[10]

[13]

[15]

tions. Therefore, they can be reused in other test programg17)

that require objects that satisfy the same conditions. This
will reduce the need to run REBID again to generate the

same object construction codes.

References

(1]
(2]

(3]

(4]

B. Beizer. Software Testing TechniqgueBhomson Computer
Press, 2nd edition, 1990.

W. K. Chan, T. Y. Chen, and T. H. Tse. An overview of in-
tegration testing techniques for object-oriented prograim
Proc. of 2nd ACIS Annual Int. Conf. on Computer and Infor-
mation Science (ICISpages 696—701, 2002.

H.Y.Chen, T.H. Tse, and T. Y. Chen. TACCLE: a methodol-
ogy for object-oriented software testing at the class ans-cl
ter levels ACM Trans. on Software Engineering and Method-
ology, 10(1):56-109, 2001.

M. Donat. Automating formal specification based testing
In Proc. Conf. on Theory and Practice of Software Develop-
ment volume 1214, pages 833-847, 1997.

[5] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and

G. Rothermel. An empirical study of regression test selec-
tion techniques.ACM Trans. on Software Engineering and
Methodology 10(2):184—208, 2001.

[18]

[19]

[20]

[21]

1981.

C. A. R. Hoare. An axiomatic basis for computer program-
ming. Comm. of ACM12:576-583, 1969.

H. Hong, I. Lee, O. Sokolsky, and S. Cha. Automatic test
generation from statecharts using model checking. Teahnic
Report MS-CIS-01-07, Dept. of Computer and Information
Science, U. of Pennsylvania, 2001.

IEEE. IEEE Standard 829-1991: Standard for Software Test
Documentation|IEEE Press, New York, 1991.

L. J. Jagadeesan, A. A. Porter, C. Puchol, J. C. Ramming,
and L. G. Votta. Specification-based testing of reactivée sof
ware: Tools and experiments. Int. Conf. on Software En-
gineering pages 525-535, 1997.

A. M. Memon, M. E. Pollack, and M. L. Soffa. Using a goal-
driven approach to generate test cases for guisntirConf.
Software Engineeringl999.

T. Nipkow, L. C. Paulson, and M. Wenzellsabelle/HOL

— A Proof Assistant for Higher-Order Logic (LNCS 2283)
Springer, 2002.

M. Obayashi, H. Kubota, S. P. McCarron, and L. MalleteTh
assertion based testing tool for OOP: ADL2. Rroc. Int.
Conf. Software Engineering 998.

A.J. Offuttand S. Liu. Generating test data from SOFécsp
ifications. J. of Systems and Softwad9(1):49-62, 1999.

S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas.
PVS: Combining specification, proof checking, and model
checking. InR. Alurand T. A. Henzinger, edito@omputer-
Aided Verification, CAV '96 (LNCS 1102)ages 411-414.
Springer-Verlag, 1996.

R. M. Poston. Automating Specification-Based Software
Testing IEEE Computer Society Press, 1996.

W. Pugh. The Omega Test: A fast practical integer progra
ming algorithm for dependence analysi€omm. of ACM
8:102-114, 1992.

S. Russell and P. NorvigAtrtificial Intelligence: A Modern
Approach Prentice-Hall, 1995.

S. Sankar and R. Hayes. Specifying and testing software
components using ADL. Technical Report TR-94-23, Sun
Microsystems Labs, 1994.

M. Scheetz, A. von Mayrhauser, R. France, E. Dahimad, an
A. E. Howe. Generating test cases from an OO model with
an ai planning system. IRroc. 10th Int. Symp. on Software
Reliability Engineering1999.

N. Suzuki and K. Ishihata. Implementation of array bdun
checker. InACM Principles of Programming Languages
pages 132-143, 1977.

