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Method and System For Detection of Bone Fractures

Field

This invention relates to automated screening and detection of bone fractures in x-ray
images.

Background

Many people suffer from fractures of the bone, particularly elderly people. According to the
findings of the International Osteoporosis Foundation, the lifetime risk for osteoporotic
fractures in women is 30% — 40% worldwide, and 13% in men. The number of hip fractures
could rise from 1.7 million worldwide in 1990 to 6.3 million by 2050. Most dramatic increase
is expected to occur in Asia during the next few decades. According to World Health

Organization, osteoporosis is second only to cardiovascular disease as a leading health
care problem.

In clinical practice, doctors and radiologists in large hospitals rely mainly on x-ray images to
determine the occurrence and the precise nature of the fractures. Visual inspection of x-rays
for fractures is a tedious and time-consuming process. Typically, the number of images
containing fractures constitutes a small percentage of the total number of images that the
radiologists have to inspect. For example, in a sample of x-ray images of femurs collected,
only about 10% of them are fractured. After looking through many images containing

healthy femurs, a tired radiologist has been found to miss a fractured case among the many
healthy ones.

Some methods of bone fracture detection utilise non-visual techniques to detect fractures.
This includes using acoustic pulses, mechanical vibration and electrical conductivity.

Furthermore, existing methods of bone fracture detection mostly fail to consider that the
shapes and sizes of the bones are not identical. Even among healthy bones, there are still
differences in the appearance because they are naturally-occurring objects. Age and
gender also contribute to the difference in the appearance of the bones. One standard
method of dealing with size variation is to normalise the size of the bones in the captured x-
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ray images for visual inspection. This method is, however, unsatisfactory because it can

either remove important texture information (if the image is shrunken) or introduce noise
and artifacts (if the image is enlarged).

Summary

In accordance with a first aspect of the present invention there is provided a method for
detection of bone fractures using image processing of a digitised x-ray image.

The image processing may comprise extracting a contour of the bone in the digitised x-ray
image.

The extracting of the contour of the bone in the digitised x-ray image may comprise applying
a Canny edge detector to the digitised x-ray image.

The extracting of the contour of the bone in the digitised x-ray image may comprise applying
a snake algorithm to the digitised x-ray image.

Applying the snake algorithm to the digitised x-ray image may comprise creating a Gradient
Vector Flow (GVF).

The image processing may comprise an adaptive sampling scheme.

The adaptive sampling scheme may comprise identifying a bounding box around an area of
interest based on the extracted contour of the bone.

The bounding box may be divided into a predetermined number of sampling points.

A sampling region around the sampling points may be chosen to cover image pixel points
between the sampling points.

The image processing may comprise calculating one or more texture maps of the digitised
x-ray image and detecting a bone fracture based on respective reference texture maps.
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The texture maps may comprise a Gabor texture orientation map.
The texture maps may comprise a Intensity gradient direction map.
The texture maps may comprise a Markov Random Field texture map.

The image processing may comprise calculating one or more difference maps between the
respective texture maps calculated for the digitised x-ray image and the respective
reference texture maps.

The difference maps may be classified using one or more classifiers.
The difference maps may be classified using Bayesian classifiers.
The difference maps may be classified using Support Vector Machine classifiers.

The image processing may comprise determining a femoral shaft axis in the digitised x-ray
image; determining a femoral neck axis in the digitised x-ray image; measuring an obtuse
angle between the femoral neck axis and the femoral shaft axis; and detecting the bone
fracture based on the measured obtuse angle.

The method may further comprise calculating level lines from respective points on the

contour of the bone in the digitised x-ray image and extending normally to the contour to
respective other points on the extracted contour.

Determining the femoral shaft axis may be based on midpoints of the level lines in a shaft
portion of the contour of the bone.

Determining the femoral neck axis may be based on the level lines in femoral head and
neck portion of the contour of the bone.

In accordance with a second aspect of the present invention there is provided a system for
detection of bone fractures comprising means for receiving a digitised x-ray image; and
means for processing the digitised x-ray image for detection of bone fractures.
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In accordance with a third aspect of the present invention there is provided a system for
detection of bone fractures comprising a database for receiving and storing a digitised x-ray

image; and a processor for processing the digitised x-ray image for detection of bone
fractures.

Brief Description Of The Drawings

The accompanying drawings, which are incorporated into and constitute a part of the
description of the invention, illustrate embodiments of the invention and serve to explain the
principles of the invention. It is to be understood, however, that the drawings are designed
for purposes of illustration only, and not as a definition of the limits of the invention for which
reference should be made to the claims appearing at the end of the description.

Fig. 1a shows an x-ray image of a healthy femur with a normal neck-shaft angle illustrating
processing of a digitised x-ray image according to an example embodiment.

Fig. 1b shows an x-ray image of a fractured femur with a smaller-than-normal neck-shaft

angle illustrating processing of a digitised x-ray image according to an example
embodiment.

Fig. 2 shows an adaptive sampling grid utilised in an example embodiment of the present
invention.

Fig. 3a shows the Gabor texture orientation map of a healthy femur illustrating processing of
a digitised x-ray image according to an example embodiment.

Fig. 3b shows the Gabor texture orientation map of a fractured femur illustrating processing
of a digitised x-ray image according to an example embodiment.

Fig. 4a shows the intensity gradient direction at one location of an x-ray image of a human

femur illustrating processing of a digitised x-ray image according to an example
embodiment.



10

15

20

25

30

WO 2005/083635 PCT/SG2005/000060

Fig. 4b shows the intensity gradient direction at another location of the x-ray image of a

human femur illustrating processing of a digitised x-ray image according to an example
embodiment.

Fig. 5a shows the intensity gradient direction map of a healthy femur in an x-ray image
illustrating processing of a digitised x-ray image according to an example embodiment.

Fig. 5b shows the intensity gradient direction map of another healthy femur in an x-ray

image illustrating processing of a digitised x-ray image according to an example
embodiment.

Fig. 5¢c shows the intensity gradient direction map a fractured human femur illustrating
processing of a digitised x-ray image according to an example embodiment.

Fig. 5d shows a shaded circle, which is the reference for intensity gradient directions
illustrating processing of a digitised x-ray image according to an example embodiment.

Fig. 6 shows test results of femur fracture detection according to an example embodiment.
Fig. 7a shows subtle fractures at the femoral neck of a human femur in an x-ray image.

Fig. 7b shows subtle fractures at the femoral neck of another human femur in an x-ray
image.

Fig. 8a shows radius fractures near a human wrist in an x-ray image.
Fig. 8b shows radius fractures near another human wrist in an x-ray image.

Fig. 9 shows the test results of radius fracture detection according to an example
embodiment.
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Fig. 10 shows the schematic diagram of a computer system implementation according to an
example embodiment.

Fig. 11 shows a flow chart illustrating the processes implemented in the computer system of
Fig. 10.

Detailed Description

For illustration, the example embodiments of the present invention will be described by the
detection of femur fractures, as they are the most common types of fractures. Some pre-

liminary results on the detection of fractures of the radius near the wrist will also be
discussed.

An example embodiment of the present invention provides a computer system and method
for automated screening and detection of bone fractures in digital x-ray images. The system
can analyse digital x-ray images of the bones and perform the following tasks:

° Determine whether the bones are healthy or fractured, and compute confidence of
the assessment;

. Identify cases suspected of fractures and highlight the possible areas where
fractures may have occurred.

The steps involved are:

1. Read digital x-ray images stored in an external storage device.

2. Identify the regions of the images where the bones of interests are located.

3. Determine whether the bones of interests are fractured, and measure the confidence
of the assessment.

4, Mark the locations where fractures are suspected for images that contain possibly
fractured bones.

5. Display on an output device the results of the automated analysis, including but not
limited to

. whether the bones of interests are fractured, and the associated confidence;

) the locations of suspected fractures; and

. alerting the doctors to the suspected fractures.
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e i e

The method utilised in the example embodiment will be described in detail as follow. The

system utilised by the example embodiment will be discussed in the later part of this
description.

The example embodiment of the present invention adopts an approach in detecting
fractures of the femur and the radius by combining different detection methods. These
methods extract different kinds of features for fracture detection. They include neck-shaft
angle, which is specifically extracted for femur fracture detection, and Gabor texture,
Markov Random Field texture, and intensity gradient, which are general features that can be
applied to detecting fractures of various bones. Two types of classifiers are utilised, namely,
Bayesian classifier and Support Vector Machine.

The method of detecting fractures in the example embodiment can be divided into 3 stages:
(1) extraction of approximate contour of the bone of interest in the x-ray image, (2)

extraction of features from the x-ray image, and (3) classification of the bone based on the
extracted features.

In the example embodiment, the extraction of bone contour in stage 1 is performed using an

active shape model, supplemented by active appearance models at distinct feature points.

In more detail, the process of identifying or extraction of the bone contour (i.e. the locations
of the bones of interests) consists of applying (1) the Active Shape Model to determine the
initial prediction of the outer contour of the bones, (2) the Active Appearance Model to
determine accurately landmark locations along the initial prediction of the bone contour and
followed by (3) refinement of the bone contour to determine the exact contour of the bone.

In the example embodiment of the present invention, the refinement of the bone contour is
performed using an lterative Closest Point method. Alternatively, the refinement of the bone
contour can be performed using an Active Contour (i.e., Snake) method.

In stage 2, the process of fracture detection after the locations of the bone of interest are
identified consists of a combination of methods. Each method is based on the extraction of
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a particular image feature and each method examines fracture based on different aspects
of the x-ray image.

In the example embodiment, four different types of image features are extracted for fracture
detection: (1) femoral neck-shaft angle, (2) Gabor texture, (3) Markov Random Field (MRF),
and (4) intensity gradient. The first feature is specifically extracted for detecting the
distortion of shape due to severe femur fracture. The other features are applied to detect

fractures of various bones or different types of fractures, for example, MRF is typically
utilised for detecting radius fractures.

The methods for extracting the four different types of image features are described in detail
as follow.

The first method is based on measuring the femoral neck-shaft angle. With reference to
Fig. 1a and 1b, the method comprises (1) determining the femoral neck axis 102, (2)
determining the femoral shaft axis 104, and (3) measuring the obtuse angle 106 made by
the neck axis and the shaft axis. Images with neck-shaft angle 106 smaller than a pre-
specified angle are flagged as suspected fractured cases. For example, assuming the pre-
specified neck-shaft angle 106 of a healthy femur is as shown in Fig 1a, Fig. 1b shows the
case of a bone fracture with neck-shaft angle 106 smaller than the pre-specified angle. The

difference between the measured angle and the pre-specified angle is regarded as a
measure of the confidence of the assessment.

The algorithm for extracting the contour of the femur in the example embodiment consists of
a sequence of processes. First a modified Canny edge detector is used to compute the
edges from the input x-ray image of the hip followed by computing a Gradient Vector Flow
field for the edges. Next, a snake algorithm combined with the Gradient Vector Flow will
move the active contour, i.e., the snake, to the contour of the femur.

In more detail, the Canny edge detector takes as input a gray scale image and produces as
output an image showing the position of the edges. The image is first smoothed by
Gaussian convolution. Next, a simple 2D first derivative operator is applied to the smoothed
image to highlight regions of the image with high first derivatives. Using the gradient
direction calculated, the algorithm performs non-maxima suppression to eliminate pixels
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whose gradient magnitude is lower than its two neighbors along the gradient direction.
Finally these thin edges are linked up using a technique involving double thresholding.
Although Canny edge detector works well in detecting the outline of the femur, it may also
detects a large number of spurious edges close to the shaft. Such spurious edges may
affect the snake's convergence on the outline of the femur and are preferably removed.
Attempting to remove the spurious edges by increasing the smoothing effect will reduce
these spurious edges but the edge information at the femur head may also be lost.
Contributing to the problem is the fact that the femur head overlaps with the hip bones and
edge magnitudes of the femur head in this region are low.

The problem of preserving femur head edges and at the same time removing spurious
edges can be solved by incorporating information from the intensity image into the Canny
edge algorithm in the example embodiment. It was found that areas containing bones have
higher intensity than non-bone regions. Hence this information can be used to distinguish
spurious edges from femur head edges. The Canny edge detector with a small smoothing
effect is used to detect the femur head edges while spurious edges with both low intensity
value and low gradient magnitude values are removed.

In summary, a pixel is marked as an non-edge point in the example embodiment if

1) itis detected by Canny edge detector,
2) it has an intensity lower than a threshold I', and

3) it has an edge magnitude lower than the same threshold I'.

The threshold I' is a percentage value. In the example embodiment, a non-edge pixel must
have an intensity and an edge magnitude lower than 90% of the total pixels.

In example embodiment makes use of a snake to snap onto the contour of the femur
snakes are formulated as energy-minimizing contours controlled by two forces:

1) Internal contour forces which enforce the smoothness constraint.

2) Image forces which attracts the contour to the desired features, in this case, edges

Eose = IE w(W(8)) + Eumesl(W(s))ds

9
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Representing the position of the snake parametrically by v(s) = (x(s), y(s)), the energy of a

snake Egnake is a sum of the internal energy Eiy of the snake and the image energy Eimage.

A snake that minimize the energy functional Eg..e must satisfy the following Euler
equations:

aEimage =

Ox 0

WSS + &SSSS +

aEimage
ss + ssss + = 0
ys+ [y 3

Where x s and x ss¢s are the second and fourth derivatives of x, similarly for yss and yesss.

In the example embodiment, a gradient Vector Flow (GVF) was created to improve the
original active contour formulation. GVF is computed as a diffusion of the gradient vectors
of a gray-level edge map derived from the image.

The GVF field is defined as the vector field G(x, y) = (q(x, y)r(x, y)) that minimizes the
energy functional

i

£ =H,u(q% +q;%, +r3 +r)%)+lVE|[2|G—-VE||2dxdy

where E is an edge map E(x, y) derived from the image. Using calculus of variations, the
GVF can be found by solving the following Euler equations

;qu—(q —EJ% ——Ez) =0

10
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yvzr—(r—Eg —E2)=0

The snake algorithm is combined with the external force computed by the GVF to improve
the performance of snake. With the GVF snake, in the example embodiment, only a small
number of initialization points are needed to start the snake algorithm and successive

iterations of the algorithm will re-distribute the snake points more regularly along the
contours.

in the computation of femoral neck-shaft angle 106, lines that are normal to both sides of
the shaft contour, which are called the level lines, are computed from the contour of the
femur 108. The construction of the level lines is based on the normals of the contour points.
There are a number of ways to compute the normal for a point on the contour 108. In the
example embodiment, finite difference to estimate the derivative and hence derive the
normal direction is used. This technique uses a small number of points in the neighborhood

of the point of interest to derive the normal. It is sensitive to small changes in the neighbors'
positions of the points.

In another embodiment, with a dense sampling of points along the contour, a larger set of
points can be used to compute the normal at a point using Principal Component Analysis
(PCA). To compute the normal of a contour point, choose a neighborhood of points around
the point of interest. This set of points represents a segment of the contour and PCA is
applied to this segment of points. Given a set of points in 2D, PCA returns two eigen-
vectors and their associated eigenwvalues. The eigenvector with the largest ei'genvalue will

point in the direction parallel to this segment of points and the other eigenvector gives the
normal direction at the point of interest.

Once the normal for each point on the contour has been calculated, the set of level lines L
can be computed. The orientation of the femur shaft can be computed by extracting the
mid-points of the level lines on the shaft area of the contour 108. After finding the midpoints
of the shaft, the PCA algorithm is used to estimate the orientation of the midpoints in the
example embodiment. The eigenvector with the largest eigenvalue computed from the PCA
algorithm will represent the orientation of the shaft midpoints.

11
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The computation of femoral neck's orientation is more complicated because there is no
obvious axis of symmetry. The algorithm in the example embodiment consists of three main
steps. 1) compute an initial estimate of the neck orientation, 2) smooth the femur contour,
and 3) search for the best axis of symmetry using the initial neck orientation estimate.

The longest level lines in the upper region of the femur always cut through the contour of
the femoral head 109. Given this observation, an adaptive clustering algorithm is used in the
example embodiment to cluster long level lines at the femoral head 109 into bundies of
closely spaced level lines with similar orientations. The bundle with the largest number of

lines is chosen, and the average orientation of the level lines in this bundle is regarded as
the initial estimate of the orientation of the femoral neck.

The adaptive clustering algorithm is useful as it does not need to choose the number of
clusters before hand. The general idea is to group the level lines such that in each group,
the level lines are similar in terms of orientation and spatial position. The adaptive clustering
algorithm groups a level line into its nearest cluster if the orientation and midpoint of the
cluster is close. If a level line is far enough from any of the existing clusters, a new cluster
will be created for this level line. For level lines that are neither close nor far enough, they
will be left alone and not assigned to any cluster. With the adaptive clustering algorithm, it
ensures each cluster has a minimum similarity of R1 for the cluster orientation and minimum
similarity of R2 for the mid-pbints distance. The algorithm also ensures that the cluster

differs by a similarity of at least S1 and S2 for the orientation and mid-points distance
respectively.

Varying the values of R1, R2, S1 and S2 controls the granularity of clustering and the
amount of overlapping between clusters. The general idea of determining the axis of
symmetry is to find a line through the femoral neck 111 and head 109 such that the contour
of the head and neck coincides with its own reflection about that line. Given a point py along
the contour of the femoral head and neck, obtain the midpoint m; along the line joining
contour point p; and py+i. That is, one obtains a midpoint for each pair of contour points on
the opposite sides of px. Now, one can fit a line I through the midpoints m; to obtain a
candidate axis of symmetry. If the contour is perfectly symmetrical, and the correct axis of

12
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symmetry is obtained, then each contour point py; is exactly the mirror reflection of pys. The
best fitting axis of symmetry is a midpoint fitting line |; that minimizes the error.

The best fitting axis of symmetry is determined to obtain the best approximation of the neck
axis 102. Finally, the obtuse angle 106 between the neck and the shaft axes can be
computed. Classification of whether the bone.is healthy or not is based on a threshold of the
neck-shaft angle 106 that is learned from training samples.

In the example embodiment, the methods for extracting the other three image features,
Gabor texture, Markov Random Field (MRF) and intensity gradient, share a common trait:

adaptive sampling. As such, before the other methods are discussed in detail, adaptive
sampling will be discussed.

As discussed earlier, shapes and sizes of the bones are not identical in the x-ray images,
even among healthy bones. The standard method of dealing with size variation in computer
vision is to normalise the size of the bones in the images. However, normalising may cause
important texture information to be removed (if the image is shrunken) and introduce noise
and artifacts (if the image is enlarged). The example embodiment prevents this from
happening by using adaptive sampling to sample the features so that the sampled locations

in different images correspond to consistent locations in the normalised sampling grid
instead of scaling the x-ray images.

Let W and H denote the width and height of a bounding box 202 that contains the bone of
interest, e.g. the femur’s upper extremity, as shown in Figs. 2a and b. This bounding box
202 is automatically derived from the approximate bone contour extracted in stage 1
(extraction of bone contour) of the algorithm. In the example embodiment, the upper
bounding box side 202a is determined by a horizontal line through the uppermost point
203a on the bone contour 206. One left and right sides 202b, ¢ respectively of the bounding
box 202 are determined based on the vertical lines through the left- and rightmost points
203b, ¢ respectively on the bone contour 206. the lower bounding box side 202d is

determined by a horizontal line through the lowest point 203d of the lesser tronchanter 205
on the bone contour 206.

Let n, and ny denote the number of sampling locations along the x- and y- directions, which

13
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means the sampling method divides the whole bounding box into n, x n, regions, with ny <
number of horizontal image pixels, and n, < number of vertical image pixels in the example
embodiment. As a result of utilising adaptive sampling, the example embodiment needs to

extract only approximate bone contours. Therefore, slight variation of shape over different
patients can be tolerated.

FIG. 2 shows a grid 212 of sampling points e.g. 214 inside the bounding box 202 which fall
inside the bone contour 206. In the example embodiment, the features are extracted from
each sampling region around a sampling point that is determined using the adaptive sam-
pling method. The number of sampling points differ for different feature types. For example,
texture features extracted using Gabor filtering requires a larger sampling region and thus
fewer sampling points. On the other hand, e.g. extraction of intensity gradient requires
smaller sampling region, thus sampling can be performed at more sampling points. Markov
Random Field (MRF) texture model extracts features from medium-sized sampling regions

compared with the larger sampling regions for Gabor filtering and the smaller sampling
regions for intensity gradient extraction.

In the following, the methods of extracting image features using Gabor filters, Markov
Random Field (MRF) and intensity gradient respectively will be described in more detail.

Generally, in the example embodiment, each of the methods of extracting the three features
will first generate a feature map, which will be later used during classification to detect
whether an x-ray image shows a healthy bone or a fractured bone. The feature map is a
record of the visual features at various locations of the femur image.

After the feature maps are generated, a mean feature map is computed by averaging the
maps of sample healthy femur images. To determine whether a fracture exists, the
difference between the feature map of an input femur image and the mean feature map is
performed to produce a difference map. Then, during classification, the difference map is
classified through Bayesian math or Support Vector Machine (SVM) to determine whether a
fracture exists. In SVM, the distance between the difference map and the hyperplane
computed by the SVM is regarded as a measure of the confidence of the assessment.

One principle for fracture detection is that the trabeculae in bones are oriented at specific

14
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orientations to support the forces acting on them. Therefore, a fracture of the bone causes

a disruption of the trabecular pattern, which can be detected by extracting various feature
types.

In the example embodiment, by extraction of Gabor textures, the result is a Gabor texture
orientation map Mg = [u;] where u; is a unit vector that represents the Gabor texture
orientation at 2 Dimension grid location (i,j). The Gabor texture orientation map records the
orientations of the trabecular lines at various locations in the femur image. The orientations
are computed by filtering the image with a set of Gabor filters with different orientation
preferences. At each location, the orientation of the Gabor filter with the largest response
indicates the orientation of the trabecular lines at that location. Fig. 3a and 3b illustrate
examples of Gabor texture orientation maps generated based on Gabor filtering. Fig. 3a
shows the texture orientation map of a healthy femur 300 and Fig. 3b shows the texture
orientation map of a fractured femur 310. The short lines 302 plotted within the bone
contour regions 304 indicate the trabecular orientations.

Before extracting the intensity gradient feature in the example embodiment, the x—réy
images are normalised first so that their mean intensities and contrasts are similar. This is
followed by computing the intensity gradient.

One way of computing the intensity gradient at a point p is to fit a curve surface on the

intensity profile at and around p. Then, the intensity gradient is computed by applying
analytical geometry.

Another way, which is utilised in the example embodiment, is to apply an approximation
method as follows.

Given a region R(p) centered at p, search within the region for a point q whose intensity
difference dy, is the largest: '

dm (p) = max | I(p) = I(q") |
g'<R(p)
where I(p) and I(q)) denote Intensity at p and Intensity at arbitrary point q' within R(p)

15
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respectively.

Then, the intensity gradient direction g(p) is computed as the vector difference

9(p) = sgn(l(p)—l(q»j;(;’)

where sgn(.) is the sign function. As shown in Fig. 4a and 4b, the direction of g is defined to
point from higher intensity location (brighter region) 402 to lower intensity location (darker
region) 404 as shown in two sample zoom-in images (406 and 412) at different locations
(408 and 410) of the same x-ray image 400. Next, Intensity gradient direction can be
computed at each location (i,j) within the bone contour 414 to form the infensity gradient

direction map My = [u;]. Gradient direction outside the contour 414 is defined to be the null
vector.

Fig. 5a, 5b and 5c illustrate examples of intensity gradient direction maps. Fig. 5a and 5b
show two different x-ray images of healthy femurs and Fig. 5¢ shows a fractured femur. The
directions of each location in the intensity gradient direction maps is represented by

different shades of black, white and gray as depicted in the 2 Dimensional diagram ofa3
Dimensional shaded circle 502 in Fig. 5d.

Similar to the extraction of intensity gradient feature, intensity normalisation is also
performed in the example embodiment before extracting the Markov Random Field texture.

The Markov Random Field texture model describes the intensity of a pixel p as a linear
combination of those of its neighbors q:

Ipy= Y. ©EAp +q)+ (@)

qeR(p)

where 6(p,q) are model parameters and (q) represents noise, which is usually assumed to

be Gaussian noise of zero mean and constant variance. The model parameters 6(p,q) at
location p is then computed by minimizing the error E:
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2
E= [I(p)— Y, O@,0Ip+q) +e (co)}

qeR(p)

The model parameters 6(p,q) are then normalised to unit vectors u; to form the MRF texture

map My, = [uy], where p=(i,j). As for the other feature maps, entries outside the bone contour
are assigned the null vectors.

The three feature maps Gabor texture orientation map, intensity gradient direction map and A
MRF texture map discussed above are vector maps and thus not typically convenient for

classification of bones into classes of description such as fractured bones, healthy bones,
suspected fracture, faulty image ... etc. Therefore, in the example embodiment, they are
first converted into difference maps, which are scalar maps, before classification. For each
feature type, the mean feature map of all the healthy training samples of x-ray femur

images, M= [my], is first computed. The entry m; is the mean feature vector at position (ij)

in M anditis given by:

-1
if ¢ > n/2

n
Z”kz‘j
k=1

n
Z”kij
k=1

3
|

0 otherwise

where n is the number of training samples, uy; is the unit feature vector of sample k at
position (i,j), and c; is the number of samples with non-null feature vectors at position (i,j).

Furthermore, in the generation of the mean feature map, for a particular position (i,j), if
more than half of the training samples’ feature maps have null values at this position, it will
be considered as an insignificant position, which means this position does not contain
significant information for classification. Then, the corresponding entry in the mean feature
map will be assigned the null vector 0. This situation usually occurs near the boundary
contour of the bone because of slight shape variation among different images. By setting

the map entries at these positions to 0, the effect of slight shape variations on classification
can be removed.
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Now, the difference map V = [v;] for all the training samples can be computed. Each entry v;
indicates the difference between the image’s feature map and the mean feature map at the
same position (i,j). v; is governed by:

0 ifuij=mi,-=0

Vi

1 -] u- my | otherwise

A v; value that is close to 0 indicates a slight difference between the image’s feature map
and the mean feature map at the same position (i,j), and a large v; would indicate a large
difference. As the mean feature map is computed over a collection of different healthy train-
ing samples, a randomly selected image of a healthy bone should have a feature map that
is very similar to the mean feature map. Therefore, the difference map of the randomly
selected image of a healthy bone is expected to have mostly small values. On the other
hand, in an image of a fractured bone, there will be some disruption of the trabecular
pattern caused by the fracture. So its feature map will be very different from the mean

feature map at some positions, thus its difference map is expected to have some large
values.

In the next stage, classification of bones for an x-ray image will be performed based on the
values of the difference map. In the example embodiment, at the step of classification, two

classifiers are applied on the difference maps to classify the test samples, 1) Bayesian and
2) Support Vector Machine (SVM).

For the Bayesian method, the sets of healthy and fracture training samples’ difference maps
are each modeled by a multivariate Gaussian function, which are used to estimate the
conditional probabilites P(x|healthy) and P(x|fracture), where x denotes a sample’s
difference map. It was found that, in practice, the a priori probabilities P(healthy) and
P(fracture) are not identical. For example, P(healthy) is roughly 0.88 and P(fracture) is 0.12
for the femur images in our collection. Applying Bayes' rule, we obtain

P(x| class)P(class)
P(x)

P(class | x) =

18



10

15

20

25

30

WO 2005/083635 PCT/SG2005/000060

where class is either healthy or fractured. The denominator P(x) is the same for both
P(healthy|x) and P(fracture|x) and so can be ignored. Thus, sample x can be classified as
fractured if P(healthy|x) is smaller than P(fracture|x).

For the second method, Support Vector Machine is used for classification. The objective of
SVM can be stated succinctly as follow:

Given the training set {(xi,di)},.,, where d; is the class of feature vector x; find
the optimal hyperplane, in terms of weights w and bias b, that satisfies
diw'x+b)=1fori=1,..,n
T
and minimizes (w)=w w/2.

The optimal weights w are given by a set of Lagrange muiltipliers a;:
w= Z GidiXi

The training vectors x; with non-zero q; are the support vectors.

For practical applications, which are typically nonlinearly separable, the example
embodiment solves the classification problem in a high-dimensional space where there is a
better chance of achieving linear separation. This is accomplished by applying a nonlinear
function @(x) to map the vector x in an n-dimensional input space to an m-dimensional

feature space, m > n. Then, the optimal hyperplane in the m-dimensional feature space is
given by:

wox)+b=0

The nonlinear function ¢(x) is a kernel function of the form Ki(x)= K(x,xi) where x; are the
support vectors. Then, the optimal hyperplane in the feature space becomes:
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Y adK(xx)+b=0

And the decision function f(x) becomes

f(X)= > adK(xx)+b

i

For efficient computation, the kernel functions must satisfy the so-called Mercer's Theorem.
These kernel functions include:

1. polynomial:
T P
K(x,x:) =(x x; + 1)
where p is a constant.

2. Gaussian or Radial Basis Function:

K(x,xi) = exp L_ "x_‘_x_uz_]
’ 2
g

n

where g is the standard deviation of the Gaussian and n is the number of training
samples.

3. hyperbolic tangent:
T
K(x,xi) = tanh(Box xi+ B1)

where B, and B4 are constants and noting that Mercer’s theorem is satisfied only
for some values of B, and B;.
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The following describes the experiments and results of a practical implementation of an
example embodiment of the present invention for bone fracture detection. In the practical
implementation of the example embodiment, the number of sampling locations for the
adaptive sampling method was set as shown in table 1 below,

Gabor IG MRF (femur) MRF (radius)
Ny 12 28 16 8
ny 14 32 24 15

Table 1

where MRF: Markov Random Field model, I1G: intensity gradient and Gabor and IG were
extracted only from femur images. Recall that ny and n, denotes the humber of sampling

locations along the x- and y-directions and there exists ny x ny regions in the bounding box
containing the bone of interest.

For classification, optimal values of the Radial Basis Function (RBF) parameter and
weighting factors were determined by experimentation on the training samples. The RBF
with parameter ¢ = 2 was chosen as the kernel function because RBF kernel yields better
classification results. Furthermore, different weighting factors were assigned to the errors
associated with the training samples, as this was useful for encoding different significant
levels of the training samples, and for handling imbalanced number of positive and negative
training samples. The weighting factor of the healthy femurs was set as 15 and that of the
fractured femurs was set as 100. The weighting factor of the fractured femurs was

purposely set to a higher value because in a typical practical situation there were much
fewer fractured samples than healthy samples.

In one experiment, 432 femur images were obtained from a local public hospital, and were
divided randomly into 324 training and 108 testing images. The percentage of fractured
images in the training and testing sets were kept approximately the same (12%). In the
training set, 39 femurs were fractured, and in the testing set, 13 were fractured.

Fig. 6 shows the table of results derived from the experiment above. Six different classifiers

were trained: neck-shaft angle with thresholding (NSA) 618, Gabor texture with Bayesian
classifier 620 and SVM 622, Intensity Gradient Direction (IGD) with Bayesian classifier 602
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and SVM 624, and Markov Random Field texture with SVM 604. After training, they were
applied on the testing samples and three performance measures were computed:

1) fracture detection rate 606: the number of correctly detected fractured
samples over the number of fractured samples,

2) false alarm rate 626: the number of wrongly classified healthy samples over
the number of healthy samples,

3) classification accuracy 608: the number of correctly classified samples over
the total number of samples.

Fig. 6 illustrates that individual classifiers have rather low fracture detection rate 606,
particularly IGD with Bayesian classifier 602 and MRF with SVM 604. However, due to the
nature of their methods, each of them can detect some fractures that are missed by the
other classifiers. So, by combining all the classifiers, both the fracture detection rate 606

and classification accuracy 608 can be improved significantly. It was found that the following
combinations yield good performance:

. "1-of-5" 610: A femur is classified as fractured if any one of the five
classifiers, except MRF with SVM 604, classifies it as fractured.
. "1-of-6" 612: A femur is classified as fractured if any one of the six classifiers

classifies it as fractured.

. "2-of-6" 614: A femur is classified as fractured if any two of the six classifiers
classify it as fractured.

. "2-of-4" 616: A femur is classified as fractured if any two of the following foqr
classifiers classify it as fractured: neck-shaft angle method 618, Gabor texture with

Bayesian classifier 620, Gabor texture with SVM 622, and intensity gradient direction
with SVM 624.

The "1-of-5" method 610 has the highest fracture detection rate 606 of 100%, which means
every fracture can be detected by at least one of the classifiers. These detected fractures
include very subtle fractures. Examples of subtle fractures in two different images of the
femoral neck can be seen marked out by white ellipses 702 and 704 in Fig. 7a and 7b
respectively. The test results in Fig. 6 show that the six classifiers can indeed complement
each other. The "1-of-6" method 612 also has a fracture detection rate 606 of 100% but a
slightly higher false alarm rate 626 of 11.4%, resulting in a slightly lower overall
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classification accuracy 608 of 88.9%. This is due to the lower classification accuracy 608 of
MRF with SVM 604 compared to most of the other methods. The 2-of-6 method 614 has the
best overall performance of high fracture detection rate 606 (92.2%), low false alarm rate
626 (1.0%), and high classification accuracy 608 (98.2%). The "2-of-4" method 616 has no

false alarm at all, at the expense of lower fracture detection rate 606 (76.9%) and slightly
lower classification accuracy 608 (97.2%).

Another experiment on detecting fractures of the radius near the wrist was also performed
using MRF texture model together with SVM classifier (604 in Fig. 6).

145 wrist images were obtained from the same local public hospital, and were divided
randomly into 71 fraining and 74 testing images. In the training set, 21 radius bones were
fractured whereas 23 were fractured in the testing set. Fig. 8a and 8b show examples of
radius fractures marked out in white ellipses 802 and 804.

Fig. 9 shows the performance of the classifier on the testing samples. ‘left’ 902 indicates left
wrist and ‘right’ 904 indicates right wrist and ‘overall’ 906 indicates the average results of the
left and right wrist detection. As in Fig. 6, three performance measures, fracture detection
rate 908, false alarm rate 910 and classification accuracy 912 are gauged. Interestingly,
MRF with SVM (604 in Fig. 6) performed quite well in detecting radius fractures although it
did not perform as well in detecting femur fractures. The reason could be that the fractures
of the radius near the wrist are visually more obvious than those at the femoral neck, which
can be very subtle (e.g. Fig. 8). It is expected that other feature-classifier combinations are
able to complement MRF with SVM (604 in Fig. 6) for detecting radius fractures as well.

The example embodiment described above describes the detection of bone fractures in x-
ray images. A suite of methods that combine different features and classification techniques
have been developed and tested. Individual classifiers in the example embodiment can
complement each other in fracture detection. As a result, by combining the individual
classifiers, both fracture detection rate and classification accuracy can be improved

significantly in preferred embodiments. Embodiments of the invention may be used in
fracture detection for all kinds of bones.

In the described embodiments, adaptive sampling is used for the extraction of the features
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for classification. Adaptive sampling can adapt to the variation of size over different images.
Another advantage of the adaptive sampling method is that it requires the extraction of only
approximate bone contours. Therefore, it can also tolerate slight variation of shape over
different patients, and does not require very accurate extraction of the bone contours.

Additionally, the described embodiments may be extended to fracture detection in the
presence of growth plates of for example, the radius bone. Growth plates are a feature of
the natural growing process of the radius. In some cases, growth plates can be in presence
together with fractures of the radius further away from the wrist.

Fig. 10 shows the system view of the computer system implementation of an example
embodiment of the present invention. The computer 1200 reads in digital x-ray images from
an external storage device 1202, analyses the images, and displays the results on an output
device 1204. The analysing of the images refers to the 3 stages of the method of detecting
fractures in the example embodiment: (1) extraction of approximate contour of the bone of
interest, (2) extraction of features from the x-ray image, and (3) classification of the bone
based on the extracted features, as described earlier.

Fig. 11 is a flow chart illustrating the flow of processes in the computer (1200 in Fig. 10). In
step 1300, the computer (1200 in Fig. 10) reads in an x-ray image. Next, in step 1302, the
computer (1200 in Fig. 10) identifies the locations of the bones of interests. This
corresponds with the stage of extraction of the approximate contour of the bone of interest,
described in the example embodiments above.

In step 1304, the computer (1200 in Fig. 10) determines whether fractures exist in the
bones of interests, based on the analysis described in the example embodiments above. If
fractures exist, the areas of suspected fractures are marked out in step 1306. This is

followed by measuring the confidence of the assessment of the suspected fractures in step
1308.

If fractures do not exist, the confidence of the assessment that no fractures exist is
measured in step 1308. For example, for a newly processed image, the features described
above are extracted and classified using Bayesian method and SVM. For Bayesian method,
the probability P(fracture|x) is used as a confidence measure in the example embodiment.
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For SVM, the distance of the image's feature map to the hyperplane is used as a
confidence measure in the example embodiment.

After the confidence of the assessment is measured, the analysis results are displayed on,
for example, a computer monitor connected to the computer (1200 in Fig. 10) in step 1310.
In addition, the analysis results such as those relating to the suspected fractures are alerted

to the people examining the x-ray images (e.g. doctors) through manual alerts by the user
of the system or electronic alerts such as email.

It will be appreciated by a person skilled in the art that numerous variations and/or
modifications may be made to the present invention as shown in the specific embodiments
without departing from the spirit or scope of the invention as broadly described. The present

embodiments are, therefore, to be considered in all respects to be illustrative and not
restrictive.
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Claims

1. A method for detection of bone fractures using image processing of a digitised x-ray
image.

2. The method as claimed in claim 1, wherein the image processing comprises
extracting a contour of the bone in the digitised x-ray image.

3. The method as claimed in claim 2, wherein the extracting of the contour of the bone

in the digitised x-ray image comprises applying a Canny edge detector to the digitised x-ray
image.

4. The method as claimed in claims 2 or 3, wherein the extracting of the contour of the

bone in the digitised x-ray image comprises applying a snake algorithm to the digitised x-ray
image.

5. The method as claimed in claim 4, wherein applying the snake algorithm to the
digitised x-ray image comprises creating a Gradient Vector Flow (GVF).

6. The method as claimed in any one of claims 1 to 5, wherein the image processing
comprises an adaptive sampling scheme.

7. The method as claimed in claim 6, wherein the adaptive sampling scheme

comprises identifying a bounding box around an area of interest based on the extracted
contour of the bone.

8. The method as claimed in claim 7, wherein the bounding box is divided into a
predetermined number of sampling points.

9. The method as claimed in claim 8, wherein a sampling region around the sampling
points is chosen to cover image pixel points between the sampling points.
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10. The method as claimed in any one of the preceding claims, wherein the image
processing comprises calculating one or more texture maps of the digitised x-ray image and
detecting a bone fracture based on respective reference texture maps.

11.  The method as claimed in claim 10, wherein the texture maps comprise a Gabor
texture orientation map.

12. The method as claimed in claims 10 or 11, wherein the texture maps comprise a
Intensity gradient direction map.

13. The method as claimed in any one of claims 10 to 12, wherein the texture maps
comprise a Markov Random Field texture map.

14. The method as claimed in any one of claims 10 to 13, wherein the image processing
comprises calculating one or more difference maps between the respective texture maps
calculated for the digitised x-ray image and the respective reference texture maps.

15. The method as claimed in claim 14, wherein the difference maps are classified using
one or more classifiers.

16. The method as claimed in claim 15, wherein the difference maps are classified using
Bayesian classifiers.

17. The method as claimed in claims 15 or 16, wherein the difference maps are
classified using Support Vector Machine classifiers.

18. The method as claimed in claim 1, wherein the image processing comprises:
determining a femoral shaft axis in the digitised x-ray image;
determining a femoral neck axis in the digitised x-ray image;
measuring an obtuse angle between the femoral neck axis and the femoral shaft
axis; and

detecting the bone fracture based on the measured obtuse angle.
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19. The method as claimed in claim 18, comprising calculating level lines from
respective points on the contour of the bone in the digitised x-ray image and extending
normally to the contour to respective other points on the extracted contour.

20. The method as claimed in claim 19, wherein determining the femoral shaft axis is
based on midpoints of the level lines in a shaft portion of the contour of the bone.

21. The method as claimed in claims 19 or 20, wherein determining the femoral neck
axis is based on the level lines in femoral head and neck portion of the contour of the bone.

22. A system for detection of bone fractures comprising:
means for receiving a digitised x-ray image; and

means for processing the digitised x-ray image for detection of bone fractures.

23. A system for detection of bone fractures comprising:
a database for receiving and storing a digitised x-ray image; and

a processor for processing the digitised x-ray image for detection of bone fractures.
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Continuation of Box No: ITL

The international application does not comply with the requirements of unity of invention because it does not relate to
one invention or to a group of inventions so linked as to from a single general inventive concept. In coming to this
conclusion the International Searching Authority has found that there are two inventions:

1. Claims 2-5, directed to a method for detecting bone fractures in an X-ray image. The extraction of
contours from the image is a first “special technical feature.”

2. Claims 6-9, directed to a method for detecting bone fractures in an X-ray image. The use of adaptive
sampling is a second “‘special technical feature.”

3. Claims 10-17, directed to a method for detecting bone fractures in an X-ray image. The calculation and
use of texture maps is a third “special technical feature.”

4. Claims 18-21, directed to a method for detecting bone fractures in an X-ray image. The measuring of an
angle between the femoral neck and shaft axes is a fourth “special technical feature.”

The above groups of claims all depend from claim 1, however this claim is entirely generic and cannot contain any
“special technical features” uniting the groups. (The features of claim 1 are also disclosed in the documents cited in the
search report.) Since none of the idenfified technical features are common to all the above groups of claims,a
“technical relationship” between the inventions, as defined in PCT rule 13.2, does not exist. Accordingly, the
international application does not relate to one invention or to a single inventive concept.

However, the inventors’ own prior publications, which disclose the first and fourth inventions, were quickly located,
and no further searching was required for those inventions. The remaining groups of claims (the second and third
inventions) were able to be searched with little additional effort, therefore no additional search fees were requested.
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This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information.

Patent Document Cited in Patent Family Member
Search Report ‘
US - 2003215119 CN 1504931 DE 10321722 EP 1426903
FR 2839797 Jp 2004000609 JP 2004174232

US 2003215120

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.
END OF ANNEX

Form PCT/ISA/210 (patent family annex) (January 2004)
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