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Abstract. Recent advancements in 3D scanning technologies have in-
spired the development of effective methods for matching and retrieving
3D objects. A common pre-processing stage of these retrieval methods is
to normalize the position, size, and orientation of the objects based on
PCA. It aligns an object’s orientation based on PCA eigenvectors, and
normalizes its size uniformly in all 3 spatial dimensions based on the
variance of the object points. However, orientation alignment by PCA is
not robust, and objects with similar shape can be misaligned. Uniform
scaling of the objects is not ideal because it does not take into account
the differences in the objects’ 3D aspect ratios, resulting in misalign-
ment that can exaggerate the shape difference between the objects. This
paper presents a method for computing 3D objects’ bilateral symmetry
planes (BSPs) and BSP axes and extents, and a method for normalizing
3D objects based on BSP axes and extents. Compared to normaliza-
tion methods based on PCA and minimum volume bounding box, our
BSP-based method can normalize and align similar objects in the same
category in a semantically more meaningful manner, such as aligning the
objects’ heads, bodies, legs, etc.

1 Introduction

Recent advancements in 3D scanning technologies have led to an increased ac-
cumulation of 3D models in databases and the Internet, and inspired the devel-
opment of effective techniques for retrieving 3D objects that are similar in shape
to a query model (e.g., [1,2,3,4,5,6]). 3D object matching and retrieval typi-
cally involve three basic stages: (1) object normalization, (2) feature extraction
and object representation, and (3) object comparison. The first stage typically
normalizes objects’ positions, sizes, and orientations by translating the objects’
centroids to the origin of the 3D coordinate frame, normalizing the variances
of the points on the objects, and aligning their principal axes obtained using
Principal Component Analysis (PCA) [1,7]. The second stage extracts various
features from the objects and represents the objects in various forms such as
histograms, 2D spherical maps, 3D grids, and abstract representations in terms
of the extracted features [7]. The third stage typically uses very simple distance
measures such as the Euclidean distance to perform efficient comparison.
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The standard normalization method described above is not ideal. Orienta-
tion alignment based on PCA is not robust because PCA is sensitive to point
distributions of the objects. Objects with similar shape may be misaligned [1]
(Fig. 1). Moreover, this method does not take into account the difference in the
objects’ 3D aspect ratios. Normalization of objects with different 3D aspect ra-
tios by the same scaling factors in all 3 spatial dimensions causes misalignments
of their corresponding parts (Figs. 2, 7(a)). All these misalignments can result
in an exaggeration of the difference between objects with similar shapes. Con-
sequently, relevant objects (i.e., objects in the same category as the query) may
be regarded by the matching algorithm as different from the query and are not
retrieved. Therefore, it is important to normalize and align the objects properly.

A straightforward improvement over the standard normalization method is to
scale the objects according to their 3D aspect ratios. This brings out a question:
In which coordinate system should the objects’ 3D aspect ratios be measured?
A possibility is to measure 3D aspect ratios along the PCA axes. This method is
not robust because, as discussed above, orientation alignment based on PCA is
not robust. An alternative method is to compute the objects’ minimum volume
bounding boxes (MBB) [8], and normalize the objects based on MBB axes and
widths. Our studies show that this method is even less robust than the PCA
method, as will be discussed further in Sections 2 and 4.

It is observed that many natural and man-made objects exhibit bilateral (i.e.,
left-right) symmetry. It is a kind of reflectional symmetry that has an interesting
semantic meaning: the bilateral symmetry plane (BSP) divides an object into
a left and a right half, each is a mirror reflection of the other about the BSP.
Moreover, the major axis that defines the object’s top and bottom lies in the
BSP. Therefore, by normalizing objects according to the principal axes and 3D
aspect ratios defined on BSP, the objects’ semantically corresponding parts such
as head, body, legs can be aligned. Consequently, shape matching of objects
aligned in this manner would be semantically more meaningful.

Note that PCA or MBB alone is insufficient for computing an object’s BSP.
The PCA and MBB planes (i.e., the planes normal to the PCA/MBB axes) may
not be aligned to the BSP plane in terms of position and 3D orientation (Figs. 1
and 2). Furthermore, an object has three PCA planes and three MBB planes.
Using only PCA and MBB algorithms, it is impossible to determine which of
the three planes is nearest to the object’s BSP. For objects that are not exactly
bilaterally symmetric, the best fitting BSP may not pass through the objects’
centroid. So, to determine an object’s BSP, the algorithm needs to compute the
correct 3D orientation and position of a plane that separates the object into two
bilaterally symmetric parts.

This paper presents a method for (1) computing 3D Objects’ BSPs and BSP
axes and extents, and (2) normalizing and aligning 3D objects based on BSP axes
and extents. Test results show that the algorithm can compute the exact BSPs
of exactly bilaterally symmetric objects. For objects that are roughly bilaterally
symmetric, the algorithm can compute the best fitting BSPs. Normalization of
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objects according to BSPs yields better normalization and alignment between
3D objects in the same category compared to those using PCA and MBB.

2 Related Work

There is a substantial amount of work on 3D symmetry detection. Alt el al.
[9] described algorithms for computing exact and approximate congruences and
symmetries of geometric objects represented by point sets. Wolter et al. [10] pre-
sented exact algorithms for detecting all rotational and involutional symmetries
in point sets, polygons and polyhedra. Jiang et al. [11,12] presented methods
for determining rotational and involutional symmetries of polyhedra. Brass and
Knauer [13,14] further developed methods for computing and testing symmetries
of non-convex polyhedra and general 3D objects. Zabrodsky et al. [15] defined
a Continuous Symmetry Measure to quantify the symmetries of objects. Mi-
novic et al. [16] described an algorithm for identifying symmetry of 3D objects
represented by octrees.

Sun and Sherrah [17] proposed algorithms for determining reflectional and
rotational symmetries of 3D objects using orientation histograms. To reduce the
search space, their algorithms search for the symmetries of an object along its
principal axes and small orientation neighborhoods around them. The principal
axes are obtained from a method similar to PCA. Our studies show that this
approach is not robust because the reflectional symmetry plane of an object can
be quite far from the PCA planes normal to the PCA axes (Section 4).

The above research work has focused on symmetry detection or quantifica-
tion. On the other hand, Jiang and Bunke [18] applied symmetry detection in
polyhedra for object recognition. Kazhdan et al. developed methods of matching
3D shape using reflectively symmetric feature descriptors [19] and rotationally
symmetric descriptors [20].

In this paper, we focus on determining bilateral symmetry planes (BSPs),
BSP axes, and 3D aspect ratios for more robust and semantically meaningful
normalization and alignment of 3D objects. The objects are represented as point-
and-mesh models, and the object points need not be uniformly distributed over
their surfaces. Indeed, many of our test objects are composed of highly non-
uniformly distributed points.

Principal Component Analysis (PCA) is a well-known method for computing
the principal axes of an object and the spread of points along the axes. It is the
standard method for normalizing 3D objects’ orientation. However, the principal
axes obtained by PCA are sensitive to the distributions of points on the objects.
Differences in point distributions between two objects of similar shape can cause
their orientations to be misaligned [1]. This problem is most serious for objects
that are not exactly bilaterally symmetric (Fig. 1). Moreover, the variances of the
points along the PCA axes (i.e., the eigenvalues) are sensitive to non-uniformity
of point distributions. Two objects with the same extents but different point
distributions can have different variances (Fig. 2) As a result, the eigenvalues
cannot be used as good estimates of the object’s 3D aspect ratios.
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(a) (b)

Fig. 1. PCA misalignment. Spider b is not exactly bilaterally symmetric, causing its
PCA axes (black lines) to be misaligned with those of spider a. However, their computed
BSPs are well aligned. Left and right sides of BSPs are denoted by different colors.

(a) (b) (c) (d)

Fig. 2. MBB misalignment. Airplanes a and c have different 3D aspect ratios. (b, d)
Their first PCA axes (with the largest eigenvalues, horizontal black lines) are aligned
with the BSPs but their MBBs (green boxes) are not.

The minimum volume bounding box (MBB) algorithm developed in [8] is less
sensitive to the overall distribution of the points on the objects but is very sensi-
tive to the positions of the points furthest from the objects’ centroid. Typically,
the objects’ MBBs are not aligned with their BSPs (Fig. 2). However, it can
compute the extents of the objects even if the point distributions are not uni-
form. So, MBB widths can be good estimates of the objects’ 3D aspect ratios if
MBB axes are aligned with the BSPs.

3 Bilateral Symmetry Plane

3.1 Computing BSP

For objects that are rotationally symmetric, such as a ball and an orange, each
of the multiple rotational symmetry planes is a bilateral symmetry plane (BSP).
However, for most natural and man-made objects with bilateral symmetry, they
have only one BSP each (Figs. 1, 2, 5). To compute an object’s BSP, we use the
fact that each point on the object’s surface has a mirror reflection with respect
to the BSP.
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Fig. 3. Object point p and its mirror reflection p′ with respect to the plane π

A plane π in 3D space can be parameterized by the equation

w · x + w0 = 0 (1)

where w0 and w = (w1, w2, w3) are the parameters of the plane, and x is any
3D point on the plane. Consider any two points x1 and x2 lying on the plane.
From Eq. 1, we obtain

w · (x2 − x1) = 0 (2)

which means that w is normal to the plane. Thus, the plane’s unit normal vector
u is given by w/‖w‖. The perpendicular distance ρ of the plane from the origin
is given by u · x for any point x on the plane. That is, ρ = −w0/‖w‖.

Now, consider a point p on the object’s surface. From Fig. 3, it is obvious
that the perpendicular distance of p from a plane π, denoted as ρ(p), is

ρ(p) = p · u − ρ . (3)

Then, the ideal mirror reflection p′ of p with respect to the plane π is (Fig. 3):

p′ = p − 2 ρ(p)u . (4)

In practice, a 3D object is typically represented as a point-and-mesh model,
which consists of a sparse set S of points on the 3D object’s surface. So, for a
point pi ∈ S, its ideal mirror reflection p′

i may not be in S. Let f denote the
closest-point function and f(p′

i) denote a point in S closest to p′
i. That is, f(p′

i)
is the closest approximation to p′

i. Then, the mean-squared error E between all
p′

i ∈ S and its closest approximation f(p′
i) is:

E(θ) =
∑

pi∈S

‖p′
i − f(p′

i)‖2 =
∑

pi∈S

‖pi − 2 ρ(pi)u − f(p′
i)‖2 (5)

where the vector θ = (w0, w1, w2, w3). Therefore, the problem of computing
the bilateral symmetry plane is to find the plane π, parameterized by θ, that
minimizes the error E(θ).
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The algorithm for computing an object’s BSP can be summarized as follows:

Compute BSP

1. Compute the three PCA axes (i.e., eigenvectors) of the object, and the three
PCA planes normal to these axes.

2. Set the PCA plane with the smallest error E as the seed plane.
3. Rotate the seed plane in all three rotation angles by increments of δ to

generate initial planes ωj .
4. For each initial plane ωj ,

perform gradient descent to obtain locally optimal BSP πj and its error Ej .
5. Return the plane πk with the smallest error Ek.

Given a sufficiently small δ, the above algorithm can find the globally optimal
estimate of the object’s BSP. In the tests, δ = 22.5◦ is used. This algorithm
can also use MBB axes to obtain the seed plane. However, our tests show that
initializing with PCA is more robust than initializing with MBB because the
objects’ BSPs tend to be closer to PCA planes than MBB planes (Section 4).

3.2 BSP-Based Object Normalization

Orientation alignment based on BSP offers an approach that can take into ac-
count the semantics of the object parts, such as head, body, legs, etc. We define
the first BSP axis as the vector in BSP with the largest dispersion of points. This
definition is analogous to that of PCA axis. The second BSP axis is the vector
in BSP perpendicular to the first BSP axis. The third BSP axis is naturally the
vector normal to BSP.

Based on the above definition, we can compute the BSP axes as follows:

Compute BSP Axes and Extents

1. Project 3D points on an object to its BSP.
2. Apply 2D PCA on the projected points and obtain principal axes in BSP.
3. Measure the extents (i.e., the distances between the furthest points) of the

object along the two principal axes in BSP. The axis with a larger extent is
defined as the first BSP axis, and the other one is the second BSP axis.

4. BSP’s normal vector is defined as the third BSP axis. The extent along this
axis is also computed.

5. The extents along the three BSP axes define the object’s 3D aspect ratio.

In the third step, PCA eigenvalues should not be used as measures of the object’s
extents because they are sensitive to non-uniform distribution of points.

Similar to PCA axes, the BSP axes for different objects may be pointing
in opposite directions even though their orientations are the same. A common
technique of handling this problem is to reflect the principal axes before matching
the objects [4]. With three principal axes, there are altogether eight reflected
versions to be compared. The reflection with the smallest matching error would
be the one with the semantically matching axis directions.
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BSP-based normalization is performed by translating the objects centroids’
to the origin of the 3D coordinate frame, aligning the objects’ BSP axes, and
normalizing their 3D aspect ratios to a standardized 3D aspect ratio according
to their BSP extents. In case this method distorts the shapes of some objects
too significantly, an alternative is to group objects into categories according to
some criterion such as difference in aspect ratios, semantic class, etc., and scale
the objects in each category to a different standardized 3D aspect ratio that
minimizes shape distortion.

4 Experiments

The test set contains 1602 objects some of which are exactly bilaterally symmet-
ric while the others are roughly bilaterally symmetric. This test set is compiled
by combining 512 aircrafts in the Utrecht database [21] and 1090 objects in the
Princeton database [22]. The Utrecht database contains 6 categories of aircrafts
whereas the Princeton database contains about 50 categories of objects. Highly
non-bilaterally symmetric objects in the Princeton database are excluded.

Two sets of tests were conducted to assess the performance of the algo-
rithm for computing BSPs and BSP-based object normalization and alignment.
The implementation of the MBB algorithm was downloaded from the web site
valis.cs.uiuc.edu/~sariel/research/papers/98/bbox.html.

4.1 Test on BSP Computation

For this test, the following normalized error E′ was computed for the estimated
BSP θ of each object S:

E′(θ) =
1

|S| v
∑

pi∈S

‖p′
i − f(p′

i)‖ (6)

where v is the variance of the points pi from the object’s centroid. This normal-
ized error is independent of the number of points and the size of the objects,
and so can be compared among the objects.

The algorithm for computing BSP was performed on all 1602 objects. It suc-
cessfully computed the BSPs of 1589 (99.2%) objects. Among the successful
cases, the computed BSPs of 487 (30.7%) bilaterally symmetric objects are prac-
tically exact, with E′ ≤ 0.00001 (Fig. 4). A total of 1348 objects (84.8%) with
bilateral symmetry and approximate bilateral symmetry have errors E′ ≤ 0.03.
For the other 241 (15.2%) successful cases, the computed BSPs have various
amounts of error ranging from 0.03 to greater than 0.1. Sample results are shown
in Fig. 5. For objects that are bilaterally symmetric (rows 1, 2), exact BSPs are
found. For objects that are roughly bilaterally symmetric (row 3), the best fit-
ting BSPs are computed. Therefore, the error E′ is well correlated to the degree
of bilateral symmetry of the test objects.

For the 13 (0.8%) failure cases (Fig. 5, row 4), all their errors are greater than
0.03, and 53.9% of them are greater than 0.1. The computed BSPs are all larger
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Fig. 4. Frequency distribution of the errors of computed BSPs of test objects

Table 1. Percentages of PCA and MBB planes nearest to test objects’ BSPs

1st 2nd 3rd
PCA 13.4% 61.7% 19.9%
MBB 31.1% 46.1% 22.8%

than 30◦ from the desired BSPs. The main reason of the failure is that these
objects are not exactly bilaterally symmetric and there are very few points on
them. In some cases, one or two outliers (i.e., points without mirror reflections
and lying at large distances from the objects’ centroids) are enough to severely
tilt the orientation of the computed BSP. One method of solving this problem
is to apply a robust method to exclude outliers while computing the BSP.

As discussed in Section 1, an object has three PCA planes and three MBB
planes. Table 1 tabulates the percentage of PCA/MBB planes that are nearest, in
terms of 3D orientation, to the computed BSPs of the test objects. It shows that
most of the objects’ BSPs are nearest to the second PCA plane (the plane normal
to the second PCA axis). This is expected because most objects’ second PCA
axes run across their bodies in the left-right direction normal to their BSPs.
Nevertheless, there are many other objects whose BSPs are nearest to other
PCA/MBB planes. These results show that PCA and MBB, by themselves, are
not able to determine the correct BSPs in general.

Figure 6 plots the frequency distribution of the angular difference between an
object’s BSP and its nearest PCA/MBB plane. 69.6% of the objects have BSPs
exactly aligned with their nearest PCA planes (i.e., 0◦ difference). On the other
hand, only 1.2% of the objects have BSPs exactly aligned with their nearest
MBB planes. Most (30.7%) of the objects’ BSPs are, in fact, more than 20◦ off
the nearest MBB planes. This test result shows that it is better to use PCA
planes to initialize the algorithm for computing BSP (Section 3.1).
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Fig. 5. Sample BSP results. (Rows 1–3) Successful cases: (Rows 1, 2) Bilaterally sym-
metric objects, (Row 3) Approximately bilaterally symmetric objects. (Row 4) Failure
cases. Left and right sides of BSPs are denoted by different colors.

4.2 Test on BSP-Based Normalization

Four types of normalization methods were compared:

1. PCA with uniform scaling (PCA):
Normalize objects’ centroids, PCA axes, and variance of points. This is the
standard normalization method and serves as the base case.

2. PCA with 3D aspect ratio normalization (PCA3):
Normalize objects’ centroids, PCA axes, and 3D aspect ratio estimated by
PCA eigenvalues.

3. MBB:
Normalize MBB centroid, MBB axes, and MBB extents.

4. BSP:
Normalize object’s centroid, BSP axes, and BSP extents.
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Fig. 7. Comparison of normalization methods. (a) PCA with uniform scaling, (b) PCA
with normalization of 3D aspect ratio, (c) MBB, (d) BSP.



84 J. Tedjokusumo and W.K. Leow

Figure 7 illustrates the difference between the various normalization methods.
In many cases, both PCA and PCA3 can align the objects’ principal axes well
(Fig. 7(a, b), rows 1–3). But, sometimes, they give the wrong orientation align-
ment (Fig. 7(a, b), row 4). They are unable to normalize the 3D aspect ratios
well enough to achieve semantically meaningful alignment of the object parts
due to PCA’s sensitivity to point distributions (Fig. 7(a, b), rows 2–4).

MBB can normalize the 3D aspect ratios relatively well. But, a slight difference
in the lengths and widths of the objects can cause the orientation alignment to
be off by as much as 90◦ (Fig. 7(c), rows 1–3). On the other hand, our BSP-
based method consistently normalizes and aligns the objects well (Fig. 7(d)). In
particular, semantically equivalent parts, such as heads, bodies, legs, wings, and
tails, of different objects are correctly aligned.

5 Conclusions

This paper presented a method for computing 3D objects’ bilateral symmetry
planes (BSPs) and BSP axes and extents, and a method for normalizing and
aligning 3D objects based on BSP axes and extents. The algorithm success-
fully computed the BSPs of 99.2% of the test objects. For exactly bilaterally
symmetric objects, the exact BSPs are found. For roughly bilaterally symmet-
ric objects, the best fitting BSPs are computed. Compared with normalization
methods based on PCA and minimum volume bounding box, our method based
on BSP can normalize and align similar objects in the same category in a se-
mantically meaningful manner, such as aligning the objects’ heads, bodies, legs,
etc. Better normalization and alignment of objects are expected to improve the
performance of shape matching and retrieval algorithms of 3D objects.
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