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Abstract

Recent advances in robust principle component analysis

offers a powerful method for solving a wide variety of low-

level vision problems. However, if the input data is very

large, especially when high-resolution images are involved,

it makes RPCA computationally prohibitive for many real

applications. To tackle this problem, we propose a fixed-

rank RPCA method that uses coupled dictionaries (FRPCA-

CD) to handle high-resolution images. FRPCA-CD

downsamples high-resolution images into low-resolution

images, performs FRPCA on the low-level images to obtain

the low-rank matrix, which is reconstructed at original

resolution by coupled dictionaries. Comprehensive tests

performed on video background recovery, noise reduction

in photometric stereo, and image reflection removal

problems show that FRPCA-CD can reduce computation

time and memory space drastically without sacrificing

accuracy.

1. Introduction

Recent advances in robust PCA (RPCA) offers a

powerful method for solving a wide variety of low-level

vision problems such as batch alignment of images [10, 12],

recovery of video background [6, 7], background modeling

for high dynamic range images [10], noise reduction

in photometric stereo [10], and removal of shadows,

specularity [2, 18], and reflections [7] in images. RPCA

solves these problems by arranging images as columns

in a data matrix M, and decomposing it into a low-

rank matrix A that contains the desired solutions and

a sparse matrix E that contains noise or errors. The

data matrix M can be very large, especially when high-

resolution images or long-duration videos are involved,

making RPCA computationally prohibitive for many real

applications. Therefore, most existing works on RPCA

have restricted to low-resolution images and short-duration

videos. To overcome the long-duration problem, we have

previously proposed an incremental RPCA method for

video background recovery that computes the low-rank and

sparse matrices incrementally as new video frames arrive

[6]. However, the issue of high-resolution images is not

addressed in [6].

This paper proposes an fixed-rank RPCA (FRPCA)

method that uses coupled dictionaries (FRPCA-CD) to

handle high-resolution images. FRPCA-CD downsam-

ples high-resolution images into low-resolution images,

performs FRPCA on the low-level images to obtain the

low-rank matrix, which is reconstructed at the original

resolution by coupled dictionaries. Comprehensive tests

performed on video background recovery, photometric

stereo, and image reflection removal problems show that

FRPCA-CD can reduce computational time drastically

without sacrificing accuracy. In fact, FRPCA-CD is often

slightly more accurate than FRPCA, and is significantly

more accurate than other methods. Therefore, with coupled

dictionaries, FRPCA becomes viable for many vision

applications that involve high-resolution images.

2. Related Work

In low-level vision problems such as noise reduction in

photometric stereo, video background recovery, and image

reflection removal, the rank of the low-rank matrix A is

known. Several methods have exploited the known rank

to improve their accuracy. For example, our fixed-rank

RPCA (FRPCA) methods [6, 7] constrain the rank of A

to the known rank via exact augmented Lagrange multiplier

(ALM) method. The method of [6] speeds up FRPCA by

applying incremental SVD, but it is still restricted to low-

resolution images. [10] minimizes partial sum of singular

values instead of the nuclear norm of A. It is implemented

via inexact ALM, and its resultant A has a rank that is close

to but not necessarily equal to the desired rank [10].

In contrast, our FRPCA-CD method adopts the fixed-

rank RPCA method of [7] but changes exact ALM to

inexact ALM, which is more efficient than and has

comparable accuracy as exact ALM [8, 21]. Moreover,

FRPCA-CD is designed to handle high-resolution images,

although it can be applied to low-resolution images as well.

For video background recovery, we show that our

FRPCA method [6] is more robust and accurate than



methods based on video frame averaging, PCA, and mixture

of Gaussian [15]. For photometric stereo, Oh et al. [10]

show that their rank-aware RPCA method is more robust

in removing large-amplitude noise than generic RPCA [18]

and standard least squares [17]. For reflection removal,

we show that our FRPCA method [7] is more robust than

RPCA in removing global reflections. These methods are

compared with FRPCA-CD in Section 4.

Coupled dictionaries is used by Yang et al. [20] for

solving single-image super-resolution problem. They

model a feature point as a sparse representation of a

dictionary, and couple two corresponding feature points by

two dictionaries that share the same dictionary coefficients.

They solve this joint sparse coding problem using projected

stochastic gradient descent. In contrast, our FRPCA-CD

models an image as a linear representation of a dictionary,

and couples the coefficients of two dictionaries by another

linear model. It solves the coupled dictionaries problem by

singular value decomposition (SVD) or FRPCA.

Dictionary learning has also been applied to PCA and

spare representation methods such as [9, 13, 14]. PCA is

known to be not robust to large-amplitude noise. Although

there are methods that robustify PCA, such as influence

function [16], alternating minimization [5], and random

sampling [3], they do not guarantee optimal solutions

[18]. In contrast, RPCA as defined by Wright et al. [18]

has proven performance guarantee. Spare representation

methods are related to RPCA but they solve different

optimization problems.

3. FRPCA with Coupled Dictionaries

3.1. Robust PCA

Given a data matrix M, robust PCA (RPCA) decompos-

es M into a low-rank matrix A and a sparse error matrix E

by

min
A,E

‖A‖∗ + λ‖E‖1, subject to M = A+E, (1)

where ‖ · ‖∗ denotes the nuclear norm and ‖ · ‖1 denotes

the l1-norm. Wright et al. [18] show that A can be exactly

recovered if A is sufficiently low-rank and E is sufficiently

sparse. This minimization problem can be solved in several

ways. In particular, the augmented Lagrange multiplier

(ALM) method, which reformulates Eq. 1 into

min
A,E

‖A‖∗+λ‖E‖1+〈Y,M−A−E〉+
µ

2
‖M−A−E‖2F ,

(2)

has been shown to be among the most efficient and accurate

methods [8]. In Eq. 2, Y contains the Lagrange multipliers,

〈U,V〉 is the sum of the product of corresponding elements

in U and V, and λ and µ are positive parameters.

Our fixed-rank RPCA (FRPCA) methods [6, 7] revise

Eq. 1 to

min
A,E

λ‖E‖1,

subject to rank(A) = known r,M = A+E.
(3)

This problem can be solved by the same ALM method, with

the additional restriction of the rank of A to the fixed known

rank r (Section 3.4). In [7], we show that FPRCA offers

better performance than RPCA, especially when the noise

in the data matrix is not sparse.

3.2. Overview of Proposed Method

Let M
∗ denote the data matrix that contains high-

resolution images m
∗

i arranged in columns. RPCA

decomposes M
∗ into a low-rank matrix A

∗ and a sparse

error matrix E
∗. Performing RPCA or fixed-rank RPCA

(FRPCA) directly on M
∗ requires potentially prohibitive

amounts of memory space and computation time. Instead,

our fixed-rank RPCA method with coupled dictionaries

(FRPCA-CD) downsamples the images m
∗
i into low-

resolution versions mi, forms the low-resolution data

matrix M that contains mi, and decomposes M into the

corresponding A and E by applying FRPCA. Then, the

images ai in A are used to reconstruct the high-resolution

versions âi, which are assembled into the matrix Â. The

goal is to achieve Â = A
∗.

Many high-resolution reconstruction methods are avail-

able, such as Bilinear and Bicubic interpolation. However,

these methods are not ideal because it is widely known

that they tend to generate overly smooth images that lose

many details. FRPCA-CD, on the other hand, uses coupled

dictionaries to achieve more accurate results.

Consider a low-resolution image mi that is partitioned

into non-overlapping image blocks bij . The concept of

coupled dictionaries is to represent bij with respect to

dictionary matrix Dj and coefficient vector cij :

bij = Djcij . (4)

The same dictionary Dj applies to all blocks bij of images

mi at position j. A dictionary D
∗

j is also defined for the

corresponding high-resolution block b
∗

ij :

b
∗

ij = D
∗

jc
∗

ij . (5)

As the dictionaries Dj and D
∗

j are learned separately

(Section 3.3), a mapping matrix Wj is needed to map cij

to c
∗

ij :

c
∗

ij = Wjcij . (6)

The matrix Wj couples dictionaries Dj and D
∗

j .

Now, given a low-resolution image ai in the low-rank

matrix A obtained by applying FRPCA on M, FRPCA-

CD computes the coefficients cij of image blocks bij of ai



using the low-resolution dictionary Dj (Eq. 4), and maps

cij to c
∗
ij through mapping matrix Wj (Eq. 6). Then,

it computes the high-resolution blocks b̂
∗
ij using high-

resolution dictionary D
∗
j (Eq. 5), and assembles b̂∗

ij into the

resultant high-resolution images âi. So, FRPCA-CD can be

summarized as in Algorithm 1.

Algorithm 1: Fixed-rank RPCA with Coupled

Dictionaries (FRPCA-CD)

Input: High-resolution data matrix M
∗.

1 Downsample M∗ to M.

2 Compute dictionaries Dj and D
∗

j , and mapping

matrices Wj (Section 3.3).

3 Apply FRPCA to decompose M to A+E

(Section 3.4).

4 Compute coefficients cij of column ai in A (Eq. 4).

5 Map coefficients cij to c
∗

ij (Eq. 6).

6 Reconstruct high-resolution data âi from c
∗

ij (Eq. 5).

7 Assemble data columns âi into Â.

Output: High-resolution low-rank matrix Â.

3.3. Dictionary Learning

Our coupled dictionary method is inspired by [20],

which links the features extracted from a pair of high- and

low-resolution images by coupled dictionaries. In contrast,

our FRPCA-CD learns a pair of dictionaries and a mapping

matrix for each block position of all the images.

Define Bj = [b1j · · · bnj ] as the matrix that contains

the blocksbij of imagesmi at position j. A straightforward

way to derive the dictionary is to apply singular value

decomposition (SVD) on Bj :

Bj = UjSjV
⊤

j . (7)

Then, comparing Eq. 7 and 4 yields

Dj = U
r
j , [c1j · · · cnj ] = S

r
jV

r⊤
j , (8)

where U
r
j ,V

r
j , and S

r
j contain the first r singular vectors

and values. In the implementation, we choose r to retain

95% of the sum of singular values in Sj .

Computing dictionary using SVD is simple and fast, but

SVD is not robust to large-amplitude noise in the data. A

robust alternative is to apply fixed-rank RPCA (FRPCA) to

recover a rank-r matrix B
r
j from Bj , along with the SVD

of Br
j , which are used to compute the dictionary as in Eq. 8.

Given corresponding coefficients c
∗
ij and cij , the

mapping matrixWj can be computed by linear least squares

method. Wj plays the role of aligning the orthogonal bases

defined by the dictionaries D∗
j and Dj .

In contrast, [13] and [20] assume that the high-resolution

and low-resolution blocks share the same coefficients, i.e.

cij = c∗ij . This assumption can be easily violated when the

numbers of columns in Dj and D
∗
j are different. FRPCA-

CD introduces a mapping matrix W to map cij to c∗ij and it

produces a more accurate estimation.

3.4. Fixed­Rank RPCA

When the rank r of the low-rank matrix A is known,

fixed-rank RPCA (FRPCA) [7] can be used in place of

RPCA. [7] implements FRPCA via exact augmented

Lagrange multiplier (ALM) method. We adapt it and

change the implementation to inexact ALM, which is more

efficient than and has comparable accuracy as exact ALM.

Our FRPCA method can be summarized as in Algorithm 2.

Algorithm 2: Fixed-rank RPCA (FRPCA)

Input: M, r.

1 A = 0, E = 0.

2 Y = sgn(M)/J(sgn(M)), µ > 0, ρ > 1, λ > 0.

3 repeat

4 U,S,V = SVD(M−E+Y/µ).
5 if rank(T1/µ(S)) < r then

6 A = UT1/µ(S)V
⊤,

7 else

8 A = U
r
S
r
V

r⊤.

9 end

10 E = Tλ/µ(M −A+Y/µ).
11 Y = Y + µ(M−A−E), µ = ρµ.

12 until convergence;

Output: A, E.

In Line 2 of Algorithm 2, sgn(·) computes the sign of

each matrix element, and J(·) computes a scaling factor

J(X) = max
(
‖X‖2, λ

−1‖X‖∞
)

(9)

as recommended in [8]. The function Tǫ in Line 5, 6 and

10 is a soft thresholding or shrinkage function [1]. The

parameters µ and ρ are set to their recommended default

values of 1.25/σ1 and 1.5, respectively, where σ1 is the

largest singular value of the initial Y, whereas λ is set to

the theoretical optimal value 1/
√
max(m,n) [2].

4. Experiment

This section describes the applications of FRPCA-

CD to three vision tasks: video background recovery,

noise reduction in photometric stereo, and image reflection

removal.

4.1. Data Preparation

For background recovery, we downloaded a high

resolution video from Youtube captured by a stationary



camera. The video was recorded in a park with people

walking. 100 frames of the video were used and resized

to 3840 × 2176. The ground truth was generated by

replacing the moving human region in the first frame with

the background region from the other frames.

For photometric stereo, we used the Bunny dataset in

[4], which consisted of 40 images generated by Cook-

Torrance reflectance model. Ground truth surface normal

and lighting condition of 40 images were available. Each

image had a resolution of 256×256. The average ratio of

specularity and shadow were 8.4% and 24%, respectively.

For reflection removal, 46 images of size 1600× 896
were captured. One image without reflection was used as

the ground truth and the other 45 images with real global

reflections were used as test images.

4.2. Procedure

For background recovery and reflection removal, images

were arranged as columns in the data matrix M
∗. The size

ofM∗ was (3840×2176)×100and (1600×896)×45 for back-

ground recovery and reflection removal, respectively. Since

the background in the video was stationary and images

containing reflections were aligned, their corresponding

matrix M
∗ had a rank of 1. The recovered rank-1 matrix

Â contained the stationary background and reflection-free

image, respectively, for these two problems. Mean-squared

error (MSE) was measured between the recovered images

in Â and the ground truth. For background recovery, two

MSEs were calculated: one was the MSE of the whole

image across all images (denoted as MSE-W); the other was

the MSE of the manually marked region containing moving

human of 10 regular sampling frames (denoted as MSE-R).

For photometric stereo, we adopted Lambertian model

M
∗ = N

⊤
L, (10)

where M∗ was an m×n observation matrix, N was the 3×m
surface normal matrix, and L was the 3×n light direction

matrix. The observations in each image were arranged as a

column in M
∗, which had a rank of 3 for Lambertian model

[10]. Noise was injected by randomly replacing a fraction

of the pixels in each image in M
∗ by i.i.d. uniformly

distributed noise. Noise ratio ranged from 10% to 50%.

Therefore, photometric stereo was modeled as the RPCA

problem M
∗ = A

∗ + E
∗, where A

∗ = N
⊤
L and E

∗

contains specularity, shadow and noise. After recovering

Â, an approximation of A
∗, surface normals in N were

computed by least squares method given the known lighting

conditions. Mean error was measured in degree between

computed surface normals and ground truth.

Test programs were implemented in Matlab and ran in a

Windows 7 PC with Intel i7-5930 CPU and 32GB RAM.

Besides comparing the performance of FRPCA-CD with

existing methods for the three tasks, the experiments also

aimed to elucidate three aspects of FRPCA-CD:

• Downsampling rate vs. block size

Intuitively, larger downsampling rate and larger block

size result in the fewest number of blocks and thus the

least amount of computation. This aspect was tested

in all three tasks. Downsampling rate was set at 2,

4, 8, and 16 for background recovery and reflection

removal, and 2, 4, and 8 for photometric stereo.

Downsampling rate of 16 was omitted for photometric

stereo because the resolution of the images was just

256×256. Block size was set to 16, 32, and 64 for all

tests.

• Dictionary learning method

FRPCA-CD has two methods of learning coupled

dictionaries: by SVD (FRPCA-CD-S) and by FRPCA

(FRPCA-CD-F). In principle, FRPCA is more robust

than SVD in handling large-amplitude noise. This

aspect was tested in the photometric stereo task at

noise ratio of 10%. For background recovery and

reflection removal, FRPCA-CD-S was sufficiently

accurate and FRPCA-CD-F was omitted.

• High-resolution reconstruction

Bicubic interpolation is a standard method for high-

resolution reconstruction of an image. So, we

compared FRPCA-CD (specifically, FRPCA-CD-S)

with a variation of our method whose coupled

dictionaries were replaced by bicubic interpolation

(FRPCA-BI). This aspect was tested in the reflection

remvoal task.

4.3. Video Background Recovery Results

Table 1 (a) and (b) illustrate the effect of block size

and downsampling rate on FRPCA-CD’s MSE. When

both block size and downsampling rate are 16, the low-

resolution block size is 16/16 = 1, which contains too

little information to learn the low-resolution dictionaries.

Therefore, this test case is omitted. In Table 1 (a), all

MSE-W values are similar for different combinations of

parameter values. A possible reason is that most of the

regions in the images are background, which overwhelm

the moving human region. Compared to MSE-W, MSE-R

of moving human region indeed is larger than MSE-W on

the whole image, which is verified in Table 1 (b). MSE-R

values vary more with different combinations of parameter

value. When block size is fixed, the smallest downsampling

rate always yields the least error. The best result is achieved

by block size 64 and downsampling rate 2.

Table 2 shows running time for different block size and

downsampling rate. It is not surprising that the least running

time is achieved by the largest block size (i.e., 64) and

downsampling rate (i.e., 16), which leads to the smallest



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Sample test results for background recovery. (a) Sample image, (b) ground truth background, and the results of (c) MoG, (d)

PCA, (e) RPCA, (f) FRPCA, (g) FRPCA-CD 64-2, and (h) FRPCA-CD 64-16. The top-right box shows the zoomed-in view in the little

yellow box. The green boxes highlight shadows that are not removed.

Table 1. Background recovery results. (a) MSE-W of whole images with respect to block size and downsampling rate; (b) MSE-R of

moving region with respect to block size and downsampling rate.

(a) MSE-W of whole image (b) MSE-R of moving region

block
downsampling rate

size 2 4 8 16

16 19.48 19.4 19.52 -

32 19.35 19.52 19.53 19.4

64 19.22 19.34 19.73 19.33

block
downsampling rate

size 2 4 8 16

16 31.88 31.89 41.29 -

32 31.01 33.89 41.57 36.66

64 28.23 31.14 44.49 29.67

Table 2. Background recovery results. This table shows running

time with respect to block size and downsampling rate.

Running time (sec.)

block
downsampling rate

size 2 4 8 16

16 616 384 337 -

32 489 258 198 176

64 424 276 157 140

Table 3. Comparison of background recovery methods. This table

shows MSE-W, MSE-R and running time.

MSE-W, MSE-R, and Running time (sec.)

methods MoG PCA RPCA FRPCA
FRPCA-CD

64-2 64-16

MSE-W 31.23 232.54 22.17 19.5 19.22 19.33

MSE-R 739 745 38.99 31.76 28.23 29.67

Time (s) 10829 12.9 12149 10499 423.7 140.4

number of dictionaries to be built and the lowest resolution

images that are processed by FRPCA (Algorithm 1, Step 3).

Table 3 compares PCA [11], mixture of Gaussian (MoG)

[15], RPCA, FRPCA [7] and FRPCA-CD. For FRPCA-CD,

the parameter values that give the least MSE-R and running

time are selected. They are denoted as FRPCA-CD 64-2

and FRPCA-CD 64-16. It can be seen that MoG and PCA

have the largest MSE-W and MSE-R, which is consistent

with the test results in [6]. Using the known rank, FRPCA

outperforms RPCA. The results of FRPCA-CD methods are

slightly better than those of FRPCA, even though FRPCA-

CD is much faster than FRPCA.

As PCA requires only one SVD step, it has the least

running time. MoG is very slow due to iterative updating of

the mixture of Gaussian. RPCA and FRPCA have similar

long running time because they run many SVD in their

iteration steps for low rank optimization. On the other

hand, FRPCA-CD is much faster than FRPCA and RPCA.

It spends less than 5% of the computation time of FRPCA.

Figure 1 displays sample results for background

recovery. In the results of MoG and PCA, it can be

clearly seen that the moving person highlighted by yellow

box has not been removed and there is shadow indicated

by green boxes. RPCA, though achieves a better result,

cannot completely recover the background. FRPCA and

both versions of FRPCA-CD achieve the best results.

4.4. Photometric Stereo Results

Table 4 (a) and (b) compare two different methods

of learning dictionary with different combination of

parameters. It shows that the result of FRPCA-CD-F is



Table 4. Comparison of coupled dictionaries learning methods for photometric stereo. (a) Mean error in degree of FRCPA-CA-F and

FRPCA-CD-S, (b) running time in second of FRCPA-CA-F and FRPCA-CD-S.

(a) MSE (b) Running time (sec.)

block
downsampling rate

size 2 4 8

16 7.47 / 9.97 8.24 / 10.77 13.11 / 14.63

32 6.31 / 10.06 6.63 / 10.95 8.42 / 12.42

64 5.25 / 10.4 5.27 / 10.64 6.01 / 12.07

block
downsampling rate

size 2 4 8

16 8.05 / 1.67 6.09 / 1.03 5.15 / 0.89

32 4.01 / 1.01 3.14 / 0.55 2.66 / 0.47

64 3.07 / 0.85 2.4 / 0.42 2.2 / 0.35

Table 5. Noise reduction for photometric stereo. The table shows mean error and standard deviation with respect to noise ratio.

Mean Error and Standard Deviation

noise
mean error (in degree) standard deviation (in degree)

ratio LS RPCA PSSV FRPCA FRPCA-CD LS RPCA PSSV FRPCA FRPCA-CD

10% 13.39 11.42 8.66 7.77 5.27 8.73 7.02 5.52 4.94 3.47

20% 17.21 12.42 9.39 9.12 6.46 10.81 7.74 6.11 6.30 4.80

30% 21.01 13.98 10.52 10.74 8.53 12.60 8.87 7.26 8.02 6.53

40% 24.64 16.69 12.58 13.26 11.82 14.22 10.52 9.33 10.31 9.06

50% 28.15 21.34 16.55 17.41 15.94 15.61 12.99 12.39 13.08 11.85

much better than that of FRPCA-CD-S due to the large-

amplitude noise. However, as it requires multiple SVD

steps for dictionary building, FRPCA-CD-F is not as fast

as FRPCA-CD-S.

Table 5 compares the standard LS [17], RPCA [19],

partial sum of singular values (PSSV) [10], FRPCA

and FRPCA-CD. For FPRCA-CD, parameter values that

achieve the smallest mean error are selected. As LS is

sensitive to the large amount of corruption, it performs

poorly. PSSV and FRPCA significantly outperform RPCA

because the sparse assumption of noise is violated. It also

shows that FRPCA has better results than RPCA when noise

ratio is less than 30%. However, with the facilitation of

the coupled dictionaries, FRPCA-CD is more accurate than

PSSV under all amounts of corruption. Moreover, FRPCA-

CD achieves the smallest standard deviation.

4.5. Reflection Removal Results

Table 6 (a) and (b) show the effect of block size and

downsampling rate on FRPCA-CD’s MSE and running

time. The MSE values of FRPCA-CD are similar for

different combinations of block size and downsampling

rate. Again, the least running time is achieved by the largest

block size and downsamplng rate.

Table 7 compares FRPCA-BI with downsampling rates

2 and 16, FRPCA and FRPCA-CD in reflection removal

problem. For FRPCA-CD, we choose block size 64

downsampling rate 2 (FRPCA-CD 64-2) and block size

64 downsampling rate 16 (FRPCA-CD 64-16). It can be

seen that FRPCA-CD achieves similar result to FRPCA.

Although image resolution is not high, FRPCA-CD still

significantly accelerates the procedure of FRPCA. It

takes only 1/10 the execution time of FRPCA. Although

FRPCA-CD is slightly slower than FRPCA-BI with the

same downmpling rate, FRPCA-CD performs much more

accurately than FRPCA-BI.

Figure 2 shows some test results for reflection removal.

As downsampling rate is 16, we can see that FRPCA-

BI recovers an overly smooth image, whereas FRPCA-CD

achieves a sharp and accurate image.

4.6. Summary

For video background recovery and photometric stereo

noise removal, block size of 64 and downsampling rate of 2

produce the smallest error. On the other hand, for reflection

removal, block size of 64 and downsampling rate of 16

produce the lowest error. Nevertheless, other downsampling

rates with block size of 64 achieve comparable accuracy.

Larger block size contains more information and smaller

downsampling rate loses less information. So, we can

conclude that larger block size and smaller downsampling

rate produce highest accuracy. On the other hand, larger

block size and larger downsampling rate produces the

fewest number of blocks, and achieves the least running

time. This observation is consistent for all three test

problems.

5. Conclusion

This paper presented a fixed-rank RPCA method with

coupled dictionaries (FRPCA-CD). Instead of directly

applying FRPCA to the high-resolution image data,

FRPCA-CD first downsamples the original images to low

resolution, which is processed by FRPCA. The output

low-rank data is then used to reconstruct images at the

original resolution using the proposed coupled dictionaries.

Two different ways of building coupled dictionaries are



Table 6. Reflection removal results. (a) and (b) show the MSE and running time with respect to block size and downsampling rate,

respetively.

(a) MSE (b) Running time (sec.)

block
downsampling rate

size 2 4 8 16

16 109.8 109.8 110.3 -

32 109.7 109.6 110.1 109.8

64 109.6 109.5 109.9 109.2

block
downsampling rate

size 2 4 8 16

16 48.1 24.6 20.7 -

32 31.2 15.2 11.2 10.0

64 26.6 12.2 8.0 7.2

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Sample test results for reflection removal. (a) Sample image, (b) ground truth image, and the results of (c) FRPCA-BI 2, (d)

FRPCA-BI 16, (e) FRPCA, (f) FRPCA-CD 64-2, and (g) FRPCA-CD 64-16.

Table 7. Comparison of high-resolution reconstruct methods for

reflection removal. This table shows MSE and running time.

MSE and Running time (sec.)

methods FRPCA
FRPCA-BI FRPCA-CD

2 16 64-2 64-16

MSE 109.7 140.62 326.43 109.59 109.20

Time (s) 75.17 17.53 1.24 26.6 7.21

proposed: by SVD and by FRPCA. FRPCA version is more

robust than SVD version in dealing with large-amplitude

noise.

Comprehensive tests were performed on three low-

level computer vision problems: background recovery,

photometric stereo and reflection removal. Test results show

that FRPCA-CD uses less computation time than FRPCA

without sacrificing accuracy. When the original data is

high dimensional and contain redundant information, a

large downsampling rate will lead to a much more efficient

and sufficiently accurate result. Building dictionary with

FRPCA significantly outperforms that with SVD when

data is severely corrupted. Test results also show that

coupled dictionaries are superior to other high-resolution

reconstruction methods, such as bicubic interpolation.

Therefore, with the facilitation of coupled dictionaries,

FRPCA becomes viable for many vision applications that

involve high dimensional data.
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