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Abstract

Estimation of the 3D pose of bones in 2D images plays
an important role in computer-assisted diagnosis and
surgery. Existing work has focused on registering a 3D
model of the bone to the images of the same bone. This
approach incurs a high health care cost on the patients, and
are prescribed only for certain procedures. Such computer
assistance is not routinely available to diagnostic and
surgical procedures that involve only x-ray images, limiting
the precision of the procedures. This paper proposes a
method for recovering 3D pose by registering a generic
3D model of a bone to single x-ray images of different
patients. It can perform 3D-2D registration with unknown
correspondence automatically. Comprehensive test results
show that the method is accurate and robust in recovering
the pose of femurs in the x-ray images of different patients.

1. Introduction

Estimation of the 3D pose of bones in 2D images
plays an important role in computer-assisted diagnosis and
surgery [2, 3, 4, 5, 6, 11]. Existing work has focused pri-
marily on the technique of registering a 3D model of a bone
to the images of the same bone, and recovering the 3D pose
from the rigid transformation that yields the best registra-
tion. In the case of computer-assisted surgery, for example,
the 3D model is often obtained from CT or MR scan of a
patient, and it is registered to intra-operative x-ray images
of the same patient.

This approach has a major limitation. CT and MR scans
incur a high health care cost on the patients, and are pre-
scribed only for certain procedures. Such computer assis-
tance is not routinely available to diagnostic and surgical
procedures that involve only x-ray images, limiting the pre-
cision of the procedures.

This paper describes a 3D pose estimation method that
registers a generic 3D model of a bone to single x-ray im-

ages of different patients (Section 3). It does not require
fiducial markers attached to the patients and it can perform
3D-2D registration with unknown correspondence automat-
ically. Moreover, it is much faster than the methods that
register digitally reconstructed radiographs (DRR) [4, 11]
generated from CT or MR volume to the target images.
Comprehensive tests were conducted to assess the perfor-
mance of the method (Section 4). Quantitative test results
show that the method is accurate and robust in recovering
the pose of proximal and distal femurs in x-ray images of
different patients. In contrast, most existing articles do not
report quantitative test results.

2. Related Work

A Survey of medical image registration methods is given
in [7]. Registration-based 3D pose estimation methods
can be categorized into two classes: feature-based and
appearance-based.

Feature-based methods [2, 3, 5] match geometric fea-
tures extracted from images to those in the 3D model. The
method of [2] represents a 3D model by its multiple 2D
views. Each view is represented by a set of primitive geo-
metric features of the bone’s contour such as corner points
and curve segments. 2D-2D matching is performed between
the model views and a target image, and the best-matching
view indicates the bone’s pose. Thus, the method’s accu-
racy is limited by the number of 2D views and the angular
resolution of the views.

The methods of [3, 5] compute 3D lines back-projected
from image contour points and minimize their signed dis-
tances from the 3D model’s surface. Both methods rep-
resent a volumetric 3D model as an octree, which uses a
significant amount of memory. The accuracy of the 3D rep-
resentation depends on the spatial resolution of the octree.
Computing signed distances of lines from model surface is
a time-consuming operation. Guéziec et al. [3] improved
the algorithms’s efficiency by first segmenting the surface
from the model.
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Appearance-based methods [4, 9, 10, 11] synthesize a
digitally reconstructed radiograph (DRR) from a patient’s
CT or MR volume. The matching error between the pixel
intensities of the DRR and the patient’s x-ray image is com-
puted. By determining the orientation that yields the best
match, the pose of the 3D model is recovered. Synthesizing
DRR is a time-consuming process. LaRose [4] developed a
more efficient method of generating DRR by directly pro-
gramming the graphics card.

Appearance-based methods have the advantage of not
requiring feature extraction from the target images. How-
ever, x-ray images often contain irrelevant contents (e.g.,
noise edges and surgical instruments) that can confuse these
methods. Moreover, a good initialization is necessary for
their successful application. Otherwise, they can be easily
trapped in the local minima of the objective function dur-
ing optimization. To mitigate the weakness, [6] synthesized
gradient image by projecting the gradients of the CT volume
onto the image plane, and performed feature-based registra-
tion before gradient-based registration.

The methods in [2, 3, 5] estimate femur pose whereas
[4, 11] estimate pelvis pose. The methods in [2, 4] register
3D model to single image whereas [3, 5, 6, 11] register to
two images. Only [3, 5, 9, 10, 11] have reported quantita-
tive test results. All these methods used 3D model and 2D
image of the same patient. In contrast, our method uses a
single generic 3D model to estimate the 3D pose of femurs
in the x-ray images of different patients. So, it has to be ro-
bust against shape variations across patients. To maximize
accuracy and robustness, 3D femur is represented as point-
and-mesh surface model, and is registered to the boundary
contour of the femur in the x-ray image. Compared to volu-
metric model, point-and-mesh model requires less memory
and can be acquired at very high resolution.

Note that the focus of our problem is to recover the pose
(i.e., rotation angles) of the bone in 2D images of different
patients. Hence, rigid registration is adopted. If non-rigid
registration is used, the 3D model can be deformed suffi-
ciently to yield a good match with the 2D image even if its
pose is incorrect. All the methods discussed above perform
rigid registration for the same reason.

3. 3D Pose Estimation by Registration

The inputs to the registration problem consist of the set
M of 3D points on the surface mesh of the 3D model and
the set C′ of 2D image points on the image boundary con-
tour. The set C ⊂ M of 3D model points X that project to
the bone contour in the image plane depends on the rotation
R, translation T, and projection P of the 3D model. So,
C is unknown and has to be determined by the registration
algorithm, along with the correspondence f : C → C′ be-
tween the two sets of points. Thus, 3D-2D registration with

unknown correspondence can be formulated as the problem
of determining the C, R, T, P, and f that minimize the
error E:

E =
1
|C|

∑

X∈C

‖P(RX + T) − f(X)‖2 . (1)

The optimal R gives the pose of the 3D model. Scaled-
orthographic projection is used in our implementation
because it simplifies the algorithm and the results obtained
are accurate enough (Section 4). An iterative Newton’s
method of root finding is used to solve the problem. The
algorithm can be summarized as follows:

3D Pose Estimation Algorithm

A. Extraction of image boundary contour (Section 3.1).

B. Automatic initialization:

1. Set initial fixed default pose (Fig. 3(D0) and
Fig. 4(E0)).

2. Scale the 3D model so that the width of the
bounding box of its 2D projection is equal to that
of the image boundary contour.

3. Translate the 3D model so that the center of its
2D projection coincides with that of the image
boundary contour.

C. Repeat until convergence:

1. Apply rigid transformation on the 3D model.

2. Project the 3D model onto the image plane.

3. Extract the boundary contour of the projected
model silhouette.

4. Perform 2D-2D registration with unknown cor-
respondence between model contour points and
image contour points and obtain point corre-
spondence between them (Section 3.2). This
in turn establishes the correspondence between
3D model points and image contour points (Sec-
tion 3.3).

5. Perform 3D-2D registration between 3D model
points and image contour points (Section 3.3),
and update rigid transformation parameters.

The algorithm is repeated until the error E does not change
significantly. As will be shown in Section 4, the algorithm
can converge to (local) optimal solutions for most test im-
ages. For a small number of cases in which the algorithm
does not converge, it can be terminated after running for a
fixed number of iterations. In all cases, the best registration
result is kept at each iteration, and it is reported as the final
registration solution when the algorithm terminates.
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(a) (b) (c) (d) (e)

Figure 1. Image contour extraction with interactive initialization. Red curves denote the model con-
tour, green dots denote fixed end points of contour segments, and blue dots denote movable feature
points. (a) Initial random placement of model contour. (b–d) Placement of various parts of the model
contour in sequence. (e) Final contour extracted by snake algorithm.

3.1. Image Contour Extraction

Accuracy of pose estimation depends on the accuracy of
the extracted contour. A fully automatic boundary extrac-
tion method may have a wider applicability, but tends to be
less accurate and robust. So, an easy-to-use semi-automatic
method is developed to extract image boundary contour ac-
curately.

A GUI is developed for the user to interactively initialize
the segmentation algorithm. The user can easily drag, scale,
rotate, and place a model contour to fit the contour in the im-
age. Dragging (i.e., translation), scaling, and placement are
achieved, respectively, by moving a computer mouse, turn-
ing the mouse wheel, and clicking the mouse button. As the
various parts of the model contour are dragged and placed
in sequence, they are automatically rotated (Fig. 1). The
initialization process is done in five steps (Fig. 1), each step
initializes a different part of the bone. The model contour
is automatically deformed as different parts are localized
in turn. After initialization, the snake algorithm is run to
extract the image contour. A test performed on the femur
images of 30 different patients yielded a mean error of 1.3
pixels and a standard deviation of 0.3 pixel compared to the
ground truth contours extracted manually by experts. This
result shows that the method is accurate in extracting femur
contours in images.

3.2. 2D-2D Registration

2D-2D registration with unknown correspondence is
solved using Iterative Closest Point (ICP) algorithm [1]. It
seeks the 2D scale s′, rotation matrix R′, and translation T′

that minimize the error E′:

E′ =
1
n

∑

i

‖s′R′xi + T′ − f ′(xi)‖2 (2)

X

p

(a) (b)

Figure 2. Finding 3D-2D correspondence. A
corresponding 3D model point is found by (a)
back projecting a 2D model contour point p
into 3D space, and (b) searching for the 3D
point X on the edge of a triangular face that
are nearest to the backprojection lines.

where xi is a point on the projected model contour, f ′ is
the closest-point function from the model contour points to
the image contour points, and n is the number of points.
Newton’s method of root finding is applied to minimize E′.

3.3. 3D-2D Registration

The 2D-2D registration performed in the previous stage
establishes a correspondence f ′ between the projected
model contour points and image contour points. This in turn
establishes the correspondence f between the 3D model
points that project to the 2D model contour points and the
image contour points. The 2D model contour is obtained by
projecting and rendering 3D model using OpenGL library.
It is necessary to determine the set C of 3D model points
that project to the 2D model contour. Given a 2D model
contour point, it is back-projected into 3D space and a 3D
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point on an edge of a triangular face of the 3D model that is
closest to the back-projection line is searched. It is a good
approximation of the intersection point between the back-
projected line (Fig. 2) and the 3D model surface. Search
efficiency is improved by performing range search in 3D
KD-tree [8]. Only a small number of distance computations
is required to find the nearest point to the back-projection
line.

In principle, when the correspondence f is known, it is
possible to directly compute the transformation matrices P,
R, and T. In our algorithm, the correspondence f ′ esti-
mated by 2D-2D registration in the first iteration is only an
initial guess. Just as for ICP algorithm [1], there are usu-
ally many wrong correspondences in the initial guess. So,
instead of directly computing the transformation matrices,
one optimization iteration is executed to update the transfor-
mation parameters. Then, the algorithm described in Sec-
tion 3 is repeated. In this way, the optimal C, f , P, R, and
T are determined iteratively.

4. Performance Tests

A generic 3D model of the femur was constructed by
scanning a real bone using a Minolta 3D scanner. Sixteen
views of the bone were registered and merged using the
mesh editing tool of Minolta scanner to form the complete
3D model. Comprehensive tests were performed to assess
the algorithm’s robustness and accuracy in recovering 3D
pose from single input images.

4.1. Robustness Tests

Our pose estimation algorithm was applied to 198 proxi-
mal femur x-ray images of different patients obtained from
a local hospital, with 172 (86.9%) healthy and 26 (13.1%)
fractured femurs. Figure 3 illustrates sample registration re-
sults. The algorithm can register to images of healthy femur
accurately, with matching error E ranging from 2 to 5, even
when the pose after automatic initialization is quite differ-
ent from the final registered pose (Fig. 3(H1, H2)). For im-
ages of fractured femurs, the algorithm can still register to
them quite accurately as long as the femurs’ shapes are not
severely distorted (Fig. 3(F1, F2)) and the matching error
ranges from 2 (for subtle fractures without shape change) to
9 (for moderate fractures with shape change). In the above
cases, the matching error E always converges to stable val-
ues. For severely fractured femurs whose shapes are dras-
tically distorted, the matching error tends to be larger and
oscillates over iterations from as low as 7 to as high as 30.
In summary, 87.4% of the test images have matching errors
below 6. The mean, median, and standard deviation of er-
rors are 3.85, 3.43, and 2.35 respectively.

Based on visual inspection of the registration results, we
found that registration can be considered as successful for
matching error E smaller than 9, which corresponds to an
average error of 3 pixels between model contour points and
image contour points. Based on this criterion, the registra-
tion success rate is 93.9%, which is much larger than the
percentage of healthy femurs (86.9%) in the test images.
This indicates that the algorithm is very robust against shape
variations across patients and due to fractures.

The algorithm is also applied to fluoroscopic images of
distal femurs (Fig. 4). The results show that the algorithm
can also work well on a different type of bone whose shape
is more regular than that of the proximal femur. Moreover,
registration is successful even when part of the distal femur
is occluded (Fig. 4(H5)).

4.2. Accuracy Tests

The methods for evaluating registration accuracy pro-
posed in [9, 10] require that the 3D CT/MR volume and
2D x-ray images are taken from the same patient. In our
case, patient-specific 3D models were not available because
CT and MR were not prescribed to the patients. So, we gen-
erated 3D models based on real x-ray images of patients for
evaluating our algorithm’s accuracy. A similar method was
adopted in [11] to measure the accuracy of 3D pose esti-
mation. For pose estimation, we define the accuracy as the
absolute difference between the 3D model’s actual rotation
angles and the estimated angles. Two types of tests were
performed: single-patient test and cross-patient test.

Single-Patient Test: This test condition is the same as
those in [2, 3, 4, 5, 6, 9, 10, 11]. That is, the 3D model used
for pose estimation and the 2D images come from the same
patient. The test was performed using generic 3D models
of proximal and distal femurs. Given a 3D model, 100 syn-
thetic 2D contours were generated by perspective projection
of the models at a wide range of random orientations. De-
note the angle of rotation about X-, Y -, and Z-axis as φx,
φy , and φz . The image plane is defined as the X-Y plane,
with Y -axis oriented along the femoral shaft, and Z-axis
pointing out of the image plane. For proximal femur, the
ranges of rotational angles were −6◦ to +6◦ for φx, 20◦ to
70◦ (Fig. 3(D1)) for φy , and −15◦ to +15◦ for φz , which
were observed in medical practice. For distal femur, the
ranges of the rotational angles were −6◦ to +6◦ for φx,
−30◦ to 30◦ (Fig. 4(E1)) for φy , and −15◦ to +15◦ for φz

as recommended by the doctor.
The algorithm successfully estimated the rotation angles

of all the test cases. Table 1 shows the mean, median and
standard deviation of the absolute errors of the estimated
values. The average angular error is about 2◦. For proximal
femur, the error in estimating φy is smaller than those of
φx and φz because rotation of the proximal femur about the
Y -axis (shaft) produces a larger difference in the projected
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(D0) (H1 init) (H1 final) (H2 init) (H2 final)

(D1) (F1 init) (F1 final) (F2 init) (F2 final)

(H3 init) (H3 final) (F3 init) (F3 final)

Figure 3. Sample test results. (D0) Initial default 3D pose, (D1) extreme pose (φy = 70◦) for accuracy
test, (H) healthy, (F) fractured. (init) Pose after automatic initialization, (final) final registered pose.
Black contours: image boundary contours, white contours: projected model contours.

model contour than rotations about the X- and Z-axes. So,
the algorithm is more sensitive in estimating φy . For dis-
tal femur, error in φz is the smallest for a similar reason.
In summary, the algorithm can recover 3D pose accurately
even when its initial default pose is very different from the
actual pose.

Cross-Patient Test: A single generic 3D model is used
to estimate the pose of femurs in the images of differ-
ent patients. This test condition is different from those
in [2, 3, 4, 5, 6, 9, 10, 11]. To generate the ground truth,
approximate patient-specific 3D models were generated as
follows. Healthy proximal femur images of 11 different pa-
tients were arbitrarily selected. For each image, our reg-
istration algorithm was applied to obtain a good registra-
tion of the generic 3D model with the image. The error
between the projected model contour points and the im-
age contour points was computed, and the corresponding
3D model points were displaced to minimize the error. As
the 3D model points were displaced, neighboring 3D model
points were also moved subject to the constraint that the
surface normals at the triangular faces remained unchanged.
This constraint helped to ensure that the modified 3D mod-
els were reasonably good approximations of the actual 3D
models of the test images.

For each of the 11 approximate 3D models of proximal
femur, 5 2D views were generated by randomly changing
the orientation of the 3D model. The ranges of rotations
were the same as in the single-patient test. The ranges of
rotations were the same as in the single-patient test. Using
the single generic 3D model, our 3D pose recovery algo-
rithm was applied to estimate the pose of the approximate
3D model for each generated 2D view.

The algorithm successfully estimated the rotation angles
of all the test cases. Table 1 tabulates the angular differences
between the recovered and actual pose. Compared to single-
patient test, all errors are larger because the model used for
pose estimation is not the same as the actual models that
generate the images. Nevertheless, the errors are still very
small (about 3◦ or less), indicating that our algorithm can
recover the 3D pose of femurs in x-ray images of different
patients using a single generic 3D model.

5. Conclusion

This paper has presented an algorithm for computing the
3D pose of a bone by registering a generic 3D model of the
bone to a 2D image. Test results show that the algorithm
is robust against shape variations of patients. It achieves a
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(E0) (H4 init) (H4 final) (H5 init) (H5 final)

(E1) (H6 init) (H6 final) (H7 init) (H7 final)

Figure 4. Sample test results. (E0) Default pose (φy = 0◦). (E1) Extreme pose (φy = 30◦) for accuracy
test. (init) Pose after automatic initialization. (final) Final registered pose. Image and model contours
are black and white respectively.

Table 1. Errors between recovered and actual rotation angles.
Single-Patient Test: Proximal Femur Single-Patient Test: Distal Femur Cross-Patient Test: Proximal Femur

Error φx φy φz

mean 2.33 1.05 1.41
median 2.02 1.06 1.16
std dev 1.82 0.73 1.14

Error φx φy φz

mean 1.61 2.03 0.84
median 1.08 2.06 0.66
std dev 1.46 1.34 0.71

Error φx φy φz

mean 3.21 2.48 1.58
median 2.97 2.55 0.94
std dev 2.13 0.90 1.58

93.9% success rate in registering images of both healthy and
fractured femurs. Tests performed on synthetically gener-
ated images show that the algorithm can recover 3D pose of
the femur from single images accurately even when the 3D
model’s default pose is very different from its actual pose,
and partial occlusion is present in the images. The error is
about 3◦ or less. Our work, thus, helps to bring 3D pose es-
timation method to computer-assisted diagnosis and surgery
that do not routinely involve CT or MR volume images.
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