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Abstract

Face images are very important in human social activ-
ities, which can be severely hampered when they are cor-
rupted by occluders such as eyeglasses, face marks, and
scarfs. Existing methods for removing occlusions in face
images can be grouped into three broad categories, namely
PCA, robust PCA (RPCA), and sparse coding. The ma-
jor weaknesses of these methods are inconsistent perfor-
mance across test conditions and possible corruption of un-
occluded part of the recovered target image. This paper
presents variable-threshold RPCA (VRPCA) method based
on RPCA with variable thresholding. Comprehensive tests
show that VRPCA is able to preserve the unoccluded parts
of the target image with practically zero error. Compared to
existing methods, it is more accurate, reliable, and consis-
tent across various test conditions.

1. Introduction

Face images are very important in human social activ-
ities including security, surveillance, biometric identifica-
tion, criminal and forensic investigation, etc. These activi-
ties are severely hampered when face images are corrupted
by occluders such as eyeglasses, face masks, and scarfs. Al-
though there are algorithms for recognizing occluded faces,
unoccluded face images of victims and suspects are still
needed for investigation, monitoring, and communication to
the public. In fact, many occluded face recognition meth-
ods directly or indirectly recover unoccluded faces during
the recognition process.

Existing methods capable of removing occlusions in face
images can be grouped into three broad categories: princi-
pal component analysis (PCA), robust PCA (RPCA), and
sparse coding. PCA methods map the unoccluded parts of
an occluded target image into an eigenspace constructed
from unoccluded training images, and use the PCA coef-
ficients to generate the unoccluded target image. RPCA
methods decompose a data matrix containing unoccluded

training images and an occluded target image into a low-
rank matrix containing unoccluded training and target im-
ages and a sparse error matrix containing noise and oc-
cluders. Sparse coding methods model a face image as a
weighted sum of unoccluded training images with sparse
weights. Given an occluded target image, they compute the
sparse weights that classify the target image. The weights
can be used to generate an unoccluded image of the target.

There are two major shortcomings in these existing
methods: (1) Their performance are not consistent across
test conditions, and (2) the unoccluded parts of the target
images can be changed by the algorithms, resulting in unin-
tended corruption to the unoccluded parts.

This paper presents variable-threshold RPCA (VRPCA)
method for removing occlusions in a target face image. VR-
PCA differs from RPCA in the use of soft thresholding
or shrinkage operator. Whereas RPCA applies the same
soft threshold to the entire image, VRPCA applies different
soft thresholds to the occluded and unoccluded part. Com-
prehensive tests show that VRPCA can preserve the unoc-
cluded parts of the target image with practically zero error.
Compared to existing methods, it is more accurate, reliable,
and consistent across various test conditions.

This paper focuses on the removal of occlusions in face
images, and it studies the various occluder characteristics
such as intensity, size, shape, and location that can affect
the performance of occlusion removal algorithms. The is-
sue of automatic occlusion detection will be addressed in a
separate paper.

2. Related Work

Existing methods capable of removing occlusions in face
images can be grouped into three broad categories: PCA,
robust PCA, and sparse coding. PCA methods first con-
struct a face eigenspace using unoccluded training images.
Given an occluded image, they compute the unoccluded im-
age as the sum of the eigenvectors weighted by linear coeffi-
cients, which can be computed in a variety of ways. For ex-
ample, [28] uses the coefficients computed from projecting



the unoccluded part of the target image into the eigenspace.
In contrast, [10, 11, 14, 24, 29] apply linear least-squaresto
compute the coefficients, whereas [25] applies iteratively
reweighted least-squares, and [26] iteratively updates the
weights that blend a mean image and the generated image.
Instead of applying standard PCA, [30] applies incremental
PCA whereas [19, 33] apply probabilistic PCA. In addition,
[10, 14, 29] apply random sub-sampling of images to im-
prove the robustness of their methods.

PCA methods generate an entire unoccluded image
based on computed coefficients. So, they can corrupt the
unoccluded part of the target image. To mitigate this prob-
lem, [13] and [35] replace only the occluded pixels and im-
age blocks, respectively, of the target image by the most cor-
related pixels or blocks in the PCA-generated unoccluded
image. Correlation between pixels and blocks are computed
based on training images. In particular, [35] constructs
eigenspaces of image blocks instead of entire face images,
which are used to generate unoccluded image blocks. Such
local replacement, however, creates apparent discontinuities
or seams that need to be removed by blending the replaced
pixels and blocks with their surrounding pixels, which leads
to corruption of the surrounding pixels. Most of these PCA
methods require a single training set of unoccluded face im-
ages. In contrast, [25, 26, 33] require training pairs of oc-
cluded and unoccluded face images, making these methods
restrictive in real applications.

It is well known that PCA methods can be severely af-
fected by large noise amplitude. Robust PCA (RPCA) and
sparse coding methods, on the other hand, are more robust
towards large noise amplitude. They are developed for ma-
chine recognition of occluded faces rather than face deoc-
clusion per se. Nevertheless, many of these methods can re-
cover unoccluded faces from occluded images. [23] applies
RPCA method to decompose a data matrix containing un-
occluded training images and an occluded target image into
a low-rank matrixA that contains unoccluded faces and a
sparse matrixE that contains noise and occluders. It solves
the matrix decomposition problem by augmented Lagrange
multiplier (ALM) method. [31] showed that exact solution
of A can be obtained ifA is low-rank andE is sparse. Em-
pirical study shows that the rank of face images is around
50, which is not low given, say, 100 training images. Arbi-
trarily lowering the relative rank by increasing the number
of training images may help but will significantly increase
computation cost.

Sparse coding methods model a face image as a weighted
sum of unoccluded training images with sparse weights.
Given a target occluded face image, they compute the sparse
weights to classify the subject in the image. The sparse
weights can be used to generate an unoccluded image of
the target through the weighted sum. Various methods have
been proposed for computing the sparse weights. For exam-

ple, [17, 34] use maximum likelihood estimation whereas
[32] appliesl1-norm minimization. [6, 12, 16, 18, 22] use
ALM to solve combined RPCA and sparse coding problem,
whereas [27] uses alternating direction method of multipli-
ers. As these methods are designed for face recognition,
they require the presence of the subject in the training im-
ages. When the subject in the target image is not present in
the training images, these methods produce a weighted sum
of faces similar but not identical to the subject.

As for PCA, RPCA and sparse coding methods operate
globally on the entire image. So, the unoccluded image that
they generate can differ from the unoccluded part of the tar-
get image. Applying local replacement of only the occluded
part, as for [13, 35], can mitigate this problem. But blend-
ing of the replaced pixels with their surrounding pixels in
the unoccluded part to remove apparent seams still causes
corruption to the surrounding pixels.

Our proposed method may be applied to video back-
ground recovery if the foreground area to be removed is
known. In contrast, there are existing RPCA methods for
video background recovery that do not require prior knowl-
edge of the foreground area. For example, we have previ-
ously developed a fixed-rank RPCA method that does not
require variable thresholds, and it has been shown to out-
perform regular low-rank RPCA for video background re-
covery [15]. Other variations of RPCA, such as RPCA via
principal component pursuit, has also been developed for
video background recovery [1].

3. Variable-Threshold Robust PCA

Given a data matrixD, robust PCA (RPCA) decomposes
D into a low-rank matrixA and a sparse error matrixE by

min
A,E

‖A‖∗ + λ‖E‖1, subject toD = A+E, (1)

where‖ · ‖∗ denotes the nuclear norm and‖ · ‖1 denotes
the l1-norm. Wright et al. [31] show thatA can be exactly
recovered ifA is sufficiently low-rank andE is sufficiently
sparse. This minimization problem can be solved in sev-
eral ways. In particular, the augmented Lagrange multiplier
(ALM) method, which reformulates Eq. 1 into

min
A,E

‖A‖∗+λ‖E‖1+〈Y,D−A−E〉+
µ

2
‖D−A−E‖2F ,

(2)
has been shown to be among the most efficient and accurate
methods [20], and is widely used as discussed in Section 2.
In Eq. 2,Y contains the Lagrange multipliers,〈U,V〉 is the
sum of the product of corresponding elements inU andV,
andλ andµ positive parameters.

An important operator used in various implementations
of RPCA, such as iterative thresholding, augmented La-
grange multipliers and principal component pursuit, is the



soft thresholding or shrinkage operator [4, 20]:

Tε(x) =







x− ε, if x > ε,
x+ ε, if x < −ε,
0, otherwise.

(3)

With this shrinkage operator, [3, 9] show that, for matrixM

with SVD USV
⊤,

UTε(S)V
⊤ = argmin

X

ε‖X‖∗ +
1

2
‖M−X‖2F , (4)

Tε(M) = argmin
X

ε‖X‖1 +
1

2
‖M−X‖2F . (5)

Then, comparing Eq. 4 and 5 with Eq. 2 yields

A = UTε(S)V
⊤, with USV

⊤ = D−E, (6)

E = Tε(D−A). (7)

Therefore, the shrinkage operator provides a means of com-
puting optimalA andE according to Eq. 6 and 7.

For deocclusion of face image,D = [T x] containsn
unoccluded training face images arranged in columns inT

and an occluded target face imagex. So,E can be split into
three parts:

E =











Tεt(D−A), for training imagesT,

Tεo(D−A), for occluded part ofx,

Tεu(D−A), for unoccluded part ofx,

(8)

The error of the occluded part of targetx is expected to be
larger than that of the unoccluded part. So, the soft thresh-
old for the occluded partεo should be small whereas that for
the unoccluded partεu should be large. The soft threshold
for the training imagesεt can take on the default value.

Define anm×(n+ 1) weight matrixW = [wij ] with

wij =







wt, training images,
wo, occluded part of target image,
wu, unoccluded part of target image.

(9)

Then, applying exact ALM, our proposedvariable-
threshold RPCA method can be summarized as follows:

VRPCA

Input: D, W.

1. A = 0, E = 0, λ > 0, µ > 0, ρ > 1.
2. Y = sgn(D)/J(sgn(D)).
3. Repeat until convergence:
4. Repeat until convergence:
5. U,S,V = SVD(D−E+Y/µ).
6. A = UT1/µ(S)V

⊤.
7. E = T(λ/µ)W(D−A+Y/µ).
8. Y = Y + µ(D−A−E), µ = ρµ.

Output: A, E.

In Line 2, sgn(·) computes the sign of each matrix element,
andJ(·) computes a scaling factor as recommended in [20]:

J(X) = max
(

‖X‖2, λ
−1‖X‖∞

)

. (10)

Lines 5 to 7 are derived from Eq. 6 and 8. Line 7 applies
a different weight to the soft thresholdλ/µ for different el-
ements ofD − A + Y/µ. For training images,wt = 1.
For the target image, empirical tests show thatwo andwu

can be set quite independently (Section 4.2). Whenwo is
sufficiently small, the mean-squared error of the recovered
image with respect to ground truth for the occluded part is
minimized. Whenwu is sufficiently large, the correspond-
ing elements inE of the unoccluded part are close to zero
due to the shrinkage operator, and thus the corresponding
elements inA are practically unchanged. Whenwu =
wo = 1, VRPCA reverts to RPCA formatrix recovery via
ALM.

In the extreme case withwo = 0 andwt = wu → ∞,
Line 7 becomes

E =







D−A+Y/µ, occluded target,
0, unoccluded target,
0, training.

(11)

Since the elements inE of the unoccluded part is 0, the
corresponding elements inA remain unchanged. This vari-
ation of VRPCA is equivalent to RPCA formatrix comple-
tion via ALM [20]. Matrix completion is the problem of
filling in the missing elements of a matrix given the avail-
able elements [5, 20]. By regarding the occluded parts of a
face image as missing elements, face occlusion removal can
be naturally framed as a matrix completion problem.

Various kinds of matrix completion algorithm have been
proposed for solving computer vision problems. For exam-
ple, [21] applies matrix factorization to depth map enhance-
ment, [37] applies fixed point iteration to illumination com-
pensation, and [2] applies fixed point continuation to image
classification. [36] is related to our method, but it applies
ALM to decompose images into three parts: common part,
low-rank part, and sparse error part. It is actually more sim-
ilar to matrix recovery than matrix completion as defined
in [5, 20]. To our best knowledge, matrix completion has
not been applied to face image deocclusion and face recog-
nition. Thus, it is good that VRPCA includes RPCA for
matrix completion as a special case.

An alternative to VRPCA is to applywt, wu andwo as
weights to the elements ofE instead of applying different
soft thresholds. This method is less desirable because er-
ror scaling does not necessarily minimize Eq. 5. For error
scaling to work, the elements ofE corresponding to the oc-
cluded part has to be scaled to 0 while those of the unoc-
cluded part and training images are scaled by 1 (i.e., un-
changed), which is the same as VRPCA2 (Eq. 11).



VRPCA, as for other RPCA methods, work on the whole
data matrix, in this case, the whole image including both the
occluded and unoccluded parts. A straightforward alterna-
tive is to work on only the occluded part, which would be
much more efficient. This alternative, however, has several
shortcomings. First, it cannot make use of possible cor-
relations among the occluded and unoccluded parts. The
methods of [13] and [35], which generate results only for
the occluded pixels and image blocks, also need to look
for correlated pixels and blocks in the unoccluded parts of
the training images. In VRPCA, consideration of correlated
pixels is achieved through the SVD ofD−E in Line 5.

Second, local replacement of pixels and blocks, as per-
formed in [13, 35], does not consider global consistency
over the entire image. It results in apparent distortions, dis-
continuities and seams that need to be removed by smooth-
ing or blending with surrounding unoccluded pixels (Sec-
tion 4). Smoothing and blending cause unintended corrup-
tion of unoccluded pixels (Section 4). In VRPCA, the SVD
and alternative updating ofA andE retains global consis-
tency and remove the need for smoothing and blending.

4. Experiments

4.1. Data Preparation

Face images were prepared for the tests. 120 images,
one for a different individual, were randomly selected from
CMU Multi-PIE database [8]. 100 of them formed thetrain-
ing set and the other 20 formed theunfamiliar testing set.
In addition, 20 individuals in the training set were randomly
selected, and for each individual, an image different from
the training image was randomly selected from Multi-PIE
database to form thefamiliar testing set. In other words,
2 different images were selected for these 20 individuals,
one as training image and the other as familiar testing im-
age. This arrangement allowed for comparing test results
of familiar and unfamiliar cases, which could occur in real
applications. The face images were resized to120×100 pix-
els. Then, they were spatially aligned by thin plate spline
method using feature points extracted from the face images
by Face++ toolkit [7].

Rectangular occluders were manually placed on each im-
age in the two testing sets to indicate the occluded regions,
while the original unoccluded versions served as ground
truth. Various occluder characteristics were applied, includ-
ing 3 shapes (block, vertical bar, and horizontal bar), 5 size
ratios, 9 intensity levels (0 to 255 in intervals of 32), and 6
locations (left eye, right eye, nose, left cheek, right cheek,
and mouth). The 5 size ratios were measured as the ratio of
the occluder’s area over image area, and included 0.05, 0.1,
0.2, 0.3, and 0.4 (Fig. 1).

In practice, a simple way for a user to manually mark
real occluders, such as eyeglasses, scarfs, beards, and face

masks, in a target image is to place regularly-shaped blocks
over the occlusions. So, the above test conditions are rele-
vant to the removal of real occluders.

4.2. Determination Soft Threshold Weights

VRPCA has three weight parameters for soft threshold-
ing. The weightwt for training images is set to 1 because
training images have no error. The weightswo andwu for
the occluded and unoccluded parts, respectively, should be
set appropriately. To determine the best weight values, a
test was performed on VRPCA with varying weight values
under the test condition of medium-sized black occluder in
the middle of the image (Fig. 1(1a)).

Table 1 shows that with sufficiently largewu and suffi-
ciently smallwo, their actual values do not affect VRPCA’s
error significantly. In particular, whenwu ≥ 10, the error
of the unoccluded parts is practically zero for a wide range
of values ofwo. The error of the occluded parts attains the
smallest value whenwo is close to but larger than 0. So, we
setwo = 0.0001 andwu = 10 for subsequent tests.

4.3. Test Procedure

Six algorithms, covering the main categories of methods
for face deocclusion, namely RPCA, PCA, and sparse cod-
ing, were tested:

• VRPCA: our proposed variable-threshold RPCA.
• VRPCA2: variation of VRPCA that is equivalent to

RPCA for matrix completion of [20].
• RPCA: RPCA for matrix recovery, similar to [23] ex-

cept [23] applies hard instead of soft thresholding.
• FW-PCA: fast weighted PCA of [10].
• BC: block PCA with block correlation of [35].
• RSC: robust sparse coding of [34].

For VRPCA, VRPCA2 and RPCA, the parametersρ and
initial µ were set to the default values of 6 and0.5/σ1,
where σ1 is the largest singular value of the initialY.
The parameterλ was set to the theoretical optimum of
1/
√

max(m,n) [4]. For the other methods, their param-
eter values were set according to recommendation.

In each test case, each algorithm was executed with all
the unoccluded training images and an occluded testing
image to produce a recovered unoccluded image. Mean-
squared errors (MSE) between the recovered images and
their ground truth were computed and averaged over all test-
ing images. Mean-squared errors for the occluded parts and
unoccluded parts were computed separately.

4.4. Results and Discussions

First, let us examine the effect of varying occluder inten-
sity on the occluded parts of the test images (Fig. 2(a), top
row). The errors of VRPCA, VRPCA2, FW-PCA, and BC



(1)

(2)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)
Figure 1. Occluders vary in (1a–c) shape, (1d–l) intensity, (2a–f) location, and (2g–k) size ratio.

Table 1. Effect of weights of soft thresholds on VRPCA’s error (MSE).

(a) Occluded parts (b) Unoccluded parts
wo

wu 0 0.0001 0.001 0.01 0.1 1
1 74.36 11.16 11.16 11.17 12.28 74.36
5 131.38 11.38 11.39 11.44 13.06 75.22

10 131.38 11.39 11.39 11.44 13.06 75.22
100 131.38 11.39 11.39 11.44 13.06 75.22

1000 131.38 11.39 11.39 11.44 13.06 75.22
10000 131.38 11.39 11.39 11.44 13.06 75.22

wo

wu 0 0.0001 0.001 0.01 0.1 1
1 10.91 9.98 9.98 9.97 9.93 10.91
5 0 0.2 0.2 0.2 0.2 0

10 0 0 0 0 0 0
100 0 0 0 0 0 0

1000 0 0 0 0 0 0
10000 0 0 0 0 0 0

are independent of occluder intensity for both familiar and
unfamiliar images. Among them, VRPCA and VRPCA2
attain the smallest error whereas BC has the largest error.
The errors of RSC and RPCA are affected by occluder in-
tensity. For very high or very low occluder intensity, which
are sufficiently different from the intensity of the facial fea-
tures in the image, RSC can attain small error comparable
to those of VRPCA and VRPCA2. On the other hand, for
mid-range occluder intensity which is similar to facial in-
tensity, the error of RSC can be very large even for familiar
faces. RPCA’s error is among the largest for small occluder
intensity and approaches the error rate of FW-PCA for large
occluder intensity.

For the unoccluded parts, VRPCA and VRPCA2 have
practically zero error due to the high threshold of unoc-
cluded parts. BC has the second lowest error because it
does not change the unoccluded part, except for the pix-
els that are blended with the replaced blocks. On the other
hand, RSC, FW-PCA, and RPCA have large errors for the
unoccluded parts because they replace the pixels in the en-
tire images. The intensity effect on RSC for the unoccluded
part is similar to that for the occluded part.

Occluder size has varying effects on the tested algo-
rithms. For the occluded parts, VRPCA, VRPCA2, and
RSC are least affected and they attain the lowest errors. Sur-
prisingly, FW-PCA has large error on the familiar images
that unfamiliar images, and RPCA is severely affected by
occluder size. For the unoccluded parts, VRPCA and VR-
PCA attain practically zero error while BC has very small
error. On the other hand, RSC, FW-PCA, and RPCA have
large errors for the unoccluded parts. The algorithms’ er-
rors on the unoccluded parts under varying occluder size

are consistent with those under varying occluder intensity.
With regard to the effect of occluder location, for the oc-

cluded parts, all methods have larger errors at the left and
right eyes than at the other areas (Fig. 3(a)). VRPCA, VR-
PCA2, and RSC attain the smallest errors, whereas BC and
RPCA have the largest errors. For the unoccluded parts,
VRPCA and VRPCA2 attain practically zero error, while
BC attains the second smallest error, and the other methods
have large errors. These results are consistent for both fa-
miliar and unfamiliar images. Test results on the effect of
occluder shape are similar to those of occluder location,

Figure 4 shows sample test results for the unfamiliar test
set. The images recovered by VRPCA and VRPCA2 are the
most similar to the ground truth. whereas those recovered
by RSC and FW-PCA look more like smoothed versions of
the ground truth. Moreover, when occluder intensity similar
to facial intensity, RSC’s result has large error (Fig. 4(row
2, e2). The results of BC and RPCA have clearly visible
distortions. In particular, the distortions of BC’s results are
due to local replacement of occluded blocks.

In summary, VRPCA and VRPCA2 have the most accu-
rate and consistent performance across various test condi-
tions because the different soft thresholds for the occluded
and unoccluded parts allow the methods to keep the unoc-
cluded part practically unchanged while recovery accurate
pixel values for the occluded part. Moreover, they opti-
mize over the whole target image, and thus produce an un-
occluded image that is globally consistent over the whole
image. They consistently attain the smallest errors com-
pared to other methods, and have practically no error for
the unoccluded parts because they can preserve the unoc-
cluded parts. RSC is strongly affected by occluder intensity
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Figure 2. Test results with respect to occluder intensity and occluder sizeratio for (top) occluded parts and (bottom) unoccluded parts. The
graphs are cropped at large MSE to show the low-error lines more clearly.
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Figure 3. Test results with respect to occluder location and occluder shape for (top) occluded parts and (bottom) unoccluded parts. Locations
include (LE) left eye, (RE) right eye, (NO) nose, (LC) left cheek, (RC) right cheek, and (MO) mouth. Shapes include (B) block, (V) vertical
bar, and (H) horizontal bar. The graphs are cropped at large MSE toshow the low-error lines more clearly. Lines joining data points are
meant as visual aid only.

because it has difficulty distinguishing mid-tone occluders
and facial features. When the occluder intensity is very dif-
ferent from the facial intensity, RSC can attain good results.
However, its error of the unoccluded part is large because it
cannot preserve the unoccluded parts. FW-PCA has moder-
ately large error because PCA is not robust to large ampli-
tude noise. BC can also preserve the unoccluded parts but
its error is large for the occluded parts because the blocks

are replaced independently without regard to consistency
within the entire face image. In other words, the selected
blocks may be locally optimal within each block but not
globally optimal in the entire image. RPCA has among the
largest errors because it corresponds to a version of VR-
PCA whose soft thresholds are 1 for both the occluded and
unoccluded parts, which are inappropriate soft thresholds.



(a1) (b1) (c1) (d1) (e1) (f1) (g1) (h1) (a2) (b2) (c2) (d2) (e2) (f2) (g2) (h2)
Figure 4. Sample deocclusion results of color images. Occluders vary in(row 1) intensity, (row 2) size ratio, (row 3) shape, and (row 4)
location. (a) Occluded image, (b) ground truth, (c) VRPCA, (d) VRPCA2, (e) RSC (f) FW-PCA, (g) BC, and (h) RPCA.

5. Conclusion

This paper presented a variable-threshold RPCA (VR-
PCA) method for removing occlusions in face images. VR-
PCA is based on RPCA via ALM, which decomposes a
data matrix containing unoccluded training images and an
occluded target image into a low-rank matrix that contains
only unoccluded images and a sparse error matrix that con-
tains noise and occluders. It offers two variations with dif-
ferent soft thresholds for the training images and the oc-
cluded and unoccluded parts of the target image. Compre-
hensive tests show that both variations are consistently more
accurate than existing methods across various test condi-
tions. Their accuracies are unaffected by occluder intensity
and minimally affected by occluder size and shape. More-
over, unlike existing methods, they can preserve the unoc-
cluded part of the target image with practically zero error.
The variable soft thresholds also provide additional con-
straints that allow VRPCA to perform well even when the
data matrix is not exactly low-rank.
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