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Abstract. Studies of interactions between protein domains and ligands
are important in many aspects such as cellular signaling. We present
a knowledge-guided approach for docking protein domains and flexible
ligands. The approach is applied to the WW domain, a small protein
module mediating signaling complexes which have been implicated in
diseases such as muscular dystrophy and Liddle’s syndrome. The first
stage of the approach employs a substring search for two binding grooves
of WW domains and possible binding motifs of peptide ligands based on
known features. The second stage aligns the ligand’s peptide backbone to
the two binding grooves using a quasi-Newton constrained optimization
algorithm. The backbone-aligned ligands produced serve as good start-
ing points to the third stage which uses any flexible docking algorithm
to perform the docking. The experimental results demonstrate that the
backbone alignment method in the second stage performs better than
conventional rigid superposition given two binding constraints. It is also
shown that using the backbone-aligned ligands as initial configurations
improves the flexible docking in the third stage. The presented approach
can also be applied to other protein domains that involve binding of
flexible ligand to two or more binding sites.

1 Introduction

Protein domains are the fundamental units of tertiary structure of many pro-
teins. One of the most important functions of protein domains is to bind specific
ligands to assemble intracellular signaling networks to perform distinct biological
functions. The number of defined protein domains has expanded considerably in
recent years.

Studies of interactions between protein domains and their ligands are crucial
for deeper insight of the binding affinities involved. With this vital understand-
ing target prediction of novel domain-binding ligands would be possible, allowing
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for subsequent cloning and expression. Determination of possible target ligands
by laboratory experimental techniques alone is a known bottleneck requiring in-
tensive consumption of time and resources. Therefore computational techniques
are needed to effectively simulate domain bindings.

Many protein docking algorithms have been developed to solve the problem.
Two broad classifications [10] of docking algorithms are rigid docking and flexible
docking. Rigid docking algorithms solve a simpler version of the protein docking
problem termed bound docking by reconstruction of a protein complex from the
bound structures of the two proteins that constitute the complex [5, 8, 14, 19, 23,
27, 28]. Docking is framed as a rigid alignment problem of two rigid objects with
complementary shapes. Flexible docking algorithms solve the general protein
docking problem termed unbound or predictive docking by prediction of binding
of two proteins in their free or unbound states [7, 9, 12, 16, 18, 20, 22, 26]. This
problem regards one or both proteins as flexible objects to account for significant
conformational shape changes which occur during protein interactions. A flexible
molecule often presents a very large number of degrees of freedom posing great
difficulty for the flexible docking problem.

Flexible docking should be used to predict possible binding and potential
novel targets for protein domains as the correct conformations of novel targets
are usually unknown. Generally, this remains a very difficult and challenging
task. Fortunately, known binding site characteristics of protein domains can be
used to help solve the difficult docking problem.

The knowledge of binding sites of protein domains is very useful for predicting
possible ligand bindings. General flexible docking algorithms often make use of
the binding site information. However, what information to use and how to use it
for effective and accurate flexible docking is a challenge. For example, AutoDock
[20] requires the user to specify a bounding box around the protein binding site
in which an optimal ligand conformation is searched for. The amount of binding
site information used in AutoDock is minimal and thus not very effectively used.

This paper presents an approach for docking protein domains and flexible
ligands using known binding site information as the constraints. Our approach
uses known binding site knowledge to first search for the protein domains and the
ligand residues recognized by the domains. Then the ligand’s peptide backbone
is aligned to the domains based on the binding constraints. Finally, existing
algorithms can be used to perform flexible docking, with the backbone-aligned
ligands as the initial configuration. To be specific, we apply the approach to WW
domains as an application example in this paper.

2 WW Domains

WW domains are present in signaling proteins found in all living things. They
have been implicated in signal mediation of human diseases such as muscu-
lar dystrophy, Alzheimer’s disease, Huntington’s disease, hypertension (Liddle’s
syndrome) and cancer [3, 11, 24, 25]. WW domains are distinguished by the char-
acteristic presence of two signature tryptophan residues (W) that are spaced 20–



Table 1. Residue sequences of sample WW domains and ligands.

Group PDB WW domain sequence Ligand sequence

I 1EG4 HFLSTSVQGPWERAISPNKVPYYINHETQTTCWDHPKMTELYQ KNMTPYRSPPPYVPP

II/III 2DYF GSWTEHKSPDGRTYYYNTETKQSTWEKPDD GSTAPPLPR

IV 1PIN KLPPGWEKRMSRSSGRVYYFNHITNASQWERPSGNSSSG

22 amino acids apart (Table 1). They are known to recognize proline-containing
peptide ligands and they share similarities with other proline recognition do-
mains such as SH3 and EVH1 domains [17, 29].

WW domains are classified into four groups [11] based on ligand specificity.
Group I binds to ligands containing Proline-Proline-‘Any amino acid’-Tyrosine
(PPxY) motif (Table 1). Group II binds to ligands containing Proline-Proline-
Leucine-Proline (PPLP) motif (Table 1). Group III recognizes Proline-rich seg-
ments interspersed with Arginine (R) residues. Group IV binds to short amino
acid sequences containing phosphorylated Serine or Threonine followed by pro-
line. Recent studies show that Group II and III WW domains have very similar or
almost indistinguishable ligand preferences, suggesting that they should be clas-
sified into a single group [15]. Our study focuses on the first three groups of WW
domains, as fewer Group IV samples are available in RCSB Protein Data Bank
(PDB) [2]. Examples of WW domains and their corresponding ligand amino acid
sequences are presented in Table 1.

Group I and II/III WW domains have two binding grooves that recognize
ligands [24]. Group I WW domains contain the Tyrosine groove, Group II/III
WW domains contain the XP2 groove and both groups contain the XP groove. A
Tyrosine groove is formed by three residues, Ile/Leu/Val, His, and Lys/Arg/Gln,
and it recognizes Tyrosine (Y) residue of the ligand. An XP groove is formed by
Tyr/Phe and Trp residues whereas an XP2 groove is formed by Tyr and Tyr/Trp
residues. Both recognize Xaa-Pro (P), including Pro-Pro, segments of the ligand.
It is to be noted that the grooves are formed by non consecutive residues in the
amino acid sequence because the WW domain protein folds in 3-D to give rise
to the grooves (Fig. 1).

3 Related Work

Flexible docking algorithms can be classified into three categories. Rigid docking
with refinement methods perform rigid docking of the proteins followed by refine-
ment of their side chains [7, 9, 12, 16, 26]. By applying side chain refinement, side
chain flexibility can be accounted for to improve docking results. The method
of [9] performs optimization of both backbone displacement and side chain con-
formations based on simulated annealing Monte Carlo. The methods of [7, 26]
apply biased probability Monte Carlo minimization of the ligand-interacting side
chains while [16] uses energy minimization. The algorithm in [12] uses side chain
rotamers and rigid body minimization to relax the interfaces of docking results.
These methods handle side chain flexibility but not backbone conformational
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Fig. 1. WW domain proteins and ligands. (a) 1EG4: Group I WW domain complexed
with β-dystroglycan peptide. (b) 2DYF: Group II WW domain complexed with a pep-
tide ligand with PPLP motif. Gray: proteins containing WW domains, blue: Tyrosine
groove, green: XP/XP2 grooves, red: ligands, yellow: groove-binding residues of ligands.

changes. To handle backbone flexibility, HADDOCK [6] performs rigid-body
docking followed by refinement of both the backbone and the side chains using
simulated annealing based on molecular dynamics (MD). Biochemical and bio-
physical interaction data such as chemical shift perturbation data resulting from
NMR titration experiments are used so it is not a general docking algorithm.

Incremental construction algorithms place ligand fragments one at a time at
the binding sites of the binding protein [18, 22]. They require the knowledge of
binding sites to place ligand fragments at the sites. Their computation speed
while satisfactory for smaller ligands remains unsuitable for large ligands.

Energy minimization methods apply optimization algorithms to search for
the ligand conformation with minimum binding energy [13, 20]. The objective
is to determine the ligand conformation with minimal binding energy. Various
optimization algorithms can be applied such as simulated annealing, Monte Carlo
and genetic algorithms. In particular AutoDock [20] uses a hybrid Lamarckian
genetic algorithm to optimize an empirical energy function that includes van der
Waals potential, hydrogen bonding, Coulombic electrostatics and desolvation.
The computational cost of such an energy function is very high. So the number
of degrees of freedom is often limited to reduce the search space in practice.

4 Knowledge-Guided Protein Docking

The 3 stages in our approach for docking WW domains and flexible ligands are
binding groove and motif search, backbone alignment and flexible docking.

4.1 Binding Groove and Binding Motif Search

Given a WW domain protein with known group classification (Group I or Group
II/III). The two types of binding grooves presented in the WW domain are also
known. Each binding groove is formed by residues in a special pattern (Table 2).
Residues which form the binding grooves are determined by applying a substring
search on the WW domain’s amino acid sequence.



Table 2. Residue patterns of WW domain binding grooves.

Binding groove Pattern Example

Tyrosine groove I H K 1EG4: ...WERAISPNKVPYYINHETQTTCW...

L R

V Q

XP groove Y W 1EG4: ...WERAISPNKVPYYINHETQTTCW...

F

XP2 groove Y Y 2DYF: ...WTEHKSPDGRTYYYNTETKQSTW...

W

From the binding grooves, the corresponding ligand motifs (PPxY or PPLP)
are also known. Ligand residues forming possible motifs recognized by the bind-
ing grooves on WW domains are determined by a substring search applied on
the ligand’s amino acid sequence.

4.2 Backbone Alignment

Our backbone alignment method performs flexible alignment of a ligand’s back-
bone to binding sites given the two binding grooves of a WW domain protein
and possible binding motifs of the ligand.

A ligand’s residue sequence is divided into 3 segments according to the bind-
ing motifs. As an example the ligand sequence of 1EG4 complex (KNMTPYR-
SPPPYVPP) is divided into KNMTPYRS, PPPY and VPP. The middle seg-
ment, an instance of the PPxY motif, is flanked by two residues recognized by
two binding grooves of the WW domain. The backbone alignment method aligns
the backbone of the middle segment to the WW domain such that the flanking
residues fit the grooves. The knowledge of relative positions and orientations of
the two flanking residues with respect to the (grooves of) WW domain serve
as binding constraints. The other two segments and ligand side chain atoms are
added after backbone alignment.

The bond angle and bond length between two neighboring atoms are assumed
to be fixed, but the torsion angle of a rotatable bond can change to give rise to
various conformations of a protein molecule (Fig. 2(a)). Similar assumptions are
made in existing flexible docking algorithms.

Let ai, i ∈ {1, 2, ..., n}, denote the positions of the n atoms in the middle
segment of the ligand backbone (Figure 2(b)). The middle segment has n/3
residues because for each residue 3 backbone atoms N, Cα, and C are considered.
The two binding constraints specify the atom positions a0, a1, a2 and an−2, an−1,
an, which represent the two flanking residues. We denote the target positions
of these constrained atoms as {a∗0, a∗1, a∗2} and {a∗n−2, a

∗
n−1, a

∗
n}. To satisfy the

constraint on the first flanking residue, rigid transformation is applied on the
backbone to align {a0, a1, a2} to {a∗0, a∗1, a∗2}. To satisfy the constraint on the
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Fig. 2. Backbone model. (a) The bond angle bi and bond length li between atoms ai

and ai+1 are fixed. However torsion of the bond (indicated by arrow) can rotate atom
ai+2 to a new position. (b) Model of atoms in the backbone.

second flanking residue, we introduce the cost function

Cs =
1
2

2∑
j=0

‖an−j − a∗n−j‖2 (1)

Minimizing Cs minimizes the distances between the atoms in the last residue
and their target positions.

Since the backbone can twist but not bend or stretch, constraints on the bond
angles and bond lengths should be incorporated in order to correctly deform the
backbone to satisfy the constraints on the residues. To represent the stretching
and bending constraints we introduce the bond direction ei and bond length li
as illustrated in Figure 2(b). Since the first three atoms are fixed by constraints
after their rigid transformation we have, for i ≥ 3,

ai+1 = ai + li ei (2)

Thus, given {a0, a1, a2}, li and ei determine the positions of the other atoms.
So, Cs can also be expressed in terms of li and ei. Since a bond cannot stretch
li is fixed to ensure this condition. Also, ei · ei+1 corresponds to the bond angle
bi. So the bending constraint is encoded by the cost function

Cb =
1
2

n−2∑
i=1

‖ei · ei+1 − e0
i · e0

i+1‖2 (3)

where e0
i · e0

i+1 corresponds to the initial value of bond angle bi. Minimizing Cb

minimizes the change of the bond angles while keeping the bond lengths fixed.
The peptide bond nearly always has trans configuration since it is more en-

ergetically favorable than cis. The backbone omega torsion angles are limited
to values of 180◦ ± 5◦, except for proline residues. There is no limitation on the
omega torsion angle for proline because it can be in either trans or cis config-
uration. Additionally, WW domains often bind to proline-rich ligands and the
average distribution of phi, psi torsion angles for polyproline stretches (4 or more
consecutive prolines) is (−75◦,+145◦)± 10◦ [1]. Let ti denote the torsion angles



formed by atoms ai−1, ai, ai+1, ai+2. The torsional constraint is represented by
the cost function

Ct =
∑

ti is limited

‖ti − t0i ‖2 (4)

where ti = −atan2(‖ei‖ ei−1 · (ei× ei+1), (ei−1× ei) · (ei× ei+1)) and t0i denote
the preferred value of ti. Minimizing Ct minimizes the difference between torsion
angles and their preferred values.

The total cost function for backbone alignment is then

C = kb Cb + ks Cs + kt Ct (5)

where kb, ks and kt are weighting factors. In Eq. 5, the independent variables are
the ei’s. Varying ei changes the torsion angles but not the bond angles because
of Cb. Quasi-Newton algorithm [21] is applied to compute the optimal ei that
minimizes C to yield the aligned configuration of the ligand’s backbone.

4.3 Flexible Docking

In the second stage knowledge of WW domain binding specificity is effectively
used to obtain backbone-aligned ligands. In the third stage, such ligands are
used as starting configurations for flexible docking. Any existing flexible docking
algorithm can be employed in our approach.

5 Experiments

Known WW domain binding targets are used in experiments to test the per-
formance of our approach. 14 WW domain proteins complexed with proline-
containing ligands were collected from RCSB Protein Data Bank (PDB) [2].
Complexes 1EG4, 1K9R, 1K5R, 1JMQ, 1I5H, 2JO9, 2DJY form WW domain
Group I test cases and 2HO2, 2OEI, 2DYF, 1YWI, 2JUP, 2RLY, 2RM0 form
Group II/III test cases. The WW domain proteins were separated from their
ligands. Molecular Dynamics (MD) simulations were run using the AMBER
program [4] to simulate possible unbound ligand conformations.

Firstly, the backbone alignment algorithm was tested against rigid super-
position given binding site knowledge. Backbone alignment was performed 30
times for each test run. The results are ranked according to the cost computed
by Eq. 5 and only the top ranked alignments are recorded.

Rigid superposition was performed for each test case based on known binding
placements of the two ligand residues which bind to two binding grooves of WW
domain. Least squares fit is used to compute the rigid transformation of ligand to
minimize the distance between the two binding residues and their ideal positions
in binding sites.

Results evaluation was performed by comparing the backbone atoms N, Cα
and C between two binding constraints of the ligand with those in the bound
structure and computing the root mean square deviation (RMSD)(Table 3). The



Table 3. RMSD(Å) of backbone alignment results and rigid superposition results.

Test Case Backbone Alignment Rigid Superposition

1EG4 0.30 1.38
1K9R 0.13 1.77
1K5R 0.28 1.50
1JMQ 0.94 1.71
1I5H 0.42 1.23
2JO9 0.13 0.59
2DJY 0.30 1.02
2HO2 0.27 1.39
2OEI 0.34 1.13
2DYF 0.48 1.99
1YWI 0.19 3.41
2JUP 0.18 0.54
2RLY 0.17 2.19
2RM0 0.12 1.67

average RMSD of results produced by backbone alignment method is 0.30Å with
a standard deviation of 0.21Å and the average RMSD results produced by rigid
superposition is 1.54Å with a standard deviation of 0.72Å. It is obvious that our
backbone alignment method produced better results than rigid superposition.

Figure 3 visualizes the results of backbone alignment compared with rigid
superposition for 14 test cases. Ligand backbone conformations between two
binding constraints resulting from our method are very close to bound structures
with RMSD smaller than 0.5Å in all cases except 1JMQ. However the placements
produced by rigid superposition are far from optimal, producing good results for
only two test cases 2JO9 and 2JUP where input ligand shapes are similar to the
bound structures. When input ligand shapes differ greatly from native complexes
such as in test cases 1K9R, 1YWI, 2RLY and 2RM0 rigid superposition fails to
create good ligand placements satisfying the two binding constraints.

To further test our approach’s performance one of the most widely used flex-
ible docking programs, AutoDock was employed at the third stage of our scheme
in three experimental settings. In the first setting top-ranked ligand backbone
alignments generated by the second stage were used as initial configurations for
AutoDock. In the second setting ligand placements resulting from rigid super-
position in the previous experiment were used as initial configurations. In the
third setting, AutoDock was run using random initial ligand placements.

The configuration files for AutoDock were prepared using AutoDockTools.
The grid parameter files specifying the 3D search space were manually defined
to surround the two WW domain binding sites. The WW domain protein (re-
ceptor) was held rigid and the ligand flexible. As AutoDock limits the number
of torsional degrees of freedom to 32 AutoDockTools were used to select up to
32 bonds whose torsional rotations moved the most number of atoms. Several
parameters were adjusted for all settings in the same way. For example maxi-
mum number of energy evaluations was set to 25,000,000 and maximum number
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Fig. 3. The backbone alignment results (green) are closer than rigid superposition
results (red) to the bound structure (blue). (a) WW domain Group I test cases. (b)
Group II/III test cases.

of generations to 27,000. 50 AutoDock runs were performed for each test case
in each experimental setting and solutions were ranked according to their scores
evaluated by AutoDock.

Usually a solution with RMSD smaller than 2Å is classified as successful
docking and is considered a very good result. A solution with RMSD smaller
than 3Å is classified as partially successful. The docking is considered a success
if the top-scored solution is successful for each test case. We relaxed the criteria in
our evaluation, because most of our test cases possess a large number of degrees
of freedom which make the docking problem extremely difficult. We considered
the docking successful if one of the top 10 score-ranked solutions has RMSD
smaller than 3Å.

Table 4 lists RMSD results for all three experimental settings. Only 3 test
cases (1K9R, 2OEI and 1YWI) are successful in the second and third settings.



Table 4. RMSD analysis of AutoDock results in three experimental settings. The
minimum, maximum and average RMSD (Å) of the top 10 ranked solutions are listed.

Test Torsion Backbone Alignment Rigid Superposition Random Placement
Cases DoF min max avg min max avg min max avg

1EG4 41 4.05 8.73 6.79 4.36 11.56 7.22 4.62 9.66 6.52
1K9R 12 2.80 5.07 3.71 2.86 5.93 4.71 2.85 6.38 4.65
1K5R 24 3.33 6.20 4.43 3.73 7.60 5.69 3.81 7.30 5.29
1JMQ 24 3.46 6.08 4.84 3.80 5.71 4.78 3.14 8.00 4.91
1I5H 50 4.68 6.71 5.62 4.76 8.92 7.42 4.96 10.89 7.73
2JO9 28 3.52 6.86 5.08 4.30 7.62 5.92 4.16 10.53 7.06
2DJY 65 4.51 7.87 6.47 5.41 8.24 7.26 5.35 9.79 7.20
2HO2 13 3.73 6.45 5.15 3.03 5.75 4.57 3.74 7.70 5.38
2OEI 12 2.93 5.00 4.16 2.18 4.35 3.27 2.93 5.48 4.16
2DYF 25 2.68 6.72 4.41 3.74 7.85 5.43 3.14 5.32 4.04
1YWI 9 1.90 4.94 3.86 2.48 4.34 3.15 2.82 4.26 3.38
2JUP 16 2.59 5.93 4.39 4.10 6.06 5.36 3.41 6.87 4.88
2RLY 14 2.57 5.86 4.31 3.06 4.13 3.58 3.18 5.25 4.15
2RM0 15 3.43 5.49 4.51 3.19 5.55 4.31 3.06 5.53 4.09

They all have short ligands comprising of at most 9 amino acids and 12 torsional
degrees of freedom. The difficulty of docking small flexible ligands is relatively
low and AutoDock is able to produce good docking results. However for more
difficult test cases AutoDock failed to give successful docking solutions using
initial ligand structures produced by rigid superposition or using random ini-
tial ligand placement. Unsurprisingly AutoDock results in the second and third
settings are fairly close to each other. The reason is that rigid superposition is
unable to produce optimal ligand conformations that satisfy the two binding
constraints and thus initial ligand structures used by AutoDock in the second
setting are no better than the random ligand conformations used in the third
setting.

In the first setting 6 test cases (1K9R, 2OEI, 2DYF, 1YWI, 2JUP and 2RLY)
are successful. Besides the three simple test cases AutoDock in our approach suc-
ceeded in three more cases with larger numbers of torsional degrees of freedom.
In particular 2DYF has 25 torsional degrees of freedom which is difficult for
flexible docking. Among the 8 failed test cases the results in the first setting are
still better than those for the other two settings. In 5 out of the 8 failed cases
the average RMSD of top 10 ranked solutions are better than the second setting
and in 6 out of 8 cases better than the third setting. Clearly using our back-
bone alignment method to create initial ligand structures improves the overall
performance of AutoDock.

6 Conclusions

This paper presents a three-stage approach for docking of WW domains and
flexible ligands. The first stage searches for possible binding motifs of ligands



using a substring search. The second stage aligns the ligand’s peptide backbone
to binding grooves in WW domains using a quasi-Newton constrained optimiza-
tion algorithm. The cost function used in the optimization represents multiple
constraints on the alignment including positional constraints of ligand residues
at the binding grooves, bond angle constraints of backbone atoms and torsion
constraints of selected phi, psi as well as omega torsion angles of the backbone
atoms. Knowledge of WW domain binding grooves and ligand residues bound
to the grooves is used to set the cost function. As shown from the experimental
results, the backbone alignment method in stage two works better than con-
ventional rigid superposition. The backbone-aligned ligands produced in this
stage serve as good starting structures to the third stage which uses any flexi-
ble docking algorithm to perform docking. In the experiments AutoDock in our
approach yields better results than using rigid superposition to create initial
structures or using random initial ligands. The presented approach can also be
applied to other protein domains that involve binding of flexible ligands to two
or more binding sites. The optimal placement of ligands near binding sites pro-
duced by our backbone alignment stage can be used as good initial structures
for subsequent stages.
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