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Abstract

Skull reconstruction is an important and challenging task in craniofacial surgery planning, forensic

investigation and anthropological studies. Existing methods typically reconstruct approximating

surfaces that regard corresponding points on the target skull as soft constraints, thus incurring

non-zero error even for non-defective parts and high overall reconstruction error. This paper

proposes a novel geometric reconstruction method that non-rigidly registers an interpolating

reference surface that regards corresponding target points as hard constraints, thus achieving

low reconstruction error. To overcome the shortcoming of interpolating a surface, a flip-avoiding

method is used to detect and exclude conflicting hard constraints that would otherwise cause sur-

face patches to flip and self-intersect. Comprehensive test results show that our method is more

accurate and robust than existing skull reconstruction methods. By incorporating symmetry con-

straints, it can produce more symmetric and normal results than other methods in reconstructing

defective skulls with a large number of defects. It is robust against severe outliers such as radiation

artifacts in computed tomography due to dental implants. In addition, test results also show that

our method outperforms thin-plate spline for model resampling, which enables the active shape

model to yield more accurate reconstruction results. As the reconstruction accuracy of defective

parts varies with the use of different reference models, we also study the implication of reference

model selection for skull reconstruction.
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1 INTRODUCTION

Skull reconstruction is an important and challenging task in craniofa-

cial surgery planning, forensic investigation and anthropological stud-

ies. Existing skull reconstruction methods can be broadly divided into

four categories: symmetry-based, statistical, bone repositioning and

geometric.

Symmetry-based methods1-3 rely on the approximate left–right

symmetry of human skulls. They regard the reflection of the

non-defective parts of a target skull about the lateral symmetry plane

as the reconstruction of the defective parts. These methods are not

applicable when both sides of a skull are defective.

Statistical methods, particularly active shape models,4-6 map a tar-

get skull to a statistical skull model by computing the model parameters

Wee Kheng Leow, Member, IEEE

that best fit the non-defective parts of the target, and generate the

reconstructed skull from the model parameters. Unlike human face

images, it is very difficult to collect a wide variety of 3D models of

human skulls (≫ 50) to cover all normal skull variations across age,

race and gender. Thus, it is difficult to apply statistical methods to skull

reconstruction. Moreover, generating the reconstructed model that fits

the overall shape of the target skull is a global optimization process,

and thus the reconstructed model may not fit the non-defective parts

of the target model closely. Therefore, statistical methods are not very

accurate in skull reconstruction.

Bone repositioning methods7-10 reconstruct a skull by repositioning

fractured bone fragments of a defective skull at their correct positions,

which is similar to solving a 3D jigsaw puzzle. For cases where the target

skull is defective due to impact injuries, the fractured surfaces of bone

fragments may abrade each other, damaging the fractured surfaces.

In this case, these methods cannot accurately match the fractured
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surfaces of bone fragments. Moreover, these methods are applicable

only to fractured skulls rather than incomplete and deformed ones.

They also require every individual fractured bone fragment to be seg-

mented from computed tomography (CT) images. Without an auto-

matic way to segment the bone fragments, it is very tedious and

time-consuming to obtain the bone fragments manually.

Geometric methods11-14 perform non-rigid registration of a single

reference model to fit the non-defective parts of the target model, and

regard the registered reference model as the reconstructed model. The

accuracy of geometric methods depends critically on the number of

corresponding points used in non-rigid registration. Methods that use a

small set of manually marked landmarks11-13 cannot achieve high accu-

racy. Thus, some methods automatically detect more corresponding

points.14

Non-rigid registration methods can be grouped into two broad cat-

egories based on the goal of registration: approximation and inter-

polation. Methods that produce approximating surfaces such as 3D

snake,15 active balloon,16 piecewise rigid registration17 and non-rigid

iterative closest point (ICP)18,19 fit a reference surface to the tar-

get by minimizing the distance between corresponding reference and

target surfaces. They regard the positional correspondence as soft

constraints, and their registered surfaces have non-zero distance or

error to the target surfaces. On the other hand, methods that produce

interpolating surfaces such as thin-plate spline (TPS)20 and Laplacian

deformation21 fit the reference surface to pass through the corre-

sponding target points. They regard the positional correspondence as

hard constraints, and thus their registered surfaces have zero error

with respect to the corresponding target points.

Among the interpolating methods, TPS is the most popular for

reconstruction of skulls11-14,22,23 because it can tolerate noise by

imposing a surface smoothness constraint through the minimization

of surface bending energy. Laplacian deformation preserves local sur-

face curvature and normal, and we are the first to apply it to skull

reconstruction.24,25

Interpolating methods can produce flipped surfaces when there are

conflicts in the hard constraints. Surface flipping refers to the local

inversion of surface normals that causes surface self-intersections

(Figure 1E,F). They cause severe distortion of surface shape, and are

very difficult to remove (Section 3). Note that surface flipping is a direct

consequence of surface interpolation with conflicting hard constraints.

Imposing a surface smoothness constraint by energy minimization,

such as TPS, cannot remove surface flipping (Figure 1F). In contrast,

approximating surfaces can avoid surface flipping because they regard

the correspondence as soft constraints and are allowed to ignore con-

flicting constraints. Their shortcoming is the non-zero reconstruction

error of the non-defective parts.

This paper proposes a novel method called FAIS (flip-avoiding inter-

polating surface) that exploits the strength of an interpolating surface

while overcoming its shortcoming. It avoids surface flipping by detect-

ing and excluding conflicting hard constraints. Such exclusion is afford-

able when a very dense set of corresponding points is available (Section

7.2). Thus, FAIS can reconstruct a skull without flipped surfaces and

achieve practically zero error for the non-defective parts. It uses Lapla-

cian deformation instead of the more popular TPS because Laplacian

deformation runs faster with an increasing number of hard constraints,

whereas TPS runs slower. Comprehensive test results show that FAIS is

more accurate and robust than existing skull reconstruction methods.

By incorporating symmetry constraints, it can produce more symmet-

ric and normal results than other methods in reconstructing defective

skulls with a large number of defects. FAIS is also robust against severe

outliers such as radiation artifacts in CT due to dental implants. In

addition, test results also show that FAIS outperforms TPS for model

resampling, which enables the active shape model to yield more accu-

rate reconstruction results. As the reconstruction accuracy of defec-

tive parts may vary according to different reference models used,

we also study the implication of reference model selection for skull

reconstruction.

2 HANDLING SURFACE SELF-INTERSECTION

There are two general approaches to handling surface flipping and

self-intersection: (1) detection and resolution, and (2) avoidance.

McInemey and Terzopoulos26 detect self-intersections by examin-

ing the deformation result, and resolve self-intersections by rolling

back the mesh model to the state before deformation and imposing

repulsive forces to keep the potentially intersecting surfaces apart.

Lachaud and Montanvert27 impose proximity conditions between

mesh vertices and detects violations of proximity conditions, whereas

others28,29 detect self-intersections through collision detection, and

resolve self-intersections by remeshing.

The methods of Choi and Lee30 and Hagenlocker and Fujimura31

avoid self-intersection by imposing an injectivity (one-to-one) condi-

tion on the free-form deformation function. The injectivity condition

confines the free-form deformation of the mesh to regions that do

not have self-intersection. Khan et al.32 and Zhuang et al.33 apply a

FIGURE 1 Surface flipping. (A), Correspondence vectors v(p) and v(q) form a triangle with the line joining p and q when they meet at the same
point. (B), Non-crossing correspondence vectors (arrows) produce no surface flipping (C). D, Crossing correspondence vectors cause Laplacian
deformation (E) and also cause TPS to produce flipped and distorted surfaces (F) even when they do not intersect. Black regions are surface
patches that have flipped
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diffeomorphic deformation function. A diffeomorphic function and

its inverse are both one-to-one and smooth, and the function pre-

serves the topology of the mesh model after deformation, thus avoid-

ing self-intersection. These methods produce approximating surfaces

instead of interpolating ones.

Ding et al.34 devise an ingenious quadrilateral mesh that permits

easy detection of possible flippings of mesh edges by arranging the

mesh vertices into some forms of total ordering. Edge flippings are

removed from the constraint set for mesh deformation, thus avoiding

flippings. Unfortunately, it is non-trivial to convert a triangular mesh to

the special quadrilateral mesh, limiting the applicability of this method.

Our FAIS is similar in spirit to theirs,34 except that FAIS detects possi-

ble flippings of triangular faces before deformation, which are removed

from the constraint set for mesh deformation. FAIS's advantage is that it

can be applied to triangular meshes, and it is conceptually simpler than

that of Ding et al.34

3 FLIP-AVOIDING REGISTRATION

3.1 Overview

FAIS performs non-rigid interpolating registration of a reference model

to a defective target model. To achieve the goals discussed in Section 1,

FAIS applies the following principles.

1. FAIS uses a small set of landmarks provided by the user to ensure

anatomically correct registration of the reference model to the

target model.

2. FAIS applies automatic correspondence search methods to

obtain dense correspondence. It matches the surface character-

istics of the reference and the target (Section 3.2), which allows

FAIS to ignore outliers. Similar techniques are commonly used in

existing methods.

3. FAIS detects and removes correspondence that may cause sur-

face flipping (Section 3.3), thus achieving flip-avoiding recon-

struction with interpolating surfaces.

4. Correspondence search is a local operation that is not guaran-

teed to be anatomically accurate. To reduce the risks of wrong

correspondence, FAIS adopts an iterative incremental approach

that deforms the reference model very slightly in the early itera-

tions (Section 5). As the reference registers closer to the target in

subsequent iterations, the risk of finding wrong correspondence

is reduced, and the reference is allowed to deform more.

5. FAIS registers an interpolating surface to the non-defective

parts of the target model exactly, resulting in zero error for the

non-defective parts with correspondence. In particular, Lapla-

cian deformation is used for non-rigid registration.

3.2 Correspondence search

FAIS applies two correspondence search methods. The first method is

applied in the early iterations of FAIS. It searches for a corresponding

mesh vertex p
′

on the target T for each mesh vertex p on the reference

F that satisfies the conditions:

• p
′

is near enough to p: ||p − p
′ || ≤ D1, where D1 is a constant

parameter for the search range; and

• p
′

and p have similar surface normals that differ by no more than 10◦.

In the current implementation, D1 is empirically set to 0.5 mm.

The second method is applied in the final step. It searches for a cor-

responding point p
′

on the target T for each mesh vertex p on the

reference F, such that

• p
′

is p's nearest surface point on T, i.e., the nearest intersection of

the surface normal at p with T, and

• ||p − p
′ || ≤ D2, where D2 is a constant parameter.

D2 is larger than D1 but not so large that wrong correspondence is

found. In the current implementation, D2 = 3 mm. The second method

can find more corresponding points but is less efficient than the first.

So, it is used only in the final step.

If a corresponding point p
′

is found for p, then the vector v(p) = p
′ −p

is the correspondence vector of p. Otherwise, p has no correspondence

vector. The set C of correspondence contains tuples of the form (p,p
′ ).

3.3 Flip avoidance

The crossing of correspondence vectors can cause self-intersection or

penetration of surfaces, resulting in local inversion of surface normals,

which we call surface flipping (Figure 1). There is no surface flipping if

the correspondence vectors do not cross. To derive the condition for flip

avoidance, consider two points p and q on the surface of a mesh model.

If their correspondence vectors v(p) and v(q) meet at the same point,

then they form a triangle with the vector q − p from p to q (Figure 1A).

Let 𝜃(p;q) denote the angle made by v(p) and q − p, and similarly for

𝜃(q;p). Then, basic trigonometry states that

||v(p)|| cos 𝜃(p;q) + ||v(q)|| cos 𝜃(q;p) = ||p − q||. (1)

In general, p and q do not meet or intersect at a point in 3D space. Then,

the left-hand side of equation 1 is the sum of the projections of v(p) and

v(q) on the vector q − p. If ||p − q|| is less than the left-hand side of

equation 1, v(p) and v(q) will cross in 3D space, causing surface flipping

(Figure 1D–F). If ||p−q|| is greater than the left-hand side, v(p) and v(q)
will not cross, and there is no flipping (Figure 1B, C).

Let D denote the upper bound on the length of the correspondence

vectors: ||v(p)|| ≤ D,∀p. Then, v(p) and v(q) will not cross if

cos 𝜃(p;q) + cos 𝜃(q;p) < ||p − q||
D

. (2)

This condition can be simplified as

cos 𝜃(p;q) < ||p − q||
2D

and cos 𝜃(q;p) < ||q − p||
2D

(3)

since condition 3 implies condition 2.

In order that v(p) does not cross any vector v(q), condition 3 must

be satisfied for all the points q on the mesh. Since cos 𝜃(p;q) ≤ 1, con-

dition 3 is trivially satisfied for all points q at a distance larger than 2D

from p. Thus, we can state the following conditions for no crossing:
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Simple no-crossing condition There is no crossing if, for all pairs

(p,p
′ ) and (q,q

′ ) in correspondence set C, ||p − q|| > 2D.

General no-crossing condition There is no crossing if, for each

(p,p
′ ) ∈ C,

cos 𝜃(p;q) < ||p − q||
2D

,

∀q ∈ N(p) = {q | ||p − q|| ≤ 2D}and(q,q′) ∈ C.
(4)

The simple condition is a special case of the general condition.

4 LAPLACIAN DEFORMATION WITH
SYMMETRY CONSTRAINTS

Consider the C-shape model shown in Figure 2A. We want to apply

Laplacian deformation to deform it such that the bottom landmark is

fixed and the left landmark is moved to the right slightly. The result is a

deformed shape whose bottom part is fixed but the top part is shifted

to the right (Figure 2B).

A similar situation can occur when reconstructing a defective skull

with a large number of defective or missing parts (Figure 2C). The ref-

erence model shown in Figure 2D happens to be disconnected on the

right like the C-shape model, and it is wider than the target. Many ref-

erence landmarks on the facial bones have no corresponding target

landmarks because of the large number of missing parts in the target.

During non-rigid registration, Laplacian deformation reduces the width

of the lower jaw of the reference to fit the target's lower jaw according

to the landmarks. This process moves the left and right landmarks of the

reference inward onto the positions of the corresponding target land-

marks. These movements, coupled with the C-shaped reference and

lack of correspondence of reference landmarks, cause the craniofacial

bones of the reference to shift to the right instead of reducing its width.

Consequently, a distorted skull is produced (Figure 2F).

To overcome this problem, we impose a mid-plane constraint on

Laplacian deformation as follows. Every reference skull model has

some landmarks called the mid-point landmarks that fall on the

mid-line of the skull. These mid-point landmarks form a plane called the

mid-plane (Figure 2D). Before deformation, the mid-plane is a vertical,

laterally symmetric plane. The mid-plane constraint states that after

deformation, the mid-plane should still be a vertical, laterally symmet-

ric plane. With this additional constraint, Laplacian deformation will

produce an undistorted result (Figure 2G).

Although the mid-plane stays vertical and laterally symmetric, the

model after deformation can still be laterally distorted (Figure 3C).

This happens when some reference landmarks on one side of the skull

have no corresponding points on the target. To overcome this problem,

we introduce the symmetry constraint, which constrains every sym-

metric pair of landmarks to remain symmetric after deformation. With

this constraint, Laplacian deformation will produce a symmetric and

undistorted result (Figure 3D).

Laplacian deformation21,35 applies the discrete Laplacian operator

L(pi) to estimate the surface curvature and normal at vertex i:

FIGURE 2 Effect of Laplacian deformation. A, C-shape model with 2 landmarks. B, Laplacian deformation of C-shape model with the bottom
landmark fixed and the left landmark moved to the right. C, Defective skull model with large missing parts. D, Reference model that is
disconnected on the right side like the C-shape model. The straight line denotes the symmetric mid-plane. E, Initial alignment. The reference is
white and the target is yellow. F, Registration of reference to target using ordinary Laplacian deformation produces a distorted result. G, Laplacian
deformation that preserves the vertical mid-plane produces an undistorted result

FIGURE 3 Laplacian deformation with the symmetry constraint. A, Reference model. B, Target model with missing facial bone. C, Laplacian
deformation with the mid-plane constraint produces a result whose right orbit (in the left side of the image) is distorted, although the mid-plane
remains vertical. D, Laplacian deformation with mid-plane and symmetry constraints produces a symmetric and undistorted result
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L(pi) =
∑
j∈i

wij(pi − pj) (5)

where i is the set of connected neighbours of vertex i. The weight

wij can be cotangent weight35 or equal weight wij = 1∕|i|. Equal

weight leads to simpler optimization equations. With equal weight, the

Laplacian operator becomes

L(pi) = pi −
1
i

∑
j∈i

pj. (6)

Laplacian deformation preserves the model's shape by minimizing the

difference of Laplacian operators L(p0
i
) before deformation and L(pi)

after it, which is ||L(pi) − L(p0
i
)||2. These differences for all n mesh ver-

tices are organized into a matrix equation: Lx = a, where L is a 3n × 3n

matrix that captures the Laplacian constraints, x is a 3n × 1 vector of

unknown positions xi of mesh vertices, x = [x⊤

1
· · · x⊤

n ]⊤, and a is a

3n × 1 vector that contains L(p0
i
) before deformation.

The mid-plane constraint is imposed as follows. Without loss of gen-

erality, let the skull model before deformation be oriented such that

the mid-plane is located at x = 0 and its surface normal is parallel to

the x-axis. Moreover, the landmark points coincide with some mesh ver-

tices. Then, the mid-plane constraint requires that the x-coordinates

of the mid-point landmarks remain as 0 after deformation, which con-

strains the mid-plane to remain vertical and laterally symmetric after

deformation. For a non-defective target skull, the mid-point landmarks

of a reference skull always have corresponding landmarks on the tar-

get. On the other hand, for a target skull with a large number of missing

or defective facial bones, it is impossible to place mid-point landmarks

on the missing or defective parts. In this case, some reference mid-point

landmarks will not have corresponding target landmarks. Then, the

mid-plane constraint has to be imposed on these reference mid-point

landmarks that do not have correspondence. THe mid-plane constraint

is organized into a matrix equation: Mx = 0, where M is a k × 3n matrix

and k is the number of mid-point landmarks without correspondence.

The entries in M that correspond to the x-components of mid-point

landmarks without correspondence are set to 1; all other entries

are set to 0.

The symmetry constraint is imposed as follows. For every pair (l, r)
of landmarks that are symmetric with respect to the mid-plane, which

is the y–z plane, their coordinates after deformation should have the

relationships: xl + xr = 0, yl − yr = 0 and zl − zr = 0. These relationships

can be organized into a matrix equation: Sx = 0, where S is a 3s × 3n

matrix and s is the number of symmetric landmark pairs. The entries in

S that correspond to xl, xr, yl and zl are set to 1; those that correspond

to yr and zr are set to −1; all other entries are set to 0.

The Laplacian constraint, the mid-plane constraint and the symmetry

constraint are combined together into the following objective function

to be minimized:

||Ax − b||2 =
‖‖‖‖‖‖‖
⎡⎢⎢⎣

L
M
S

⎤⎥⎥⎦ x −
⎡⎢⎢⎣

a
0
0

⎤⎥⎥⎦
‖‖‖‖‖‖‖

2

. (7)

The positional constraints of the corresponding points between the

reference and the target are organized into a matrix equation of the

form Cx = d, where C indicates the mesh vertices with positional

constraints and d contains the desired vertex positions. Without loss

of generality, we can arrange the mesh vertices with positional con-

straints as vertices 1 to have m < n. Then, C is a 3m × 3n matrix that

contains a 3m × 3m identity matrix and a 3m × 3(n − m) zero matrix:

C = [I3m 0]. Correspondingly, the top 3m elements of x are the mesh

vertices with positional constraints, the bottom 3(n − m) elements are

those without positional constraints, and d is a 3m × 1 vector of the

coordinates of the desired vertex positions. Then, Laplacian deforma-

tion with the mid-plane constraint and symmetry constraint solves the

following problem:

min
x

||Ax − b||2 subject to C x = d. (8)

That is, the Laplacian, mid-plane and symmetry constraints are soft

constraints whereas the positional constraints are hard ones.

This Laplacian deformation problem is an equality-constrained

least-squares problem, which can be solved using QR factorization35,36

as follows: C⊤ has QR factorization C⊤ = QR, where Q = [Q1 Q2] is

orthogonal and R = [R⊤

1
0⊤]⊤ is upper-triangular. Define vectors u

and v such that

x = Q

[
u
v

]
=
[

Q1 Q2

] [ u
v

]
. (9)

Then, the objective function of (8) becomes

||Ax − b||2 = ||AQ1u + AQ2v − b||2. (10)

Since C = [I3m0], the QR factorization of Q⊤ is

C⊤ =
[

I3m 0
0 I3(n−m)

] [
I3m

0

]
. (11)

That is,

Q1 =
[

I3m

0

]
, Q2 =

[
0

I3(n−m)

]
, R1 = I3m.

With QR factorization of C⊤, the positional constraint equation Cx = d

becomes

C x = R⊤Q⊤x = R⊤

[
u
v

]
= R⊤

1 u = d. (12)

The right-hand side of equation 12 yields I3mu = u = d. So,

Q1u =
[

I3m

0

]
u =

[
I3m

0

]
d =

[
d
0

]
, (13)

Q2v =
[

0
I3(n−m)

]
v =

[
0
v

]
. (14)

Organize the matrix A as [A1A2]. Then,

AQ1u = A1d, AQ2v = A2v. (15)

Then, the objective function (10) becomes

||A2v − (b − A1d)||2. (16)

Minimization of objective function (16) with linear least squares yields

v = (A⊤

2 A2)−1A⊤

2 (b − A1d). (17)

Then, the positions of the mesh vertices after deformation can be com-

puted as
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x = Q1u + Q2v =
[

d
v

]
. (18)

As d contains known desired positions, Laplacian deformation only

needs to solve for v, the coordinates of the mesh vertices without posi-

tional constraints after deformation. Therefore, Laplacian deformation

runs faster with an increasing number of positional constraints.

5 FLIP-AVOIDING INTERPOLATING
SURFACE

FAIS reconstructs the resultant model R given a reference model F,

a target model T and known correspondence C∗. C∗ is obtained from

manual marking of significant anatomical landmarks on F and T that

are adequately separated to ensure no crossing. FAIS is summarized in

Algorithm 1.

Step 1 rigidly registers the reference F to target T with known cor-

respondence C∗ to normalize their global size, location and orientation.

Step 2 orientates R and T for computing mid-plane and symmetry con-

straints.

Step 3 non-rigidly registers reference F to target T using Laplacian

deformation (LD), with known correspondence C∗ as the positional con-

straints, and sets the result R as the registered F. This step matches the

overall anatomical shape of R to that of T in order to improve correspon-

dence search in subsequent steps.

Steps 4 to 8 perform K iterations of non-rigid registration in small

steps. First, step 5 finds correspondence C from R to T using the first

correspondence search method, which restricts all ||v(p)|| to be no

longer than D1 (Section 3.2). Step 6 chooses a sparse subset C+ as fol-

lows. First, the upper bound D is set to the longest ||v(p)|| in C∗ ∪ C,

thus D ≤ D1. C+ is initialized with known correspondence C∗. Then,

each tuple (p,p
′ ) in C is checked for sparse distribution: if there is a

tuple (q,q
′ ) in C+ such that ||p − q|| ≤ 2D, the tuple (p,p

′ ) is discarded.

Otherwise, it is added to C+. This step ensures that all the reference

points in C+ are separated by a distance greater than 2D, thereby sat-

isfying the simple no-crossing condition. Step 7 non-rigidly registers

R to T, with each p in C+ moved by an amount (k∕K)||v(p)|| along v(p).
Thus, p is moved towards p

′
incrementally, allowing FAIS to recover

from possible wrong correspondence in subsequent iterations.

Step 9 finds correspondence C from R to T using the second corre-

spondence search method (Section 3.2). Step 10 removes crossings in

C∗ ∪ C as follows: first, the upper bound D is set to the longest ||v(p)||
in C∗ ∪ C, and the correspondence set C+ is initialized to C∗. Next, each

tuple (p,p
′ ) in C is checked according to the general no-crossing condi-

tion. If the condition is satisfied, the tuple is added to C+; otherwise, it is

discarded. This step obtains a much denser set of correspondence than

the sparse set in step 6 (Section 7.2). Finally, step 11 performs the final

registration of R to T with C+ as the positional constraints.

FAIS differs from non-rigid ICP,18,19 although they have similar itera-

tive structure. Non-rigid ICP performs locally affine registration of the

approximating surface, which has no surface flipping problem. On the

other hand, FAIS performs non-rigid registration of the interpolating

surface and needs to avoid surface flipping.

6 CLUSTERING OF REFERENCE MODELS

To reconstruct a target accurately, the shape of the reference model

used should be as close to the target as possible so that the reconstruc-

tion of defective parts matches its expected normal shape. To achieve

this goal, one can exhaustively try every reference candidate for the

same target and pick the reference model with the smallest reconstruc-

tion error. However, this exhaustive way of choosing a reference model

is time-consuming. Alternatively, it is possible to group the reference

models into a small number of clusters, and use the cluster prototypes

as the reference candidates. This will greatly speed up the process of

reference selection because the number of cluster prototypes is much

smaller than the number of reference models in total.

The most important components of a clustering algorithm are (1) the

distance measure between two items, and (2) the cluster prototype,

which is typically the average of the items in a cluster. In our applica-

tion, the skull models are mesh models constructed from patients' CT

images. The most natural distance d(S;R) between two mesh models

S and R is the error of registering R to S, which can be measured as

the average distance from the points on the registered R to the surface

of S. Since S and R have different mesh connectivities in general, the

difference d(S;R) is positive but non-symmetric.

The difference in mesh connectivity makes it impossible to compute

the average of multiple meshes by averaging the positions of their mesh

vertices. To compute the average in this way, it is necessary to first

resample the mesh models so that they have the same mesh connectiv-

ity. This resampling process is not only tedious but also time-consuming.

Therefore, a different definition of cluster prototype is required.

We define the cluster prototype Pj of cluster Cj as the model in Cj that

has the shortest average distance to all other models in Cj:

Pj = argmin
R∈Cj

1|Cj|
∑
S∈Cj

d(S;R). (19)



XIE ET AL. 7 of 14

This definition is a form of generalized mean. In fact, the vector mean

in vector space satisfies this definition of generalized mean, with the

squared error of the vector as the distance measure. This fact can be

proved as follows.

Proof. The average squared error of vi, i = 1, … , n, with respect

to a vector u is given by

1
n

n∑
i=1

||vi − u||2. (20)

Expanding equation (20) gives

1
n

n∑
i=1

(vi − u)⊤(vi − u) = 1
n

n∑
i=1

(v⊤

i vi − 2v⊤

i u + u⊤u). (21)

To obtain the minimal u, differentiate equation (21) with respect to

u and equate to 0, which yields

1
n

n∑
i=1

u = 1
n

n∑
i=1

vi. (22)

Therefore, the left-hand side of equation (22), which is u, is equal

to the mean of vi.

With the distance measure and generalized mean given above, the

generalized k-means clustering algorithm for skull models can be sum-

marized as in Algorithm 2. After clustering, given a target model T, the

cluster prototype Pj that is nearest to T, measured in terms of distance

d(T;Pj), is the selected reference. We use k = 4 in the experiment.

7 EXPERIMENTS

7.1 Data preparation and PC configuration

Sixty-two 3D mesh models of non-defective skulls were constructed

from patients' CT images. Two of the non-defective skulls, one

with teeth and one without, were used as the reference models

(Figure 4A,B). Ten of the non-defective skulls were each used to syn-

thesize 5 types of defective skulls with different sizes and locations of

fractures (Figure 4C–G), giving a total of 50 defective testing skulls.

These synthetic skulls were generated by displacing bone fragments

in a way similar to real fractures. More specifically, types S1–S3 of the

synthetic skulls have increasing sizes of fractures; S1 and S5, as well as

S2 and S4, have roughly the same fracture size but different locations.

The 10 non-defective skulls served as the ground truth. The other 50

non-defective skulls were used to build an active shape model for per-

formance comparison. In addition, 6 skull models of trauma patients

with real fractures (Figure 8A) and 3 defective skull models with com-

plications (Figure 9A) were used for the reconstruction test. To evaluate

the robustness of FAIS, 5 non-defective skulls and 2 defective skulls

with dental artifacts were used for testing. Each of the above skull mod-

els had up to 56 landmarks manually placed on them. Landmarks on

defective parts were omitted because defective parts provide wrong

information that may mislead the reconstruction algorithms.

The programs were implemented in Mathematica, which used Intel®

Math Kernel Library (MKL) to solve linear systems. All tests were run

on a PC with Intel i7-2600 CPU at 3.4 GHz and 8 GB RAM.

7.2 Dense correspondence

In this experiment, FAIS was tested in turn with Laplacian deforma-

tion and TPS as the non-rigid registration method (at steps 3, 7 and

11) on a normal testing skull. Figure 5A shows that FAIS with Lapla-

cian deformation finds more corresponding points than FAIS with TPS.

This is because the former is more accurate than the latter (Section 7.3).

During the iterative stage from step 4 to step 8, up to 90% of the cor-

responding points are rejected by the simple no-crossing condition. At

step 10, FAIS's general no-crossing condition accepts 80% of the mesh

vertices, amounting to about 74 000 corresponding points. In compar-

ison, existing methods such as11-14 use several tens to hundreds of

corresponding points, which are two orders of magnitude smaller than

that of FAIS. With comparatively sparser correspondence sets, existing

methods cannot achieve reconstruction accuracy as high as FAIS.

Figure 5B shows that Laplacian deformation runs faster and TPS

runs slower with increasing number of hard constraints. This is because

Laplacian deformation's running time is dependent on the number of

mesh vertices without positional constraints (Section 4), whereas TPS's

is dependent on the number of mesh vertices with positional con-

straints. TPS cannot run in step 9 because its memory requirement

exceeds available memory. FAIS's execution time is roughly proportional

to the number of iterations K.

FAIS with Laplacian deformation takes about 3 minutes to run, with

Laplacian deformation requiring two-thirds of the running time and

correspondence search and flip avoidance taking one-third. Therefore,

most of the computation time is spent on performing Laplacian defor-

mation. On the other hand, TPS deformation alone takes a total running

time of more than 8 minutes for the first 20 iterations. In other words,

TPS runs more than 4 times slower than Laplacian deformation. More-

over, a test was performed with another linear algebra library called

Armadillo. The test result shows that Armadillo runs 10 times slower

than Intel MKL.

7.3 Reconstruction of synthetic fractured skulls

This experiment compares the reconstruction accuracy of FAIS with

other skull reconstruction algorithms on synthetic fractured skulls

given the same reference model. Fifty synthetic fractured skulls were

used, whose fractured parts were marked manually. The normal skulls
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FIGURE 4 Skull models. A, Reference model without teeth. B, Reference with teeth. C–G, Synthetic skull models of types S1–S5 with fractures of
different sizes and locations generated from normal skull models. Defective parts are marked in pink

(A)

(B)

FIGURE 5 Correspondence search. A, Amount of correspondence at
various iterations. B, Running time is dependent on the amount of
correspondence

used to generate the synthetic skulls served as the ground truths. Each

testing skull was reconstructed by the following algorithms:

• FAIS: The proposed method with symmetry constraints.

• FAIS-0: The proposed method without symmetry constraints.24 This

is achieved using Laplacian deformation without mid-plane and sym-

metry constrains.

• LD: Laplacian deformation with mid-plane and symmetry con-

straints.

• TPS-1: Same as steps 1–3 of FAIS except TPS is used as the non-rigid

registration algorithm; similar to Deng et al.,11 Lapeer and Prager12

and Rosas and Bastir.13

• TPS-2: Same as steps 1–8 of FAIS with K = 1 except TPS is used as

the non-rigid registration algorithm; similar to Zhang et al.14

• ASM-F: Active shape model using FAIS-0 for resampling.

• ASM-T: Active shape model using TPS-2 for resampling; as in Zhang

et al.6

To construct the active shape model (ASM), 50 normal skull mod-

els were resampled so that they had the same number of vertices and

the same mesh connectivity. Two resampling methods were used to

test their effects on ASM's reconstruction accuracy, namely FAIS-0

and TPS-2. For ASM-F and ASM-T, resampling was achieved by reg-

istering a normal reference to each normal skull using FAIS-0 and

TPS-2, respectively. Since the models used to construct ASM are all

non-defective, FAIS-0 gives the same results as FAIS. The reconstruc-

tion results of these algorithms were recorded. Reconstruction errors

were measured between the reconstructed models and their ground

truths. Reconstruction errors of the defective and non-defective parts

of testing skulls were measured separately.

Table 1 summarizes the reconstruction errors of synthetic fractured

skulls. FAIS has the smallest reconstruction errors EN on non-defective

parts and ED on defective parts among all the skull reconstruction

algorithms. Its EN is slightly larger than zero because its flip-avoiding

method removes some conflicting positional constraints. Thus, only

those mesh vertices with positional constraints are registered exactly

with zero error.

FAIS's reconstruction accuracy on non-defective parts is not affected

by the size and location of defective parts. This is indicated by the

roughly identical EN across all different types of synthetic skulls. FAIS's

reconstruction accuracy on defective parts is also not affected by the

location of defective parts. This can be seen from the roughly identical

ED between S1 and S5 or between S2 and S4, which have similar size of

defective parts. On the other hand, FAIS's reconstruction accuracy on

defective parts is affected by the size of the defective parts, as indicated

by the increasing ED from S1 to S3, and from S5 to S3.

7.3.1 FAIS vs. FAIS-0

Both FAIS and FAIS-0 have the smallest reconstruction errors on

non-defective parts (Table 1). Their EN are comparable but FAIS is more

robust than FAIS-0, which is indicated by its smaller standard deviation.

Moreover, FAIS has smaller reconstruction errors ED on the defective

parts than does FAIS-0, because it yields more symmetric and normal
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TABLE 1 Mean reconstruction errors and standard deviations (in mm) of synthetic fractured skulls

(a) Errors EN of non-defective parts

S1 S2 S3 S4 S5 All

FAIS 0.13 ± 0.04 0.12 ± 0.03 0.13 ± 0.05 0.12 ± 0.03 0.13 ± 0.03 0.13 ± 0.04

FAIS-0 0.12 ± 0.03 0.11 ± 0.03 0.19 ± 0.14 0.12 ± 0.03 0.12 ± 0.03 0.13 ± 0.07

LD 2.31 ± 0.41 2.31 ± 0.43 2.70 ± 0.57 2.37 ± 0.42 2.37 ± 0.39 2.41 ± 0.46

TPS-1 3.41 ± 1.00 3.43 ± 1.03 2.83 ± 0.69 3.17 ± 0.86 3.12 ± 0.89 3.19 ± 0.89

TPS-2 1.50 ± 0.86 1.40 ± 0.79 0.79 ± 0.32 1.14 ± 0.63 1.12 ± 0.54 1.19 ± 0.68

ASM-F 1.30 ± 0.18 1.30 ± 0.16 1.41 ± 0.26 1.33 ± 0.19 1.29 ± 0.17 1.32 ± 0.19

ASM-T 2.01 ± 0.41 2.00 ± 0.40 1.98 ± 0.32 1.89 ± 0.36 1.87 ± 0.32 1.95 ± 0.35

(b) Errors ED of defective parts

FAIS 0.20 ± 0.05 0.52 ± 0.19 1.42 ± 0.37 0.49 ± 0.10 0.18 ± 0.04 0.56 ± 0.49

FAIS-0 0.19 ± 0.03 0.55 ± 0.08 1.85 ± 0.65 0.59 ± 0.11 0.23 ± 0.05 0.68 ± 0.68

LD 2.14 ± 0.52 2.18 ± 0.47 3.96 ± 0.96 2.15 ± 0.48 2.10 ± 0.51 2.51 ± 0.94

TPS-1 3.26 ± 0.90 3.19 ± 0.79 2.76 ± 0.57 2.89 ± 0.64 2.84 ± 0.78 2.99 ± 0.74

TPS-2 1.54 ± 0.65 1.57 ± 0.48 1.51 ± 0.25 1.37 ± 0.30 1.18 ± 0.45 1.43 ± 0.46

ASM-F 1.27 ± 0.18 1.44 ± 0.22 1.61 ± 0.23 1.44 ± 0.18 1.25 ± 0.14 1.40 ± 0.23

ASM-T 1.96 ± 0.30 2.09 ± 0.27 2.10 ± 0.20 1.96 ± 0.25 1.81 ± 0.25 1.98 ± 0.27

FIGURE 6 Sample reconstruction results of synthetic fractured skulls. Fractured parts of synthetic target skulls are shown in pink. Column 2
illustrates ground truths and columns 3–9 show reconstruction results of various algorithms
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reconstruction than FAIS-0. Thus FAIS is more accurate and robust than

FAIS-0 for skull reconstruction.

Figure 6 shows sample reconstruction results. Except for the third

model, which has a very large number of fractures, FAIS's reconstructed

models look identical to the ground truths. The surfaces of recon-

structed models are smooth. FAIS's reconstructed models are all sym-

metric and normal. In comparison, FAIS-0's reconstructed models of

the targets in rows 2, 3 and 4 are laterally distorted. Nevertheless, the

reconstructed models are visually similar to the non-defective parts

of the targets. Therefore, FAIS-0 can be used for resampling of the

non-defective parts although it is not as accurate as FAIS for recon-

struction of defective parts.

7.3.2 FAIS vs. other non-rigid registration algorithms

Compared to the other non-rigid registration algorithms such as LD,

TPS-1 and TPS-2, FAIS has significantly smaller reconstruction errors

EN on the non-defective parts (Table 1) because it applies a very dense

set of correspondence and iterative incremental registration. On the

other hand, LD, TPS-1 and TPS-2 use many fewer corresponding points.

Moreover, they have larger reconstruction errors ED on the defective

parts than FAIS.

The reconstructed models of FAIS look visually close to the ground

truths. In comparison, those of LD, TPS-1 and TPS-2 do not look

like their corresponding ground truths. Therefore, FAIS is more

accurate than the other non-rigid registration algorithms for skull

reconstruction.

7.3.3 FAIS vs. active shape model

ASM-F has smaller reconstruction errors EN and ED than ASM-T. This is

expected because ASM-F uses FAIS-0 for mesh resampling, and FAIS-0

has significantly smaller reconstruction errors EN than TPS-2, which is

used by ASM-T for mesh resampling. ASM-F's smaller reconstruction

errors are also attributed to its smaller resampling errors. The resam-

pling error was measured as the mean distance between the resampled

skull and its corresponding normal target skull. The resampling errors

of ASM-F and ASM-T are 0.26±0.23 mm and 2.11±1.10 mm, respec-

tively. ASM-F's resampling is more accurate and stable than those

of ASM-T. This means that FAIS-0 is a better choice than TPS-2 for

(A) (B) (C)

FIGURE 7 FAIS vs. ASM-F. A, Target. B, Superimposition of the
non-defective parts of the target (white) and the reconstruction of
FAIS (blue). C, Superimposition of the non-defective parts of the target
(white) and the reconstruction of ASM-F (blue)

model resampling. For the reconstruction of defective parts, ASM-F has

smaller ED than LD, TPS-1, TPS-2 and ASM-T. But its EN and ED are much

higher than those of FAIS.

FAIS's reconstruction errors EN are about 10 times smaller than

those of ASM-F and ASM-T (Table 1). Its reconstruction errors ED are

about 3 times smaller than those of ASM-F and ASM-T. Figure 6 shows

that FAIS's reconstruction is close to the ground truths, whereas those

of ASM-F and ASM-T are not. Figure 7 shows that the reconstruction

of FAIS fits the non-defective parts of the target very tightly, which is

indicated by the alternating colour pattern on the superimposition. On

the other hand, the reconstruction of ASM-F does not fit the target

well. This is because FAIS registers an interpolating surface to the tar-

get whereas ASM generates an approximating surface. This suggests

that ASM-F can be used to estimate the overall normal shape of the tar-

get but cannot be used for accurate reconstruction. In comparison, FAIS

is more accurate for skull reconstruction.

7.4 Reconstruction of real defective skulls

This experiment compares the reconstruction accuracy of FAIS, FAIS-0

and ASM-F, the 3 most accurate algorithms in the previous tests. These

3 algorithms were tested on 6 real defective skulls T1–T6 with post-op

models and 3 defective cases T7–T9 with complications (Figure 9) but

without post-op models. The test procedure was the same as that in

Section 7.3. Discrepancy between the reconstructed parts generated

by the algorithms and the post-op models was measured as the average

distance between their surfaces.

Figure 8 shows the reconstruction results in order of increasing dis-

crepancy for FAIS. T2 and T4 have minor fractures of the cheek bones.

For these cases, the reconstruction results of FAIS and FAIS-0 are visu-

ally similar. For T1, T3 and T5, which are severely fractured, the recon-

struction results of FAIS-0 are laterally distorted because it does not

incorporate symmetry constraints. In comparison, FAIS's reconstruc-

tion results of these models look normal and symmetric. T6 has a defec-

tive left frontal bone due to a tumour. Again, FAIS-0's reconstruction

is not symmetric whereas FAIS's reconstruction is more symmetric. In

all cases, ASM-F's reconstruction results look normal and symmetric

but they do not match their corresponding targets well. Instead, all its

reconstruction results look more like the reference model (Figure 4A).

Table 2 shows that the discrepancy between FAIS and post-op mod-

els is small for T1 to T5. Its discrepancy for T6 is large because the

surgically operated left frontal-sinus bone looks flat and the top of the

left eye socket is lower than the right side. The post-op model shows

that it is very difficult for the surgical operation on this skull to achieve

good results without a good reference model. Our reconstructed model

could have improved the surgical outcome if it was available during

the surgical operation. The discrepancies of FAIS-0 are larger than

those of FAIS. In particular, its discrepancy for T1 is very large because

its reconstruction of T1 is highly distorted (Figure 8). ASM-F's dis-

crepancies of T3–T6 are slightly smaller than those of FAIS. But as

discussed above, ASM-F's reconstruction does not match the target

shape well.

Figure 9 illustrates the reconstruction of FAIS, FAIS-0 and ASM-F on

real defective skulls with complications. Target T7 is the defective skull
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(A) (B) (C) (D) (E)

FIGURE 8 Reconstruction results of real defective skulls with post-op models. Defective parts of targets are shown in pink. B, Post-ops. C–E,
Reconstruction results of various algorithms

TABLE 2 Discrepancy (in mm) between reconstructed parts
generated by the algorithms and the post-op models

T1 T2 T3 T4 T5 T6

FAIS 1.88 1.93 2.13 2.54 2.85 5.84

FAIS-0 8.44 2.74 2.42 2.94 4.70 5.31

ASM-F 3.22 4.43 1.71 2.39 2.48 5.15

of a 3-year-old child with a fractured orbital bone. Even though its shape

differs greatly from that of the reference model, which is an adult skull,

the reconstructed model of FAIS is still symmetric and normal. On the

other hand, the reconstructed model of ASM-F looks different from

the target. Target T8 is the defective skull of a patient who had a very

severe orbital tumour. FAIS is able to reconstruct a normal and symmet-

ric skull that fits the non-defective parts well. In comparison, FAIS-0's

reconstruction is laterally distorted, and ASM-F's reconstruction looks

reasonable for this case. Target T9 is a deformed skull with sunken facial

bone. The shape of its cranium is also deformed. With almost no infor-

mation to utilize, FAIS can still reconstruct a skull with normal facial

bone. In comparison, FAIS-0's reconstruction is laterally distorted, and

ASM-F's reconstruction is highly distorted because the abnormal shape

of the target is not captured by the statistical model.
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(A) (B) (C) (D)

FIGURE 9 Reconstruction results of real defective skulls with complications. Post-op models are not available. Defective parts of targets are
shown in pink. B–D, The reconstruction results of various algorithms

7.5 Robustness against outliers

CT images that are used to construct 3D skull models can contain

radiation artifacts caused by metallic dental implants37 that are very

difficult to remove. Thus, 3D skull models segmented and constructed

from CT images often contain metal artifacts (Figure 10). This test

evaluates the robustness of FAIS and FAIS-0 against outliers such as

metal artifacts. The test was performed on 7 actual skulls with metal

artifacts. Among the testing skulls, 5 were normal and the other 2

were fractured. A normal skull with teeth (Figure 4B) was used as

the reference model. For this test, the algorithms differ slightly such

that the first, instead of the second, correspondence search method

was applied on the mesh vertices in the teeth region at step 9 of

the algorithms.

Test results in Figure 10 show that the first correspondence

search is robust enough to exclude metal artifacts as possible cor-

responding points. Consequently, FAIS and FAIS-0 do not regis-

ter the reference to the metal artifacts, and the reconstruction

results are free of metal artifacts. Some of the teeth reconstructed

by FAIS and FAIS-0 are slightly distorted because the skull mesh

models have insufficient resolution to model each tooth accurately.

For the normal target skulls (Figure 10(M1–M5)), the reconstruc-

tion results of FAIS and FAIS-0 look visually similar. For the defec-

tive target skulls (Figure 10(M6,M7)), the reconstruction results

of FAIS are more symmetric and normal than those of FAIS-0,

which is consistent with the test results on the reconstruction of

synthetic skulls.

7.6 Effect of reference model

This experiment investigates how the selection of reference models

affects FAIS's reconstructed results. The 5 synthetic skulls of type

S3, which are the most difficult cases, were used as target mod-

els, denoted as D1–D5. We measured FAIS's reconstruction errors

ED of defective parts given the reference models generated in the

following ways.

• Ideal. Among the 50 normal skulls, the model with the smallest ED is

used as the reference model. In practice, this method is not feasible

because ED cannot be measured without ground truths.

• Exhaustive. Among the 50 normal skulls, the model with the smallest

EN is used as the reference model. This method is feasible in practice.

• Best prototype. Among the 4 cluster prototypes, the one with the

smallest EN is used as the reference model.

• ASM-F's reconstruction. The reconstructed model of ASM-F is used

as the reference model.

Table 3 shows that, on average, the exhaustive method has a recon-

struction error close to that of the ideal method. The method that uses

the best prototype has a reconstruction error comparable to but larger

than that of the exhaustive method. In comparison, using ASM's recon-

structed model as the reference for FAIS results in the largest recon-

struction error on average. Compared to the test results in Table 1(b),

we can conclude that the reference model used for the tests that pro-

duce Table 1(b), which is chosen randomly, is better than the best proto-

type but slightly worse than the one selected by the exhaustive method.
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FIGURE 10 Robustness against metal artifacts. M1–M5,
Non-defective skulls with metal artifacts. M6–M7, Defective skulls
with metal artifacts. Defective parts are shown in pink

Therefore, in practice, it is advisable for the surgeon to visually choose

a reference that is as similar to the target as possible in order to achieve

accurate reconstruction.

TABLE 3 Effect of reference selection on FAIS's reconstruction errors
ED (in mm) of defective parts

D1 D2 D3 D4 D5 Mean

Ideal 1.28 1.35 1.14 1.11 1.01 1.18

Exhaustive 1.50 1.53 1.14 1.14 1.35 1.33

Best prototype 1.62 1.53 1.73 1.14 1.35 1.47

ASM-F's reconstruction 1.84 1.20 1.34 1.80 1.43 1.52

8 CONCLUSION

This paper has presented a novel method called FAIS for skull recon-

struction. It exploits the strength of a non-rigid registration algorithm

with interpolating surface while overcoming its weakness using a

flip-avoiding technique. With an interpolating surface that regards

positional constraints as hard constraints, FAIS can register a reference

model to the non-defective parts of a target model exactly. It uses an

iterative incremental registration method to obtain a very dense set

of corresponding points for non-rigid registration. The flip-avoidance

technique removes only about 20% of the mesh vertices for dense

correspondence. FAIS's correspondence set is 2 orders of magnitude

larger than those of existing methods such as TPS and ASM. As a

result, FAIS can achieve practically zero error for the reconstruction

of non-defective parts and smaller errors for the reconstruction of

defective parts than existing methods. By incorporating symmetry

constraints, it can produce more symmetric and normal results than

other methods in reconstructing defective skulls with large numbers of

defects. It is robust against severe outliers such as radiation artifacts in

CT due to dental implants. As for existing methods, FAIS's reconstruc-

tion accuracy depends on how similar the reference model is to the

target model. Proper reference selection can improve reconstruction

accuracy in practice.
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